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Why Control On Deflections Is Required ????

 Philosophy of design – “Limit State Approach” adopted by the

Russian code in 1954 and American and British codes in 1971,

requires a proper knowledge of the behaviour of structural

concrete members at the multiple limit states, of which

deflection forms an important criterion for the safety of the

structures.

 It is the general practice, according to various national codes,

that structural concrete members should be designed to have

adequate stiffness to limit deflections, which may adversely

affect the strength or serviceability of the structure at working

loads.
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Why Control On Deflections Is Required????

 Suitable control on deflections is very essential for the following

reasons:

1. Excessive sagging of principal structural members is not only

unsightly, but at times, also renders the floor unsuitable for the

intended use.

2. Large deflections under dynamic effects and under the influence

of variable loads may cause discomfort to the users.

3. Excessive deflections are likely to cause damage to finishes,

partitions and associated structures.
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Why Control On Deflections Is Required????

 In recent years, damage to partitions and finishes has been the

most important consequence of excessive deflections.

 A field survey conducted by Mayer in Germany revealed over 80

examples of damage to partition walls, of which twenty-one had

estimated deflections within the prescribed code-limits.

 The survey also indicated that a maximum limit on deflection

should be specified in addition to a limiting deflection - span

ratio, since it was recognized that as the span increases, the

former limitation is likely to control.

 For a reasonably accurate assessment of deflections, it is very

essential to consider the various factors which influence them.
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FACTORS INFUENCING DEFLECTIONS

 Imposed load and self-weight

Magnitude of the prestressing force

Cable profile

 Second moment of area of cross-section

Modulus of elasticity of concrete

 Shrinkage, creep and relaxation of steel stress

 Span of the member

 Fixity conditions
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 In both cases, the effect of creep and shrinkage of concrete is to increase.

 The long term deflections under sustained loads, which IS estimated by using
empirical methods that involve the use of effective (long term) modulus of
elasticity or by multiplying short-term deflections by suitable factors.
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SHORT TERM DEFLECTIONS OF UNCRACKED MEMBERS

 Short term deflections are governed by the BM distribution along the

span and flexural rigidity of the members.

 Mohr’s moment area theorems are readily applicable for the

estimation of deflections due to prestressing force, self weight and

imposed loads.

Moment Area Theorem

 The vertical deviation of a point A on an elastic curve with respect to

the tangent which is extended from another point B equals the

moment of area under (M/EI) diagram between those two points (A

and B). This moment is computed about point A where the deviation

from B to A is to be determined.
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Mohr’s Theorems

 If, θ = Slope of the elastic curve at A

 AD = Intercept between the tangent at C & vertical at A

 a = Deflection at the centre for symmetrically loaded simply supported beam

 A = Area of the beam between A and C

 x = Distance of the centroid of the BMD between A and C from the left support

 EI = Flexural rigidity of the beam
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

 In most of the cases of prestressed beams, tendons are located With

eccentricities towards the soffit of the beams to counteract the

sagging bending moments due to transverse loads.

 Consequently, the concrete beams deflect upwards (camber) on

the application or transfer of prestress.

 Since the bending moment at every section is the product of the

prestressing force and eccentricity, the tendon profile itself will

represent the shape of the B.M.D.

 The method of computing deflections of beams with different cable

profiles is outlined in the following sections.
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

1. Straight Tendons
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

2. Trapezoidal Tendons
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

3. Parabolic Tendons (Concentric Anchors)
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

4. Parabolic Tendons (Eccentric Anchors)
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

5. Sloping Tendons (Eccentric Anchors)
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

6. Parabolic and Straight Tendons
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EFFECT OF TENDON PROFILE ON DEFLECTIONS

7. Parabolic and Straight Tendons (Eccentric Anchors)
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DEFLECTIONS DUE TO SELF-WEIGHT AND IMPOSED LOADS

 At the time of transfer of prestress, the beam hogs up due to effect of

prestressing.

 At this stage, the self-weight of the beam induces downward

deflections, which further increase due to effect of imposed load on

the beam.

 If, g =Self-weight of the beam / m

 q = Imposed load / m (uniformly distributed)

 The downward deflection is computed as,
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Ex: A rectangular concrete beam of cross-section 150 mm wide and 300

mm deep is simply supported over a span of 8 m and is prestressed by

means of a symmetric parabolic cable at a distance of 75 mm from the

bottom of the beam at mid span and 125 mm from the top of the beam at

support sections. If the force in the cable is 350 kN and the modulus of

elasticity of concrete is 38 kN/mm2, calculate:

(a) The deflection at mid-span when the beam is supporting its own weight

and

(b) The concentrated load which must be applied at mid-span to restore it

to the level of supports.

Solution :

P = 350 kN, Ec = 38 kN/mm2, I = 3375 x 106 mm4, e1 = 75 mm and e2 = 25 mm

Deflection due to prestressing force
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Self-weight of the beam, g = (0.15 x 0.30 x 24) = 1.08 kN/m

Downward deflection due to self-weight

(a) Deflection due to (prestress + self-weight) = -12.7 + 4.5 = -8.2 mm

(b) If, Q = concentrated loads required at the center of span, Then
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ESTIMATION OF LONG-TIME DEFLECTIONS

 Deformations of prestressed members change with time as a result of
creep and shrinkage of concrete and relaxation of stress in steel.

 Deflection of prestressed members can be computed relative to a
given datumn, if the magnitude and longitudinal distribution of
curvatures for the beam span are known for that instant based on load
history, which includes the prestressing forces and the live loads.

 The prestressed concrete member develops deformations under the
influence of two usually opposing effects, which are the prestress and
transverse loads.

 The net curvature (φt)at a section at any given stage is obtained.

Φt = Φmt + Φpt

 Where, Φmt = change of curvature caused by transverse loads

 Φpt = change of curvature caused by prestress

 Under the section of sustained transverse loads , the compressive stress
distribution in the concrete changes with time.
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 However, in practical cases, the change of stress being small, it may

assumed that the concrete creeps under constant stress.

 The creep strain due to transverse loads is directly computed as a

function of the creep coefficient so that the change of curvature can

be estimated by the expression,

Φmt = (1 + Φ) φi

 Where, Φ = Creep coefficient and

 φi = Initial curvature immediately after the application of transverse

loads

 The change of curvature due to the sustained prestress (Φpt) upon the

cumulative effects of creep and shrinkage of concrete and relaxation

of stress in steel.

 Several methods have been proposed to evaluate the curvature under

simplified assumptions.

 The important ones are attributed to Busemann, McHenry, Douglass

and Corley, Sozen and Siess.
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 According to Neville and the ACI committee report, the creep

curvature due to prestress is obtained on the simplified assumption that

creep is induced by the average prestress acting over the given time.

Using this approach,

 Pi = Initial prestress and Pt = Prestress at a time, t

 Loss of prestressing force due to relaxation,

 Lp = (Pi – Pt)

 If, e = eccentricity of the prestressing force at a section and

 EI = flexural rigidity

 The curvature due to prestressing force after time t can be expressed

as
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 If, ai1 = Initial deflection due to transverse loads

 aip = Initial deflection due to prestress

 Then, the total long time deflection after time t is obtained from the

expression,

 In this expression, the negative sign refers to deflections in upward

direction (camber).
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 A much simplified but an approximate is suggested by Lin for

computing long time deflections.

 In this method, the initial deflection due to prestress and transverse

loads is modified to account for the loss of prestress which tends to

decrease the deflection, and the creep effect which tends to increase

the deflection.

 The principle of reduced modulus involving the creep coefficient is

used to amplify the initial deflections.

 According to this method. the final long time deflection is expressed

as,
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Ex: A simply supported beam with a uniform section spanning over 6 m is

post-tensioned by two cables, both of which have an eccentricity of 100 mm

below the centroid of the section at mid-span. The first cable is parabolic

and is anchored at an eccentricity of 100 mm above the centroid at each

end, the second cable is straight and parallel to the line joining the supports.

The cross-sectional area of each cable is 100 mm2 and they carry an initial

stress of 1200 N/mm2. The concrete has a cross-section of 20000 mm2 and a

radius of gyration of 120 mm. The beam supports two concentrated loads of

20 kN each at the third points of the span, Ec = 38 kN/mm2. Calculate using

Lin's simplified method. Take creep coefficient as 2.

(a) The instantaneous deflection at the center of span and

(b) The deflection at the center of span after 2 years, assuming 20 per cent

loss in prestress and the effective modulus of elasticity to be one-third of the

short-term modulus of elasticity.
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Solution :

 A = 20000 mm2, ί = 120 mm  I = 288 x 106 mm4

 P = 120 kN, e1 = e2 = 100 mm, L = 6000 mm

 Self-weight of the beam = 0.00048 kN/mm

 Concentrated loads at the third points of span, Q = 20 kN

 Downward deflection due to self-weight

 Downward deflection due to concentrated loads

 Deflection due to parabolic cable
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 Deflection due to prestressing of straight cable

 Instantaneous deflection due to prestress + dead load + live load

= + 0.74 + 14.10 – 3.29 – 4.92 = 6.65 mm (downwards)

b) At the end of two years, Ece = Ec / 3 and loss of prestress = 20%

 Upward deflection = 3 [ 0.8 (3.27 + 4.29) ] = 19.65 mm

 Downward deflection = 3 (0.74 + 14.10) = 44.52 mm

 Net deflection = -19.65 + 44.52 = 24.87 mm
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DEFLECTION OF CRACKED MEMEBRS

Short term Deflections of Cracked Members

Load-Deflection Characteristics of Typical 

Prestressed  Member under Flexural Loading
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When the tensile stresses exceeds the tensile strength of the

concrete, cracks develop in the member.

 Experimental Investigations

 Micro-cracks - 3 N/mm2

 Visible cracks - 3.5 to 7 N/mm2

Curve is approximately linear up to stage of visible cracking.

 Deflection increases at a faster rate beyond this stage due to

reduced stiffness of the beam.

 In post cracking stage behavior is same as that of RC

members.
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 Deflection of cracked structural concrete members may be estimated
by the unilinear or bilinear method recommended by European
concrete committee.

Unilinear Method

𝒂 =
𝜷𝑳𝟐𝑴

𝑬𝒄𝑰𝒓
Where, a = maximum deflection

L = effective span

M = Maximum bending moment in the beam

Ec = Modulus of elasticity of concrete

Ir = Second moment of area of equivalent or transformed cracked
section

β = Constant depending upon the end conditions, position of the given
section and load distribution
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Values of constant β for different types of loading and support
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Bilinear Method 

 The moment curvature is approximated by two straight lines.

 Slope of the first line - stiffness of the un-cracked section

 Slope of the second line - stiffness of the cracked section

Bilinear Moment Curvature Relationship 
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 Instantaneous deflection in the post cracking stage =

deflection upto the cracking load based on gross section

+ deflection beyond the cracking load for cracked section.

 Deflection is estimated by the following expression:

a= 𝜷𝑳𝟐
𝑴𝒄𝒓

𝑬𝒄𝑰𝒄
+ (

𝑴−𝑴𝒄𝒓

𝟎.𝟖𝟓 𝑬𝒄𝑰𝒓
)

Where, Mcr = Cracking moment

M = Moment at which the deflection is required

Ic = Second moment of area of the un-cracked equivalent concrete

section

Ir = Second moment of area of the cracked equivalent concrete

section

β = Constant depending upon the end conditions, position of the

given section and load distribution
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 The revised American code (ACI 318-1989) considers the bilinear

character of the load-deflection characteristic by incorporating a

suitable effective value of flexural rigidity in the unilinear formula.

 The modulus of elasticity is expressed as a function of the cylinder

compressive strength of the form,

𝑬𝒄 = Wc
1.5 0.043 𝒇𝒄′ (N/mm2)

• Above equation is used when density of concrete (Wc) is between 1500

to 2500 kg/m3.

 For normal density concrete, modulus of elasticity is expressed as

𝑬𝒄 = 4700 𝒇𝒄′

 Where, 𝒇𝒄’ = cylindrical compressive strength in N/mm2

 Conversion from Cylindrical to Cubical Strength

𝒇𝒃𝒌 =
(𝒇𝒄𝒌 − 𝟏. 𝟕𝟕)

𝟎. 𝟖𝟑
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 Effective Moment of Inertia is expressed as

Where, M = Moment at which deflection is required

Mcr= Cracking moment =
𝒇
𝒄𝒓
𝑰𝒈

𝒓

𝒚
𝒕

Igr = MI of the gross section about the centroidal axis neglecting the

reinforcement

yt = Distance from the centroidal axis of the gross section neglecting the

reinforcement to the extreme fibre in tension

Icr = MI of the cracked transformed section

Ieff = Effective MI for computation of deflection

fcr = Modulus of rupture of concrete = 0.7 * fck
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Ex: A prestressed concrete beam having a c/s area (A) of 5 x 104 mm2 is

simply supported over a span of 10 m. It supports a UDL (imposed) of

3kN/m, half of which is non-permenant. The tendon follows a trapezoidal

profile with an eccentricity of 100mm within the middle-third of the span

and varies linearly from the third-span points to zero at the supports. The

area of tendons, Ap = 350 mm2 have effective prestress of 1290 N/mm2

immediately after transfer. Using the following data, calculate

1. Short term deflections and

2. Long term deflections

Assume, Ig = 4.5E8 mm2, Dc = 23.6 kN/m3, Ec = 34 kN/mm2,

Creep co-efficient = 2, Concrete shrinkage = 450E-6, Es = 200 kN/mm2,

Relaxation of steel stress = 10%
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451. Short term deflection

Prestressing force, P= 350 x 1290 = 451500 N

Self weight of the beam =  Dc x A = 1.18 kN/m
Non-permanent load = 1.5 kN/m

Permanent load = DL + Sustained LL  = 1.18 +1.5 = 2.68 kN/m

(i) Deflection due to prestressing force

ap = 
−𝑷𝒆

𝟔𝑬𝑰
𝟐𝑳𝟏

𝟐 + 𝟔𝑳𝟏𝑳𝟐 + 𝟑𝑳𝟐
𝟐

L1 = 3.33 m , L2 = 1.66 m, e = 100 mm
= -31 mm  (upwards)………………………..(1)

(ii)  Deflection due to non-permanent load (LL)

𝒂𝒒 =
𝟓𝒒𝑳𝟒

𝟑𝟖𝟒𝑬𝑰

= 12.8 mm (downwards)…………….(2)

(iii)  Deflection due to permanent load (sustained load)

𝒂𝒈 =
𝟓𝒈𝑳𝟒

𝟑𝟖𝟒𝑬𝑰

= 22.8 mm (downwards)……………..(3)

Short term deflections:

a) When non-permanent load is acting as = (1) + (2) + (3) = -31 + 12.8 + 22.8 = 4.6 (downwards)

b) When non-permanent load is not acting as = -31 + 22.8 = -8.2 (upwards)
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2.  Long-term deflection
Stress in concrete at level of steel,

fc = 
𝟒𝟓𝟏.𝟓 𝑿 𝟏𝟎𝟎𝟎

𝟓𝑬𝟒
+

𝟒𝟓𝟏.𝟓 𝑿 𝟏𝟎𝟎𝟎 𝑿 𝟏𝟎𝟎 𝑿 𝟏𝟎𝟎

𝟒.𝟓𝑬𝟖
= 19 N/mm2

αe = 5.88
a) Loss due to relaxation = 10% = 129 N/mm2

b) Loss due to shrinkage = (450 x 10-6 x 200 x 103) = 90 N/mm2

c) Loss due to creep = (2 x 5.88 x 19) = 223 N/mm2

Total loss = 442 N/mm2

Loss of prestressing force = (442 x 350) = 154700 N

Final prestressing force = 451.5  – 154.7 = 296.8 kN

Average prestressing force =  
𝟒𝟓𝟏.𝟓 + 𝟐𝟗𝟔.𝟖

𝟐
= 374.15 kN

(i) Long term deflection due to prestress

alp = (1) - Deflection due to loss of prestress + (Deflection due to avg prestressing force due to 
creep with φ = 2)

= 31 -
𝟏𝟓𝟒.𝟕 𝑿 𝟑𝟏

𝟒𝟓𝟏.𝟓
+

𝟑𝟕𝟒.𝟏𝟓 𝑿 𝟑𝟏

𝟒𝟓𝟏.𝟓
2 = 31 -10.6 + 51.4 = 72 mm (upwards)……………….(4)



(ii) Long-term deflection due to permanent load

alg= (1 + φ) (short term deflection) = (1 + 2) 22.8 = 68.4 mm (downwards)….(5)

(iii) Long-term deflection due to non-permanent load

alq = 12.8 mm (downwards)……………………………………………………….......(6)

Total long term deflection

a) When non-permanent load is acting al = -(4) + (5) + (6)=9.2mm(downwards)

b) When non-permanent load is not acting al = -(4) + (5) = -3.6mm (upwards)
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Requirement of various codes of practice

IS : 1343 – 1980

1) Final deflection including effects of temp., creep and shrinkage

should not exceed span /250.

2) Deflection including effects of temp., creep and shrinkage

occuring after the erection of partition and application of finishes

should not exceed span/350 or 20 mm whichever is less.

3) If finishes are to be applied to be prestressed concrete members,

the total upward deflection should not exceed span/300, unless

uniformity of camber between two adjacent units can be assured.
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Contd…

British code (BS : 8110 – 1985)

A maximum deflection limit of span/250, beyond which the sag in 

member will usually become noticable.

To prevent damage in non-structural elements, deflection after 

installation of finishes and finishes should not exceed following 

values:

1) Span/250 or 20 mm, whichever is less for brittle materials.

2) Span/2350 or 20 mm, whichever is less for non-brittle partitions or

finishes.
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Contd…

FIP - 1984

Suitable deflections for floors, roofs and other horizontal members in

buildings are as folllows:

1) Total deflection below level of supports: span/200 to span/300

2) Deflection after addition of partitions: span/500 to span/1000
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