DIGITAL TO ANALOG CONVERSION

PROF, KIRTANKUMAR RATHOD DEPT. OF COMPUTER SCIENCE ISHLS, INDUS UNIVERSITY

ASPECTS OF DIGITAL-TO-ANALOG CONVERSION

- Bit rate is the number of bits per second.
- Baud rate is the number of signal elements per second.

 In the analog transmission of digital data, the baud rate is less than or equal to the bit rate.

CARRIER SIGNAL

- A carrier signal is a transmitted electromagnetic pulse or wave at a steady base frequency of alternation on which information can be imposed by increasing signal strength, varying the base Frequency, phase or Amplitude.
- This modification is called modulation.

AMPLITUDE SHIFT KEYING (ASK)

- ASK is a form of modulation that represents digital data as variations in the amplitude of a carrier wave.
- The amplitude of the carrier (modulating signal), keeping frequency and phase constant.

AMPLITUDE SHIFT KEYING (ASK)

- Advantages
 - Very simple modulation and demodulation
- Disadvantages
 - High sensitivity to noise
 - Low bandwidth efficiency

FREQUENCY SHIFT KEYING (FSK)

- FSK is a method of transmitting digital signals.
- The two binary states, logic 0 (low) and 1 (high), are represented by an analog waveform.
- Logic 0 is represented by a wave at a specific frequency, and logic 1 is represented by a wave at a different frequency.

6

Peak amplitude and phase are constant

PHASE SHIFT KEYING

- Phase-shift keying (PSK): the phase of a transmitted signal is varied to convey information.
- There are several methods that can be used to accomplish PSK.

PHASE SHIFT KEYING

- The simplest PSK technique is called 2-PSK or BPSK. It uses two opposite signal phases (0 and 180).
- The state of each bit is determined according to the state of the preceding bit.
- If the phase of the wave does not change, then the signal state stays the same (0 or 1).
- If the phase of the wave reverses that is changes by 180 then the signal state is flipped.

PHASE SHIFT KEYING

PSK minimum bandwidth = ASK minimum bandwidth.

Advantages of PSK:

- Not susceptible to noise.
- No bandwidth limitation.

Disadvantages:

Distinguishing small difference in phase depending on the equipment used.

Multiplexing Techniques

Prof. Kirtankumar Rathod

Dept. of Computer Science

ISHLS, Indus University

Multiplexing :

- Whenever the bandwidth of a medium linking two devices is greater than the bandwidth needs of the devices, the link can be shared.
- Multiplexing is the set of techniques that allow the simultaneous transmission of multiple signals across a single data link.
- In a multiplexed system, n lines share the bandwidth of one link.

Frequency-division multiplexing (FDM):

- Frequency-division multiplexing (FDM) is an analog technique that can be applied when the bandwidth of a link (in hertz) is greater than the combined bandwidths of the signals to be transmitted.
- In FDM, signals generated by each sending device modulate different carrier frequencies.
- Carrier frequencies are separated by sufficient bandwidth to accommodate the modulated signal.

Application of FDM:

- A very common application of FDM is AM and FM radio broadcasting. Radio uses the air as the transmission medium. A special band from 530 to 1700 kHz is assigned to AM radio. All radio stations need to share this band.
- The first generation of cellular telephones also uses FDM. Each user is assigned two 30-kHz channels, one for sending voice and the other for receiving.

Wavelength-division multiplexing (WDM):

- Wavelength-division multiplexing (WDM) is designed to use the high-data-rate capability of fiber-optic cable.
- The optical fiber data rate is higher than the data rate of metallic transmission cable, but using a fiber-optic cable for a single line wastes the available bandwidth.
- One application of WDM is the SONET network, in which multiple optical fiber lines are multiplexed and demultiplexed.

Time-division multiplexing (TDM):

- Time-division multiplexing (TDM) is a digital process that allows several connections to share the high bandwidth of a link.
- Instead of sharing a portion of the bandwidth as in FDM, time is shared.

