Pavement Design

Outline

- Requirements of Pavements
- Pavement types and their choice
- Design factors for flexible pavements
- Design of flexible pavements by CBR method

Ground Level

Requirements of pavements

- The surface of pavement should be stable and non yielding
- The surface of pavement should be even along longitudinal profile
- The uneven pavement surface causes increase in vehicle operation cost
- Unevenness also leads to discomfort and fatigue to passengers.
- Pavement design is to be done suitably to provide a stable and even surface
- Pavement consists of few layers of pavement materials, which are been laid over prepared subgrade to serve as a carriageway

Structural Requirements

- Traffic loads
- Load repetition
- Climatic variables
- Environmental factors

Functional Requirements

- Riding comfort
- Economic operation
- Safe operation

Pavement Types

Flexible pavements

Rigid pavements / Cement Concrete (CC) Pavements

Semi-rigid / Composite pavements

Flexible pavements

FIG. 2 TYPICAL CROSS SECTION OF FLEXIBLE PAVEMENT

Stress distribution through granular layers

A) LARGE BOULDER SOILING B) LARGE SIZE STONES **C) STONE AGGREGATES**

FIG. 1 PRESSURE DISTRIBUTION THROUGH TYPICAL GRANULAR MATERIALS

Rigid pavement

FIG. 3 TYPICAL CROSSSECTION OF CEMENT CONCRETE PAVEMENT

Semi Rigid Pavements

- Intermediate class of materials used in base / sub base course
- The intermediate materials are bonded materials like lime fly ash aggregate mix (puzzolanic concrete), lean cement concrete or soil cement
- They have slightly high flexural strength than the flexible pavements
- They do not possess as much flexural strength as cement concrete pavements
- These materials have low resistance to impact and abrasion

Choice Of Pavement Type

- Initial cost
- Maintenance cost
- Total transportation cost
- Availability of funds

Design Factors For Flexible Pavements

- Design Wheel Load
- Sub-grade Support
- Materials in Pavement Component layers
- Climatic and Environmental Factors
- Drainage Characteristics

Load

- Gross load, 'P'
- Tyre and Contact pressure, 'p' or the area of contact, A
- Multiple wheel load and ESWL
- Repeated application of wheel loads and EWL factors
 - $P_1 N_1 = P_2 N_2$
- Cumulative standard axles, CSA in msa
- Other factors pavement width and coverage or lane distribution factor, speed etc.

Subgrade

- Soil type and index properties
- Strength properties (CBR, K value or E-value)
- Drainage characteristics

Pavement Materials

- Materials characteristics in different layers
- (Stress distribution, drainage, strength factor etc)
- Durability
- Fatigue effects

Climatic And Environmental Factors

- Rain fall
- Depth of water table and relative height of formation
- Sub-grade moisture content for design
- Temperature variations daily and seasonal
- Frost action

Drainage characteristics

effective functioning of :

- surface drainage system
- subsurface drainage system

Flexible Pavement Design

Basic Principles

- Vertical stress or strain on sub-grade
- Tensile stress or strain on surface course

Solutions

- Better Load Dispersing Materials
- Limit Elastic Deformation
- Construction Above Maximum Water Level

Evaluation Of Pavement Component Layers

- Sub-grade
 - To Receive Layers of Pavement Materials Placed over it
 - Plate Bearing Test
 - CBR Test
 - California Resistance Value test
 - Triaxial Compression

Evaluation Of Pavement Component Layers

- Sub-base And Base Course

- To Provide Stress Transmitting Medium
- To Spread Wheel Loads
- To Prevent Shear and Consolidation Deformation
 - Plate Bearing Test
 - CBR Test
 - Stabilometer Test

Wearing Course

- High Resistance to Deformation
- High Resistance to Fatigue; ability to withstand high strains flexible
- Sufficient Stiffness to Reduce Stresses in the Underlying Layers
- High Resistance to Environmental Degradation; durable
- Low Permeability Water Tight Layer against Ingress of Surface Water
- Good Workability Allow Adequate Compaction
- Sufficient Surface Texture Good Skid Resistance in Wet Weather
- Predictable Performance

Flexible Pavement Design Using CBR Value Of Sub-grade Soil

- California State Highways Department Method
- Required data

 Design Traffic in terms of cumulative number of standard axles(CSA)
 CBR value of subgarde

Traffic Data

 Initial data in terms of number of commercial vehicles per day (CVPD)

• Traffic growth rate during design life in %

• Design life in number of years

 Distribution of commercial vehicles over the carriage way

Traffic – In Terms Of CSA (8160 Kg) During Design Life

- Initial Traffic
 - In terms of Commercial Vehicles/day
 - Based on 7 days 24 hours Classified Traffic
- Traffic Growth Rate
- Establishing Models Based on Anticipated Future Development
 - Growth Rate of LCVs, Bus, 2 Axle, 3 Axle, Multi axle, HCVs are different
 - > 7.5 % may be Assumed

Design Life

- National Highways 15 Years
- Expressways and Urban Roads 20 Years
- Other Category Roads 10 15 Years

Vehicle Damage Factor (VDF)

Multiplier to Convert No. of Commercial Vehicles of Different Axle Loads and Axle Configurations to the Number of Standard Axle Load Repetitions indicate VDF Values

n = 4 - 5

VEHICLE DAMAGE FACTOR (VDF)

AXLE LOAD, t	No. of	Axles	Total Axles	Eq. FACTOR	Damage Factor
0-2	30	34	64	0.0002	0.0128
2-4	366	291	657	0.014	9.198
4-6	1412	204	1616	1616	213.312
6-8	1362	287	1649	1649	857.48
8-10	98	513	611	1.044	637.884

VEHICLE DAMAGE FACTOR (VDF)

AXLE LOAD, t	No.	of Axles	Total Axles	Eq. FACTOR	Damage Factor
10-12	8	795	803	3.5	2810.5
12-14	0	804	804	7.16	5756.64
14-16	2	274	276	13.35	3684.6
16-18	2	56	56	23.17	1297.52
18-20	2	17	19	36.5	693.5

Vehicle Damage Factor (VDF)

AXLE LOAD, t	No. of Axles		Total Axles	Eq. FACTOR	Damage Factor
20-22	0	5	5	53	265
Total Damage Factor					16255

Vehicle Damage Factor = 16225

(No. of Veh. Weighed) 3280 = 4.95 (Sample size = 86 %)

Vehicle Damage Factors

LCV	-	0.259
2-Axle Trucks	-	4.95
3- Axle Trucks	-	7.587
BUS	-	1.027
MULTI-AXLE TRUCKS	-	9.535

INDICATIVE VDF VALUES

Initial Traffic in terms of CV/PD	Terrain		
	Plain/Rolling	Hilly	
0 – 150	1.5	0.5	
150 – 1500	3.5	1.5	
> 1500	4.5	2.5	

Distribution Of Traffic

*****Single Lane Roads

> Total No. of Commercial Vehicles in both Directions

*** Two-lane Single Carriageway Roads**

> 75% of total No. of Commercial Vehicles in both Directions

***** Four-lane Single Carriageway Roads

> 40% of the total No. of Commercial Vehicles in both Directions

*** Dual Carriageway Roads**

> 75% of the No. of Commercial Vehicles in each Direction

- N = Cumulative No. of standard axles to be catered for the design in terms of msa
- **D** = Lane distribution factor
- A = Initial traffic, in the year of completion of construction, in terms of number of commercial vehicles per day
- **F** = Vehicle Damage Factor
- n = Design life in years
- r = Annual growth rate of commercial vehicles

Computation Of CSA For Different Vehicle Classes

Veh.	N	GF ,%	DF	VDF	CSA
LCV	500	7	0.75	0.259	0.89
BUS	200	5	0.75	1.03	16.64
2-axle	3000	6	0.75	4.95	94.62
3-axle	500	4	0.75	7.58	20.7
M-axle	200	3	0.75	9.54	0.29
	CSA for de	esign life of	15 Yrs.		133.14

Subgrade

- ★ Subgrade to be Well Compacted to Utilize its Full Strength
- Top 500 mm to be Compacted to 97% of MDD (Modified Proctor)
- ★ Material Should Have a Dry Density of 1.75 gm/cc
- ★ CBR to be at Critical Moisture Content and Field Density
- Strength Lab. CBR on Remoulded
 Specimens and NOT Field CBR

Subgrade

- → Soak the Specimen in Water for FOUR days and CBR to be Determined
- → Use of Expansive Clays NOT to be Used as Sub-grade
- → Non-expansive Soil to be Preferred
- → If ARF < 500 mm, Soaking is NOT required

Permissible Variation in CBR Value

CBR (%)	Maximum Variation in CBR Value
5	+_ 1
5-10	+_ 2
11-30	+_ 3
31 and above	+_ 4

Flexible pavement design chart (IRC) (for CSA< 10 msa)

PAVEMENT DESIGN CATALOGUE

RECOMMENDED DESIGNS FOR TRAFFIC RANGE 1-10 msa

CBR 6%						
Cumulative	Total	PAV	EMENT CON	MPOSITIC	DN	
Traffic	Pavement	Bitumine	ous Surfacing	Granular	Granular	
(msa)	Thickness	Wearing	Binder	Base	Sub-base	
	(mm)	Course	Course	(mm)	(mm)	
		(mm)	(mm) -			
1	390	20 PC		225	165	
2	450	20 PC	50 BM	225	175	
3	490	20 PC	50 BM	250	190	
5	535	25 SDBC	50 DBM	250	210	
10	615	40 BC	65 DBM	250	260	

Flexible Pavement Layers (IRC) (CSA< 10 msa)

Flexible Pavement Layers (IRC) (CSA< 10 msa)

Flexible pavement design chart (IRC)

PAVEMENT DESIGN CATALOGUE RECOMMENDED DESIGNS FOR TRAFFIC RANGE 10-150 msa

CBR 6%						
Cumulative.	Total	PAVEMENT COMPOSITION				
Traffic	Pavement	Bitumino	us Surfacing	Granular Base		
(msa)	Thickness (mm)	BC (mm)	DBM (mm)	& Sub-base (mm)		
10	615	40	65			
20	640	4 0	90			
30	655	40	105	Base = 250		
50	675	40	125	1		
100	700	50	140	Sub-base = 260		
150	720	50	160	1 1		

Flexible pavement layers (IRC)

 Image: See the sec of t

Sub-base

 Material – Natural Sand, Moorum, Gravel, Laterite, Kankar, Brick Metal, Crushed Stone, Crushed Slag, Crushed Concrete

GSB- Close Graded / Coarse Graded

• Parameters – Gradation, LL, PI, CBR

Stability and Drainage Requirements

Sub-base

- Min. CBR 20 % Traffic up-to 2 msa
- Min. CBR 30 %- Traffic > 2 msa
- If GSB is Costly, Adopt WBM, WMM
- Should Extend for the FULL Width of the Formation
- Min. Thickness 150 mm <10 msa
- Min. Thickness 200 mm >10 msa

Sub-base

- Min. CBR 2 %
- If CBR < 2% Pavement Thickness for 2 % CBR + Capping layer of 150 mm with Min. CBR 10% (in addition to the Sub-Base)
- In case of Stage Construction Thickness of GSB for Full Design Life

Base Course

- Unbound Granular Bases WBM / WMM or any other Granular Construction
- Min. Thickness 225 mm < 2 msa
- Min. Thickness 250 mm > 2 msa
- WBM Min. 300 mm (4 layers 75mm each)

Bituminous Surfacing

- Wearing Course Open Graded PMC, MSS, SDBC, BC
- Binder Course BM, DBM
- BM- Low Binder, More Voids, Reduced Stiffness, Increased Stress Concentrations – Desirable for Traffic < 5 msa

Bituminous Surfacing

- Provide 75 mm BM Before Laying DBM
- Reduce Thickness of DBM Layer, when BM is Provided (10 mm BM = 7 mm DBM)
- Choice of Wearing Course Design Traffic, Type of Base / Binder Course, Rainfall etc

Choice Of Wearing Courses

BASE/ BINDER	WEARING COURSE	ARF	TRAFFIC
WBM, WMM, CRM, BUSG	PMC+SC (B) PMC + SC (A) MSS	L and M L,M,H L,M,H	< 10
ВМ	SDBC PMC (A) MSS	L,M,H	<10
DBM	BC 25 mm BC 40 mm BC 50 mm	L,M,H	>5<10 >10 >100

Criteria For The Selection Of Grade Of Bitumen For Bituminous Courses

Climate	Traffic	BC	Grade
Hot	Any	BM, BMP, BUSG	60/70
Mod/Cold	Any	BM, BMP, BUSG	80/100
Any	Heavy/ Urban	DBM, SDBC, BC	60/70
Hot/Mod	Any	PMC	50/60 or 60/70
Cold	Any	PMC	80/100
Hot/Mod	Any	Mastic	15± 5
Cold	Any	Mastic	30/40

Appraisal Of CBR Test And Design

- Strength Number and Cannot be Related Fundamental Properties
- Material Should Pass Through 20 mm Sieve
- Surcharge Weights to Simulate Field Condition
- Soaking for Four Days- Unrealistic
- CBR Depends on Density and Moisture Content of Sub-grade Soil
- Design Based on Weakest Sub-grade Soil Encountered

Example Of Pavement Design For A New Bypass

DATA:

Two-lane single carriageway = 400 CV/day (sum of both directions) Initial traffic in a year of completion of construction Traffic growth rate per annum = 7.5 percent **Design life** = 15 years Vehicle damage factor = 2.5 (standard axles per commercial vehicle) Design CBR value of sub-grade soil = 4 %

Distribution factor = 0.75 Cumulative number of standard axles to to be catered for in the design

365 x [(1+0.075)¹⁵ –1] N = ------ x 400 x 0.75 x 2.5 0.075

= 7200000 = 7.2 msa

Total pavement thickness for= 660 mmCBR 4% and Traffic 7.2 msa

Pavement Composition interpolated From Plate 1, CBR 4% Bituminous surfacing = 25 mm SDBC + 70 mm DBM Road base, WBM = 250 mm

Sub-base = 315 mm

(Granular material of CBR not less than 30 percent)

Example Of Pavement Design For Widening An Existing 2-lane NH To 4lane Divided Road

Data: i) 4-lane divided carriageway

Initial traffic in each directions in the year of = 5600cv / day Completion of construction iii) Design life = 10/15yrs

iv) Design CBR of sub-grade soil = 5 %
v) Traffic growth rate = 8 %
vi) Vehicle damage factor = 4.5
(Found out from axle road survey axles per CV on existing road)

Distribution factor = 0.75 VDF = 4.5 CSA for 10 Years = 100 msa CSA for 15 years = 185 msa Pavement thickness for CBR 5% and 100 msa for 10 Years = 745 mm For 185 msa for 15 years = 760 mm

Provide 300 mm GSB + 250 mm WMM + 150 mm DBM + 50 mm BC (10 years)

Provide 300 mm GSB + 250 mm WMM + 170 mm DBM + 50 mm BC (15 years)

Design Factors for Rigid (CC) Pavements

Load

- Wheel load : magnitude and repetitions
- Multiple wheel loads and ESWL for CC pavement
- Design wheel load based on cumulative distribution of loads
- Fatigue life due to loads in excess of design load during design life

Subgrade support - K value of subgrade and sub-base course

Maximum temperature variations in the location

- maximum temperature differential during the daily cycle
- maximum seasonal variation during annual cycle

Properties of CC / PQC used in pavement slab : specified compressive / flexural strength

Design of joints in CC pavement

- spacing of different contraction and longitudinal of joints
- dowel bars and tie bars / reinforcements at joints

References

1.Yoder and Witczak "Principles of Pavement Design"

- John Wiley and Sons, second edition
- 2.IRC :37-2001, Guidelines of Design of
- Flexible Pavements"
- 3.IRC:81 1997 "Tentative Guidelines for Strengthening
- of Flexible Road Pavements Using Benkelman Beam Deflection Technique

