

Power Electronics (EC0606) Unit-II B.Tech (Electronics and Communication) Semester-VI

Omkar Pabbati

Academic Year 2019-2020

PHASE CONTROLLED RECTIFIERS

- RECTIFIERS CONVERT AC TO DC
- CLASSIFIED AS
 - UNCONTROLLED DIODES ARED USED

- CONTROLLED - THYRISTORS ARE USED

CLASSIFICATION OF RECTIFIERS

- BASED ON INPUT SUPPLY
 - SINGLE PHASE
 - THREE PHASE
- BASED ON QUADRANT OPERATION
 - 1 QUADRANT
 - 2 QUADRANT
 - 4 QUADRANT
- BASED ON NO. OF PULSES
 - ONE PULSE
 - TWO PULSES
 - THREE PULSES
 - SIX PULSES

APPLICATIONS OF RECTIFIERS

- DC MOTOR SPEED CONTROL
- DC SUPPLY FOR INVERTERS
- ELECTROCHEMICAL PROCESSES
- DC TRACTION
- HVDC TRANSMISSION

RECTIFIERS

- SINGLE PHASE HALF WAVE RECTIFIER WITH R & RL Load
- SINGLE PHASE FULL WAVE RECTIFIER WITH R & RL Load
- THREE PHASE HALF WAVE RECTIFIER WITH R & RL Load
- THREE PHASE FULL WAVE RECTIFIER WITH R & RL Load

FIRING ANGLE α

 ANGLE BETWEEN THE ZERO CROSSING OF THE INPUT VOLTAGE AND THE INSTANT THYRISTOR IS FIRED.

Contd.

- ▶ Figure shows an AC waveform being applied with a gating pulse at 45 degrees. There are 360 electrical degrees in a cycle; 180 degrees in a half-cycle.
- The number of degrees from the beginning of the cycle until the SCR is gated ON is referred to as the *firing* angle.
- The number of degrees that the SCR remains conducting is known as the conduction angle.

output voltage applied to the load

AC to DC Conversion: Half-Wave Rectifier

SINGLE PHASE HWR WITH R LOAD

AVERAGE OUTPUT VOLTAGE OF SINGLE PHASE HWR WITH R LOAD

The average output voltage \mathbf{V}_{dc} is given by

$$V_{dc} = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_{m} \sin \omega t \, d(\omega t)$$

$$\mathbf{V}_{\rm dc} = \frac{\mathbf{V}_{\rm m}}{2\pi} \left[-\cos \omega \mathbf{t} \right]_{\alpha}^{\pi}$$

$$V_{dc} = \frac{V_{m}}{2\pi} (1 + \cos \alpha)$$

The output voltage V_{dc} can be varied from V_m/π to zero as the firing angle α varies from zero to π .

RMS OUTPUT VOLTAGE OF SINGLE PHASE HWR WITH R LOAD

The rms output voltage is given by

$$\mathbf{V}_{\rm rms} = \left[\frac{1}{2\pi}\int_{\alpha}^{\pi} \mathbf{V}_{\rm m}^2 \sin^2 \boldsymbol{\omega} \mathbf{t} \mathbf{d}(\boldsymbol{\omega} \mathbf{t})\right]^{\frac{1}{2}}$$

$$\mathbf{V}_{\rm rms} = \left[\frac{\mathbf{V}_{\rm m}^2}{4\pi} \int_{\alpha}^{\pi} (1 - \cos 2\omega \mathbf{t}) \mathbf{d}(\omega \mathbf{t})\right]^{\frac{1}{2}}$$

$$\mathbf{V}_{\rm rms} = \frac{\mathbf{V}_{\rm m}}{2} \left[\frac{1}{2\pi} \left(\pi - \alpha + \frac{\sin 2\alpha}{2} \right) \right]^{1/2}$$

SINGLE PHASE HWR WITH RL LOAD

WAVEFORMS OF HWR SINGLE PHASE WITH RL LOAD

14

SINGLE PHASE HWR WITH RL LOAD AND FD

WAVEFORMS OF SINGLE PHASE HWR WITH RL LOAD AND FD

Importance of Free-Wheeling Diode

- A "freewheeling diode" is put into a circuit to protect the switching device from being damaged by the reverse current of an inductive load.
- ✓ This diode serves two main functions
- 1. To protect/prevent the switching device from being damaged by the reverse current of an inductive load.
- 2. It transfers load current away from the main rectifier, there by allowing all of its thyristors to regain their blocking states.

Note: with freewheeling diode, thyristor will not be able to conduct beyond 180.

SINGLE PHASE FULL WAVE CONVERTER WITH RL LOAD AND ITS EQUIVALENT CIRCUIT

(a)FULL WAVE MID-POINT CONVERTER (b)FULL WAVE BRIDGE CONVERTER

EQUIVALENT CIRCUIT OF FULL WAVE MID-POINT CONVERTER

FULL WAVE RECTIFIER

FULL WAVE RECTIFIER WITH R LOAD

OPERATION OF FWR WITH RL LOAD

WAVEFORMS OF FULL WAVE MID-POINT CONVERTER WITH RL LOAD

SINGLE PHASE FULL WAVE CONTROLLED BRIDGE RECTIFIER WITH R LOAD

SINGLE PHASE FULL WAVE CONTROLLED BRIDGE RECTIFIER WITH R LOAD

(i) Average output voltage (V_{dc})

$$V_{dc} = \frac{V_m}{\pi} (1 + \cos\alpha)$$

(ii) Average load Current (I_{dc})

$$I_{dc} = \frac{V_m}{\pi R} (1 + \cos \alpha)$$

(iii) Rms load Voltage (Vrms)

$$V_{rms} = \left[\frac{1}{\pi} \int_{\alpha}^{\pi} V_{m}^{2} \sin^{2} \omega t . d\omega t\right]^{\frac{1}{2}}$$

$$V_{rms} = V_m \left[\frac{\pi - \alpha}{2\pi} + \frac{\sin 2\alpha}{4\pi}\right]^{\frac{1}{2}}$$

(iv)
$$I_{rms} = \frac{V_{rms}}{R}$$

THREE PHASE CONTROLLED RECTIFIERS

- ADVANTAGES
 - REDUCED RIPPLE CONTENT IN THE OUTPUT VOLTAGE
 - CAN BE USED FOR HIGH POWER APPLICATIONS
- TYPES
 - THREE PULSE CONVERTERS
 - SIX PULSE CONVERTERS
 - TWELVE PULSE CONVERTERS (HIGHER THE NO.OF PULSES, SMOOTHER IS THE OUTPUT VOLTAGE)

THREE PHASE HALF WAVE RECTIFIER WITH R LOAD

WAVEFORMS OF THREE PHASE HWR WITH R LOAD

THREE PHASE HWR WITH RL LOAD

WAVEFORMS OF THREE PHASE HWR WITH RL LOAD ($\alpha=0^{\circ}$)

28

WAVEFORMS OF THREE PHASE HWR WITH RL LOAD (α =45⁰)

Voltage and current waveforms for a=45°

WAVEFORMS OF THREE PHASE HWR WITH RL LOAD (α =90⁰)

THREE PHASE HALF WAVE CONTROLLED RECTIFIER WITH R LOAD

THREE PHASE HALF WAVE CONTROLLED RECTIFIER WITH R LOAD

$$V_{dc} = \frac{3\sqrt{3}}{2\pi} V_m \cos\alpha$$

(ii) Average load Current (I_{dc})

$$I_{dc} = \frac{3\sqrt{3}}{2\pi R} V_m \cos \alpha$$

(iii) <u>Rms</u> load Voltage (V_{rms})

$$V_{rms} = \left[\frac{1}{2} + \frac{3\sqrt{3}}{8\pi}\cos 2\alpha\right]^{\frac{1}{2}}$$

THREE- PHASE HALF WAVE CONTROLLED RECTIFIER

Three- phase half- wave controlled rectifier

Resistive load, $\alpha = 0^{\circ}$

Common-cathode connection

Natural commutation point

