and Taiwa:l:l are the world leaders in the international bicycle market determine whether the sales of bicycle brands are indepen- %
cannot be ignored. Indian players have to focus on research and de- dent of age group. He has appointed a marketing research- =
sign development in order to face the future challenges. er-for this purpose. This researcher has taken a random o
1. Suppose a lea_ding bicycle manufacturer has divided jts sample of the consumers who have purchased bicycles in %
?roducts nto six brands. Price of these brands and unit sold 2005. The market researcher has conducted a survey foran- )

t::h-z?l)lf and 2006 a_:e spown in Table 13.q1. Use the alysing the consumer preference for the three brands 0fbi-

the dicsltz-?ls) I;li'esented in this chapter and examine whether cycles. The researcher has also divided the age groups into

—2006 ution of unit sales has changed from 2005 four categories; 05 to 07, 07 to 09, 09 to 12, and 12 to 17,

TABLE 131 The observations made by the researcher are given in S I m p I e Li n e a r

\ » Table 13.02:
Prices of bicycle brands and units sold by a leading

N ——

;rlzs;je r;ar-'lufacturer in 2005 anrj| 2006 Eggsl-UEm";é@mme for three leading bicycle brands R e g r e S S | 0 n A n a |ys | S
_ice category * 2005 (in 2006 (in Hero Hero Hero smart Row

i S: rupees) thousands)  thousands) Age group premium  passion total

; L A 120 51007 20 25 R

3 g & S 07 to 09 10 20 22 52

4 :ggo—lsoo L 12 09to 12 15 12 10 37

0-2000 102 98 . 2 A8y
5 20002200 90 102 121017 25 22 23 70 A statistical analy:v::s, properly conducted, is a delicate dissection of uncertainties, a
6 2200-2500 80 Column total 70 9 87 236 surgery of suppositions.
88 —M. J. MorONEY
2. Is);lgz?s; ];1{2: I()?ycl.es hes:Tauriched thice brands.” Her Dt:)tjnnglsz zh:t{l;%rs brand preference is independent of age
s e B o et ST - ERGENING OBJECTIVES
e Hero Cycles company wants to

Upon completion of this chapter, you will be able to:

: N @) T E S m  Use the simple linear regression equation B Measure autocorrelation by using the Durbin—-Watson statistic

1. WWw.indi m  Understand the concept of measures of variation, coefficient ®  Understand statistical inference about slope, correlation
with I;erx;?::ct;com’ accessed September 2008, reproduced 3.  www.hindubusinessline.com/catalyst/2004/05/20/stories of determination, and standard error of the estimate coefficient of the regression model, and testing the overall
WWw-hergcyCI: ; /2004052000120100.htm, accessed September 2008. ®  Understand and use residual analysis for testing the model

S-com/about.php,accessedSeptemberZOOS. \ assumptions of regression
- STATISTICS IN ACTION: TATA STEEL : | TABLE 14.1

e k : . 1 % | Sales volumes and marketing expenses of Tata Steel
| Tata Steel, established in 1907, is the world's sixth-largest steel company | from 1995-2007

- with an existing annual crude steel capacity of 30 million tonnes. It is

| ASia’s first integrated steel plant and India's largest integrated private: | Yeor ﬁg:]e?u(ger?)l‘ ?ﬂ? ;:ﬁﬁlgz? e
- sector stee| company with operations in 26 countries and commercial P P

' Presence in 50 countries. : i} 1995 46,274.1 576.4

. Inline with its vision of becoming a global company with a 50 million 1996 58,541.2 571.5

- tonne stee| capacity by 2015, the company has expanded through the 4 016.8
| cquisition route. Tracing the company's history of inorganic growth in 1200 B2AE5 0 :

| recent years, Tata Steel acquired Natsteel in February 2005 and Millen- | 1998 64,2927 781.4
- Nium Stee| Company renaming it as Tata Steel Thailand in April 2006. In | 1999 55,160.0 7479
APril 2007, the company acquired Corus, the second-largest steel pro- | 2000 61,562.8 895.6

ducer in Europe and the ninth-largest stee| producer in the world for USD
1137 billion; With the acquisition of Corus Tath Steel hes becomeithe | 2001 719663 3322

world's sixth-largest steel company.2 Tata Steel made its maiden entry 2002 75,954.1 709.3

in the list of Global 500 Companies released by Fortune in 2008. Table 2003 97,884.9 871.9
- 14.1 shows the sales volumes and marketing expenses of TataSteelfrom | 504 119,178.8 819

1995 to0 2007.
| The ‘sales volume of the company has fncreased over the years 2005 1586762 8618
j The NCrease in marketing expenses (includes commissions, ‘re_b'.ates: d]s. - 2006 171,329.4 807.5
Counts, sajes promotional expenses on direct selling agents, and enter- | 2007 197,711.9 647.1

fainment expenses) could be one of the factors that have contributed | :
. tothe increasing sales. A researcher may Jike to analyse the relationship: Source: Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt.
| between sales and marketing expenses. If there is a relationship. What i Lid, Mumbai, accessed September 2008, reproduced with permission.
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the proportion of change in sales that can be attributed to marketing expenses? How can we develop a model to pred
ship between sales volume and marketing expenses? This chapter focuses on the answer to all these questions. The €

ict the relation-
hapteﬁ* B o
the estimate

on the concept of simple linear regression equation measures of variation, coefficient of determination, standard error © toco’tfelaﬁﬂ"ﬁq

and the use of residual analysis for testing the assumptions of regression. The chapter also deals with the concept of triolent ofthe
by using the Durbin-Watson statistic and explains the understanding of statistical inference about slope, correlation €O ‘ |

regression model, and testing the overall model. e A

Regression analysis is the pro-
cess of developing a statistical
model, which 1s used to predict
the value of a dependent vari-
able by at least one indepen-
dent variable. In simple linear
regression analysis, there are
two types of variables. The
variable whose value is influ-
enced or to be predicted is
called dependent variable and
the variable which influences
the value or is used for pre-
diction is called independent
variable.

In regression analysis, inde-
pendent variable is also known
as regressor or predictor, or
explanatory while the depen-
dent variable is also known as
regressed or explained vari-
able. In a simple linear regres-
sion analysis, only a straight
Ime_ relationship between two
variables is examined.
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74.7 INTRODUCTION

In many business situations, it has been observed that decision making is based upon might be
standing of the relationship between two or more variables. For example, a sales managef
interested in knowing the impact of advertising on sales. Here, advertising can be CO"s'deam le of
independent variable and sales can be considered as the dependent variable. This is 30 cxumirical
simple linear regression where a single independent variable is used to predict a single 1
dependent variable. “ <
The meaning of the term regression is “stepping back towards the average.” The termth::sg::d
sion” was first used by Sir Francis Gatton in 1877. His study on the height of one thousand faﬂ fathers
sons exhibited an interesting result. He found that tall fathers tend to have tall sons and sho Jess than
tend to have short sons. However, the average height of the sons of a group of tall fathers Wi than that
that of the fathers, and the average height of the sons of a group of short fathers was grcaf:?f _back”
of the fathers. Gatton concluded that abnormally tall or short parents tend to “regress” OF S
to the average population height.

14.2 INTRODUCTION TO SIMPLE LINEAR REGRESSION
edictmevalue

Regression analysis is the process of developing a statistical model, which is used to pr is. there
of a dependent variable by at least one independent variable. In simple linear regression an ySln‘;d the
are two types of variables. The variable whose value is influenced or is to be predicted 13 .
dependent variable and the variable which influences the value or is used for prediction 15 sor or
independent variable. In regression analysis, the independent variable is also known as regt efi vari-
predictor or explanatory while the dependent variable is also known as regressed or explall‘l_ebles is
able. In a simple linear regression analysis, only a straight line relationship between two vaﬂﬂdcl by
examined. In fact, simple linear regression analysis is focused on developing a regression mo! i

which the value of the dependent variable can be predicted with the help of the independent VeS d n;
based on the linear relationship between these two. This does not mean that the value of 2 deper'lllebe
variable cannot be predicted with the help of a group of independent variables. This conceP \ Tlﬁon-
discussed in the next chapter (Chapter 15). In the next chapter, we will focus on non-lineat * 5 t of
ship and regression models with more than one independent variable. Determining the ,mpacmcr
advertisement on sales is an example of simple linear regression. Determining the impact ofc]! of
variables such as personal selling, distribution support and advertisement on sales in an exampic
multiple regression.

14.3 DETERMINING THE EQUATION OF A REGRESSION LINE

Simple linear regression is based on the slope—intercept equation of a line. This equation i$ givenies
y=ax-+b
where a is the slope of the line and b the y intercept of the line. -
given as

The straight line regression model with respect to population parameters 8, and 3, can be

=g+ x
where § is the population y intercept which represents the average value of the dependen
when x = 0 and f3, the slope of the regression line which indicates expected change in the V@
for per unit change in the value of x.

In case of specific dependent variable y,
Yi :ﬁu +ﬁ|xi+ei

t variable
lue of y

R

where 8, is the population y intercept, 3, the slope of the regression line, y, the value of the dependent
variable for ith value, x, the value of the independent variable for ith value, and ¢, the random error in
y for observation i (¢ is the Greek letter epsilon).

€ is the error of the regression line in fitting the points of the regression equation. If a point is on
the regression line, the corresponding value of € is equal to zero. If the point is not on the regression
line, the value of € measures the error. This concept leads to two models in regression; deterministic

model and probabilistic model.

A deterministic model is given as
rv = ﬁo + ﬁ'l'r

A probabilistic model is given as

y=B,+Bx+¢
It can be noticed that in the deterministic model, all the points are assumed to be on the regression
line and hence, in all the cases random error ¢ is equal to zero. Probabilistic model includes an error
term which allows the value of y to vary for any given value of x. Figure 14.1 presents error in simple
regression. .

- In order to predict the value of y, a researcher has to calculate the value of| ﬁ“ and 8 - In this process,
difficulty occurs in terms of observing the entire population. This difficulty can be handled by taking a
sample data and ultimately developing a sample regression model. This sample regression model can
be used to make predictions about population parameters. So, 8, and B, (population parameters) are
estimated on the basis of the sample statistics b, and b,. Thus, the simple regression equation (based on
samples) is used to estimate the linear regression model.

The equation of the simple regression line is given as
j} = b() + b,x

where bo is the sample y intercept which represent the average value of the dependent variable when
x=0and b, the slope of the sample regression line, which indicates expected change in the value of v
for per unit change in the value of x,

For determining the equation of the simple regression line, values of b, (sample y intercept) and b,
(slope of the sample regression line) must be determined. Once b, and b, are determined, a researcher
canplot a strajght line and the comparison of this straight line with the original data can be performed
VeIy easily. The main focus of simple regression analysis is on finding the straight line that fits the
data best. In other words, we need to minimize the difference between the actual values (v) and the
regressed values () - This difference between the actual values () and the regressed values (j,)
15 referred to as residual (¢). In order to minimize this difference, a mathematical technique “least-
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})
Error of the
€g prediction
Regression
i< line
€5
e €7
€1
€y
€2
Intergent FIGURE 14.1
x Error in simple regression

¢ is the error of the regression
line in fitting the points of the
regression equation. If a point
is on the regression ling, the
corresponding value of e is
equal to zero. If the point is
not on the regression line, the
value of £ measures the error.

It can be noticed that in the
deterministic model, all the
. points are assumed to be on
the regression line and hence,
in all the cases random error
£ is equal to zero. Probabilistic
model includes an error term
which allows the value of y to
vary for any given value of x.

The main focus of the simple
regression anzlysis is on find-
_ing the straight line that fits
the data best. In other words,
we need to minimize the dif-
ference between the actual
values (y) and the regressed
values (¢,). This difference
between the actual values Ey)
and the regressed values (¥.)
is referred to as residual ().
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 The sémple data are used in

e used in the least

e o s, :q;l:i:: me:zog develope.d by Carl Friedrich Gauss is applied. The sample data ar differences A cable wire company has spent heavily on advertisements. The sales and EXaII'IPle 14.1
de?erfnineﬁavr:ligofb -arfg : q method to determine the values of b, and b, that minimizes the sum of squﬂred advertisement expenses (in thousand rupees) for the 12 randomly selected
b, that minimizes the sum of between the actual values () and the regressed values (§,). Least squares criterion is 8iven by months are given in Table 14.2. Develop a regression model to predict the
squared differences between o impact of advertisement on sales. - 1
the actual values (y) and the D -3) !
regressed values (7,) where y. is th Lval o Jue of y for EBLE 1(_!4-21 (in th d |
s 3 % ¥; 1s the actual value of y for observation 7 2 et ieted) value ales and advertisement expenses (in thousan I
SR ) ion i and (y,) the regressed (prbd":t"d) rupees) of a cable wire company ‘
An equation for computing the slope of a regression line is given below: Monghs  Adverdsement (In  Sales (n gy
Slope of a regression Ii thousand rupees)  sand rupees)
ne S ol M il s L
Jan 92 930 f
a >x) () Feb 94 900
X — i g L e T
b= Z(Z 2L 2 _nExy) _ 2 n Mar 97 1020
(x—X) Z.r — nx Z 5. 7(21)3 Apr 98 990 ‘ |
' n M: 100 1100 i
where i |
Jun 102 1050 Bl
= — x y
SSB‘=Z(I“‘x)(y_y):ny_(Z XZ- ) Jul 104 1150
n Aug 105 1120
and 88.= (x-%) =y % _‘(}:x)‘ Sed 10> g
& . n Oct 107 1200
, _ S, Nov 107 1250
T Dec 110 1220 |
- SRR = . = - S PRSI E L S v ll
The sample y intercept of the regression line is given a E
as . 2 5 5 4 . .
= g Solution The first step is to determine whether the relationship between two variables is ‘ 1
i ot ZJ’ (Z x) linear. For doing this, a scatter plot, drawn by any of the statistical software pro- r 1
g = Pk = T b, a grams (MS Excel, Minitab, or SPSS) can be used. Figure 14.3 is the scatter plot il
) ) o ; : produced using Minitab. |
nknlt has alread}( been discussed that in the estimation process through a simple linear r?gfessmn' Scatter plot (Figure 14.3) exhibits the linear relationship between sales and
:xmb?gl'tlhp()pulatmn S ﬁ“. and 5, are estimated by sample statistics b, and b,. Figure L advertisement. After this linear relationship is confirmed, further steps for devel-
¢ summary of the estimation process for simple linear regression. oping a linear regression model can be adopted. For computing the regression co- |
efficient, b, and b, the values of Zx, Xy, Zx*, and Zxy must be determined. Sales |
( = ( % 5 e is a dependent variable and advertisement is an independent variable.
Regression model xp M ! !
Yi=Po+Prx;i+¢; x2 ¥ |
with unknown Sample data
population parameters |
Boand ;. 1300 - i il
G ’ ! l‘
Xn ¥n ! |
N y . i
L 1200 i
8 4
Y 3 1100
( Sample statistics by and ( Estimated regression n
by provide the estimate equation J = by + b x
of population parameters is computed. 1000
and f;. ]
Fosnd fy S Values of by and b, are ‘
also computed. :
A 4 R S
1€ estimation T T T T T |ot between sales H
Process for simpje | Scatter plO duced i
regression. Ple linear \ \ ) I £ %00 ol 110 and advef‘-'lseme“t pro \
R e TR e . Advertisement using Minitab '
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Computation of Zx, Zy, 2x?, and Zxy for Example 14.1

Months  Advertisement Sales (in thousand

12

(in thousand ru-  rupees):y - o xy
pees): x
Jn 92 930 8464 85,560 ~1 4l
Feb 94 900 8836 84,600
Mar 97 1020 9409 98,940
Apr 98 990 9604 97,020
May 100 1100 10,000 110,000
Jun 102 1050 10,404 107,100
Jul 104 1150 10,816 119,600
Aug 105 1120 11,025 117,600
Sep 105 1130 11,025 118,650
Oct 107 1200 11,449 128,400
Nov 107 1250 11,449 133,750
Dec 110 1220 12,100 134,200
2x=1221 2y =13,060 2x? = 124,581 Zxy = 1,335,420
S i (sz(th 1 335,420 - (122D % (3,060) _ (oo

2
Soue 302 Q) 5581 -(12—122—”—2- 34425

n
| SS 6565
b i P —] *
' BS. 434925 19.0704

b, = 2. b =) 13;260 — (19.0704) x % —_852.08
n

Equation of the simple regression line
$ = by + bx = (~852.08) + (19.07)x
This result indicates that for each unit increase in x (advertisement), y (sales) is predicted to in-

crease by 19.07 units. b, (sample y intercept) indicates the value of y when x = 0. It indicates that when
there is no expenditure on advertisement, sales is predicted to decrease by 852.08 thousand rupees .

14.4 USING MS EXCEL FOR SIMPLE LINEAR REGRESSION

The first step is to select Tool from the menu bar. Then select Data Analysis from this menu bar. The
Data Analysis dialog box will appear on the screen as shown in Figure 14.4. From the Data Analysis
dialog box, select Regression and click OK (Figure 14.4). The Regression dialog box will appear on
the screen (Figure 14.5). Place independent variable in Input X Range and place dependent variable
in Input Y range. Place appropriate confidence level in the Confidence level box. In the Residuals
box, check Residuals, Residual Plots, Standardized Residuals, and Line Fit Plot. From Normal
Probability, select Normal Probability Plots and click OK (Figure 14.5). The MS Excel output
(partial) as shown in (Figure 14.6) will appear on the screen.
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Data Anélrﬁi; :

Analysis Tools

Exponential Smoothing

F-Test Two-Sample for VYariances

Fourier Analysis

Histogram

Moving Average 1

Randorm Number Generation =
|

o]

Rank and Percentile w

Reqgression B

Sampling

Cancel

FIGURE 14.4

\E-Test: Paired Two Sample for Means ] MS Excel Data Analysis dialog
: box
Regression
Input S
3 —
Input ¥ Range: ’$C$2:$C$13
Input % Range: | $B$2:48$13 %
.
[]Labels [] Constant is Zero -
Confidence Level: a5 %% )
Output options
(O output Range: | ey
(@ New Worksheet Ply: | regression| |
() New Workbook
Residuals
Residuals Residual Plots
Standardized Residuals Line Fit Plots
Mormal Probability I
Normal Probability Plots '
: URE 14.5 g
:;IgExcel Regression dialog
box
VEN IR NSR - SAMSI N bt R, doi E (ENGTN
1 |[SUMMARY OUTPUT | o W o e 1 ]
| 2 . L L !
a3 Regression Statistics B R . (e S 1 O e e T T 1
4 [Multiple R 0.949166574 TS e =]
5 IR Square 0.900917166 { |
6 Adjusted R Square 0.891008904 i ‘
7 Standard Error 37.10688403 | R S
8 Obsemvations 12 v ami gl
<1 - i
10 |ANOVA £
1 | df SS MS | 1
12 /Regression T 1 125197.4582 125197 4502| 90.92568 2.45382E-08 |
| 13 Residual 10 13769.20842 1376920842 b L B
14 [Total 11 13B965.6667 ! L
15 ] |
16 Coefficients | Standard Error t Stat | Pvalue | Lower05% | Upper95% | 4.6
17 intercept 8520842411 2037766887 ___-4.181477243 0001893 1306125214 -398.04327 FIGURE 145 = partial) for
18 X Variable 1 19.07044289  1.999942514 0535406577 2 ASE05,  14.61429330 23 5265925 MS Excel outpu
Example 14.1
- sis 4
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FIGURE 14.7

Minitab Re ; 3
s gression dialog

FIGURE 14.8
Minitab Regressig,

dialog box N-Graphs
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14.5 USING MINITAB FOR SIMPLE LINEAR REGRESSION

Sf':Iect Stat from the menu bar. From the pull-down menu select Regression. Another

will appear on the screen. Select Regression (linear) as the first option from this pull down e
The Regression dialog box will appear on the screen (Fi gure 14.7). Place dependent e

the Response box and independent variable in the Predictors box. Minitab has the ability 1 oPen

pull-down menu

various dimensions of regression. From the Regression dialog box, click Graph, Option$: Resale

anfi Storage. The Regression-Graphs dialog box ( Figure 14.8), the Regression-Options dialog box
(Flglll'e: 14.9), the Regression-Results dialog box (Figure 14.10), and the chression-StOr“ge dialog
b?x (Figure 14.11) will appear on the screen. The required output range can be selected from these
dialog boxes. After selecting required options from each of the four dialog boxes, click OK. The
Re?gression dialog box will reappear on the screen. Click OK. The partial regression output prodiees
using Minitab will appear on the screen as shown in Figure 14.12.

Regression
C1 Months Response: [Sales
Cc2 Advertisens
=2 Sales Predictors: [Advertisement
Graphs... J Options... J
Selent Results... l Storage... J
Help ‘ I OK I Cancel ]
__-—'-'_--_—
Regression - Graphs fgl
Residuals for Plots:
' Regular " Standardized ¢ Deleted

Residual Plots
& Individual plots
¥ Histogram of residuals
¥ Normal plot of residuals
¥ Residuals versus fits
¥ Residuals versus order
" Fourin one

Residuals versus thé variables:

Select I

Help I OK I Cancel

l il

Regression - Options

Gl Months Weights: || ¥ Fit intercept
c2 Advertisemne
C3 Sales
Display Lack of Fit Tests
I Wariance inflation factors I~ Pure error
7 Durbin-Watson statistic [ Data subsetting
™ PRESS and predicted R-square
Prediction intervals for new observations:
I
5 I Confidence limits
| o I Prediction limits
Help l i OK I Cancel

Regression - Results

Control the Display of Results
" Display nothing
" Regression equation, table of coefficients, s, R-squared,
and basic analysis of variance
¢ In addition, sequential sums of squares and the unusual
observations in the table of fits and residuals
" In addition, the full table of fits and residuals

[ ok Cancel |

Help l

Regression - Storage {21

Diagnostic Measures Characteristics of Estimated Equation
¥ Residuals I Coefficients
[T Standardized residuals ¥ Fits

I~ Deleted t residuals I~ MSE
I Hi (leverages) I X'Xinverse
I” Cook's distance I R matrix

I~ DFITS

Help | [ ok el icanea ]
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FIGURE 14.9 .
Minitab Regression—Optlons

dialog box

FIGURE 14.10
Minitab Regressio
dialog box

n-Results

E 14.11
I[:‘Ilicr:iltjal@t‘a Regressmn-Storage

dialog box
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Regression Analysis: Sales versus Advertisement

Linear Reg{ggsiﬁn: Statistics B I

The regression equation is

Sales = - 852 + 19.1 Advertisement [ Regression Coefficients IV Model fit __Continue |

| ¥ Estimates | [T R squared change ﬂel__l i i

Predict: Coef SE C | ¥ Confidence intervals [ Descriptives ‘;i \ %

or oe oef T P i o ) a | l_ P t nd l' |c0ﬂelations He|p | i
Constant -852.1 203.8 -4.18 0.002 | I Covariance matiix Wbt sl __.I |

Advertisement 19.070 2.000 9.54 0.000 B I Comneanjoeates |

‘- Residuals e 1R

| T~ Durbin‘Watson

5 = 37.1069 R=-5¢q = 90.1% R-Sgi{adj) = 89.1%
[T Casewise diagnostics

|
|
! {
| | i 11
| & 0 l tandard deviations AR ]
Analysis of Variance t T HL AT 'w
(_, : u
FIGURE Source DF 55 s F P SPSS Linear Regression: . | i
IGURE 14.12 Regression 1 125197 125197 90.93 0.000 Statistics dialogibex i (0
g:g;fpt;e":‘fft (partial) for Residual Error 10 13769 1377 : T o i
: Total 11 138967 i "
15 |
i1
74.6 USING SPSS FOR SIMPLE LINEAR REGRESSION il
Select Analyze from the menu bar. Select Regression from the pull-down menu. Anotherl pull-down P DNT
menu will appear on the screen. Select Linear from this menu. C. |
2 i de endent ZRESID ance
' The Linear Regression dialog box will appear on the screen (Figure 14.13). Place &initab *DRESID % it
variable in the Dependent box and independent variable in the Independent(s) box. Lik€ 1 o ‘ “ADJPRED : ey Help l (IR
S}_’SS also has the ability to open various dimensions of regression. From the Regression dia {()Igigun; | :SF‘ES'D | ¥ i il
click Statistics, Plots, Options, and Save. The Linear Regression: Statistics dialog box Options SDRESID ; X l I 5 5
14.14), the Linear Regression: Plots dialog box (Figure 14.15), the Linear Regression: l; Yo Ly ond il
dialog box (Figure 14.16), and the Linear Regression: Save dialog box (Figure 14.17) will apP R  Standardized Residual Plots — 1~ prog I partial ol
the screen. The required output range can be selected from these dialog boxes. After selecting I qureap- K roduce all partial piots i 1
options from each of the four dialog boxes, click OK. The Linear Regression dialog box i e I™ Histogram 1 ‘.Jl
pear on the screen. Click OK. The regression output (partial) produced using SPSS will appear I Mormal probability plot 15 R
screen as shown in Figure 14.18. ‘ [ERIOT e o T S g;gg?ﬁ\;:rlﬁegressioﬂi Plots IR

£

dialog box (H
i
@ Advertisement m Dependent: oK R ] :

Linean Regression: Options

n |

’® i Paste l | : 1

=Hlock of |l —————— : = i iter ' .

i! it | N ' Resst [ - Stepping Method Criteria ——————— i ’

: e ) Ca ‘ " Use probability of F Gt I | |

J @ Advertisement Help , Entry: l Removal: |.1 0 : i il
l E " UseF value __IHB[D

HRemoval 271

Method: ]Enter - I 3 . Entry

Selection Variable:

[ ;] r B j ‘ ¥ Include constant in equation

Case Labels: £ Missing Values .
@ 1 ¢ Exclude cases listwise \ .] |
FIGURE 143 e E FLS Meight :: Exclude ca_ses painwise } i
s Replace with mean I

SPSS Line :
dialog boxar REQFESS;On : Statistics... I Plats... Save... l Options... | i FIGURE 14.16 ion: ‘
% SPSS Linear Regge:s : il
Options dialod .
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FIGURE 14.17
SF‘SS Linear R
dialog box

FIGURE 14.1g
SPSS output (parti
Example 14,1 ab for

468

Business Statistics

egression: Save

Linear Regression: Save

Predicted Values

IV Unstandardized
[~ Standardized
[~ Adjusted

[~ S.E. of mean predictions

-

[ Mahalanobis
I~ Cook's
I Leverage values

Distances

- Residuals

V' Unstandardized
[~ Standardized

[~ Studentized

I Deleted

I~ Studentized deleted

B Influence Statistics

I~ DfBeta[s)

EUPERT I~ DfFit

[Fcueten "te“'a_s I~ Standardized DfFit
I~ Mean | Individual W (Lo
Confidence Interval: gy 6%

m Save to New File

[T Coefficient statistics:  Fil=. . '

— Export model information to XML file

Erowse l

[~ Standardized DfBetals) \

Continue

Cancel l

Help

Model Summary®

Adjusted Std. Error of

Model R REquare | R8quare | the Estimate

1 9492 .801 891 37.10688

4. Predictors: (Constanf), Advertisernent
b. Dependent Variable: Sales
ANOVA®
Sum of
Model Squares dr Mean Square F Sig.
1 Regrassion | 125197.5 1 125197.458 90.926 .0op4
Resldual 13769.208 10 1376.921
Total 138966.7 11
a. Predictors: (Constanf), Advertisement
b. Dependent Variable: Sales
Coefficients®
Unstandardized Standardized
Coefliclents Coefliclents 95% Confidence Interval for B
Model B Std. Error Beta 1 Sig. Lower Bound | Upper Bound
1 (Constanf -852.084 203.776 -4.181 .002 -1306.125 -398.043
Advartisement 19.070 2.000 .849 9,535 .000 14.614 23.527
a. Dependent Varlable: Sales
4.__,...——‘—'-—

tax from advertisement.

14.7 MEASURES OF VARIATION

While developing a regression model to predict the dependent variable with the help of the inde-
pendent variable, we need to focus on a few measures of variations. Total variation (SST) can be
partitioned into two parts: variation which can be attributed to the relationship between x and y and
unexplained variation. The first part of variation, which can be attributed to the relationship between
x and y is referred to as explained variation or regression sum of squares (SSR). The second part of
variation, which is unexplained can be attributed to factors other than the relationship between x and
¥, and is referred to as error sum of squares (SSE). So, ina simple linear regression model, total varia-
tion, that is, the total sum of squares is given as:

Total sum of squares (SST) = Regression sum of squares (SSR) + Error sum of squares (SSE)

Total sum of squares (SST) is the sum of squared differences between each observed value ()
and the average value of y.

=12
Total sum of squares = (SST) = 20i=7)

Regression sum of squares (SSR) is the sum of squared differenices botwoer regréssed (predicted)
values ang the average value of y.

Regression sum of squares = (SSR) = 2, (9 =)’
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SELF-PRACTICE PROBLEMS e Sl TR T _— —
14A1. Taking x as the independent variable and y as the dependent and advertisement of Cadbury India Ltd from 1989-1990 to
variable from the following data, determine the line of re- 2006-2007.
gression. Let @ = 0.05.
o .t Advertisement (in  Profit after tax (in
x 12 21 28 25 32 42 43 39 55 Year million rupees) million rupees)
y 14 22 12 28 35 37 32 44 49 Mar 1990 734 55.5
14A2. Taking x as the independent variable and y as the dependent Macl 931 il 0):g 221
variable from the following data, construct a scatter plot and Mar 1992 99 37.1
determine the line of regression. Let @ = 0.05. Mar 1993 1109 13.6
x 13 18 25 30 22 24 40 LRI T 04
- 14 16 17 18 15 22 3% Mar 1995  127.7 95.9
e A il , ' 5 ¢ sl Mar 1996 1903 200.8
. A company believes that the number of salespersons em-
ployed is a good predictor of sales. The following table ex- Mer 199745782559 o)
hibits sales (in thousand rupees) and number of salespersons Mar 1998  296.2 185.7
employed for different years. Mar 1999  394.1 262.1
Sales (in 120 125 118 115 100 130 140 135 130 123 Mar 2000  532.8 367
thousand Mar2001  577.8 520.2
1Upees) Mar2002 7316 574
) 2
Numberof 10 15 12 18 20 21 22 20 15 19 Mar 2003 876.7 749 1
salespersons
employed Mar 2004 9044 456.5
Develop a simple regression model to predict sales based on Mar 2005~ 910.2 462.1
the number of salespersons employed. Mar 2006  958.2 459.6
14A4. Cad'bury Ind‘ia-Ltd, incorporated in 1948, is the wholly owned Mar2007 12185 688.1
Indian subsidiary of the UK-based Cadbury Schweppes = =
Plc., which is a global confectionary and beverages com-  Sowrce: Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd,
pany. Cadbury India Ltd operates in India in the segments Mumbai, accessed December 2008, reproduced with permission.
of chocolates, sugar confectionary, and food drinks.? The Develop a simple regression line to predict the profit after
following table provides data relating to the profit after tax

 While developing a regression
- model to predict the depen-

dent variable with the help of
' the independent variable, we
need to focus on a few mea-
 sures of variation. Total varia-
‘tion (SST) can be partitioned
" into two parts: variation which
" can be aftributed to the rela-

tionship between x and y and
| unexplained variation.

‘The first part of variation,
| which can be attributed to the
| relationship between x and
|y, is referred to as qxplaineq
| variation or regression sum

i

ttributed

tionship between x and y. an
s refe?red to as error sum of
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of squares (SSR). The second
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FIGURE 14.19
Measures of variation in
simple linear regression

FIGURE 14.20
Values of SST, SSR and SSE
for Example 14.1 produced
using MS Excel

The ratio of regression sum
of sguares (SSR) to total sum
of squares (SST) leads to a |
very important result which is |
referred fo as coefficient of

determination. The values of

coefficient of determination

ranges frqm Oto 1.

A70 Business Statistics

SST =X (y;—7)*

SSR =X (3;,— ¥)*

/ :V_
x
0 X;
SSR

10 |ANOVA

11 df SS Ms E Significance F|
12 |Regression ] 1. 125197.4582| 125197 5| 90.92568 2.45382E-06
MdiiResidual | 10] 13768.2Q842 1376.921 il
14 |Total 11 138966 6 |

SST

Error sum of squares (SSE) is the sum of squared differences between each observed value (V) and
regressed (predicted) value of y.

Error sum of squares = (SSE) = »_(», — 7,)’

Figure 14.19 exhibits the measures of variation in simple linear regression. It can be seen easily
that Total sum of squares (S5T) = regression sum of squares (SSR) + error sum of squares (SSE), that
is, 138,966.6667(SST) = 125,197.4582 (SSR) +13,769.20842 (SSE)

Figure 14.20 is the ANOVA table produced using MS Excel exhibiting values of SST, SSR and
SSE and other values for Example 14.1. The same ANOVA table as shown in Figure 14.20 ca be
obtained using Minitab and SPSS. Figures 14.12 and 14.18 exhibit this ANOVA table containing SST:
SSR, and SSE values obtained from Minitab and SPSS, respectively.

14.7.1 Coefficient of Determination

Coefficient of determination is a very commonly used measure of fit for regression models ar.;d is
denoted by . The utility of SST, SSR, and SSE is limited in terms of direct interpretation, The ratio of
regression sum of squares (SSR) to total sum of squares (SST) leads to a very important result; whllch
is referred to as coefficient of determination. In a regression model, the coefficient of determination
measures the proportion of variation in y that can be attributed to the independent variable x. The V2=
ues of coefficient of determination range from 0 to 1. Coefficient of determination can be defined 8

_SSR
~ SST

., Regression sum of squares

-
Total sum of squares

InE %
Xample 14.1, coefficient of determination /2 can be calculated as

_SSR _125,1974582 00
SST  138,966.6667

2 _ Regression sum of squares
Total sum of squares
LY discussed, the coefficient of determination leads to an important interpretation of the regres-
R el In Example 14.1. /2 is calculated as 0.9009. This indicates that 90.09% of the variation in
pa o be explained by lh;.: independent variable, that is, advertisement. This result also explains
that 9..91% of the variation in sales is explained by factors other than advertisement.
Figures 14.21, 14.22, and 14.23, are the partial regression outputs from MS Excel, Minitab, and
RS TeSpectively, exhibiting coefficient of determination and other important results.

14.7.2 Standard Error of the Estimate

It has already been discussed that sample data are used in the least squares method to determine the
values of 4 angd b, that minimize the sum of squared differences between the actual values (y)) and
the regressed values (,). Variability in actual values () and the regressed values (J,) is measured in
1eTMS of residuals. A residual is the difference between the actual values () and the regressed values

(_yd‘)’ determined by the regression equation for a given value of the independent variable x. The re-
sidual around the regression line is given as

Residual (e,) = actual values (y) — regressed values ( )

3 Regression Statistics
_4 |Multiple R 0.94916657 4 r2(coefficient of determination)
_5 |R Square 0.900917186|
_B |Adjusted R Square 0.891008904
_7_|Standard Error 3?.1068840_3;‘1-\
8 |Observations 12 Syx(Standard error)

A residual is the difference
| between actual values (y)
' and the regressed values (¥,).
 determined by the regression
‘equation for a given value of
 the independent variable x.

S,(Standard error)

S = 37.1069 R-Sq = 90.1% R-Sqg(adj) = 89.1%

r2(Coefficient of
determination)

12(Coefficient of
determination)

Mode] Summary®

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 9492 a01 891 37.10688 4¢— 5, Standard error

a. Predictors: (Constant), Advertisement
b. Dependent Variable: Sales
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FIGURE 14.21

Partial regression output from
MS Excel showing coefficient
of determination and other
important results

FIGURE 14.22
Partial regression output from

i 3 isnt
Minitab showing coefficien
of determination and other
important results

IGURE 14.23
Eartial regression output from

i fficient
SpPSS showing €o€
of determination and other

important results
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i
SeriEer chvmies masies ; Variation of the dots around the regression line represents the degree of relationship betweenbt:o ;
t{:e deviation of data around variables x and y. Though the least squares method results in a rcgr{;ssi(m line that fits the d_a tg :t’. }
it.'ar%r. zfcghng:r?ic erT;ar:}ansugg Ja i fciopscaed data_points do not fall exactly on the regression line. There is an obvioUS vanlficﬁl:::n 1300 I
Tl e e the observed cl_ata points around the regression line. So, there is a need to develop a statistic W \
deviation around the regres- ~ Measure the differences between the actual values (») and the regressed values () Standard erTor i
sion line. fulfils this need. Standard error measures the amount by which the regressed values () A }i |
from the actual values (y,). This is the same as the concept of standard deviation that We deve_lor_)&d n 1200 - -
Chapter 4. Standard deviation measures the deviation of data around the arithmetic mean; similarly, ’
standard error can be understood as the standard deviation around the regression line. Standard error @ ‘
of the estimate can be defined as s 100
175]
Standard error of the estimate
T 1000 -
S,Vx= oo = Z(yf_}i) | I‘
n—2 n-—2 ‘: {H
" Alerge stendard emor indel  where y, is the actu i 2 il B : lue of y, for 900 - a ? |
et R leh i e observ:;fi; ; e actual value of y, for observation i and Y; the regressed (predicted) value ot Vs 9,0 9,5 ".)0 1(')5 1;0 §L‘§t‘t’§fpfﬁ'§xmmung e | |
o or &ctter apund: the. A ) ression {
- regression line and a small In the above formula, the numerator is the error sum of squares and the denominator is degrees Advertisement Eﬁiau ?gragxc;;tllglfrﬁg"ﬂ | 1
'S!Hndfﬁ'fd .ferro( a!'{ildfﬁafes Srtr;all - of freedom determined by subtracting the number of parameters, 3, and f3,, that is, 2 from sample size S . *
SIMOUML OF Varldtion Of SCalter. . Hence, the degrees of freedom is n — 2. In E le 14.1, t ize i d there are two : ‘
SOl e redreesionilerA 2n n n Example 14.1, the sample size is 12 an dard error Figures 14.25, 4.26, and 14.27 exhibit the computation of predicted values (fits) and residuals,
standard error equal to zero  Parameters. Therefore, the degrees of freedom can be computed as 12 — 2 = 10. A large standar and ar : i S ;
indicates that all the observed  indicates a large amount of variation or scatter around the regression line and a small standard error ¢ the part of the regression outputs obtained from MS Excel, Minitab, and SPSS, respectively.
data points fall exactly on the  indicates small amount of variation or scatter around the regression line. A standard error equal to zero - - - - |
fediession fine. indicates that all the observed data points fall exactly on the regression line. gg Dbearvaion 3 P;%c;gggST ] 'g; ‘ggg:ésﬁﬂ M S!andarg ?;g{g;?f 1 !
For E : i : - - |
or Example 14.1, standard error of the estimate can be computed as o6 > 940 53740011 -40.53740015 1.145770793 |
27 3 997.7487291| 2225127088 0.62892184 Al
™ ‘/SSE _ J13769.20842 57 TBE 28 4] 1016.819172| -26.81917211 -0.758031447 i
3 n-2 12-2 ' 29 5 1054.960058 45.0399419 1.273033046 &
30 5] 1093.100944 | -43.10094408 -1.218228172
Figures 14.21, 14.22, and 14.23 exhibit the computation of standard error from MS Excel, Minit- 3 7 1131.24183| 18.75816993 0.530190964 525
ab, and SPSS, respectively. Figure 14.24 is the scatter plot exhibiting actual values and the regression 32 8 1150.312273| -30.31227306 -0.856762324 FIGUREEROJ,E put (partial)
line for Example 14.1. 33 9|  1150.312273| -20.31227306 -0.574116967 gﬂfhﬁj’;gng the computation of
Table 14.3 indicates the predicted (regressed) values and residuals for Example 14.1. 34 10 1188.453159]  11.54684096 0.326366098 predicted values. res@dua:s,
35 11 1188.453159| 61.54684096 1.739592883 and standardized residuals
TABLE 14.3 36 12 1245.664488| -25.66448802 -0.725394838 for Example 14.1
Predicted (regressed) values and residuals for Example 14.1
Months  Advertisement (in thou-  Sales Predicted values: : A T
sand rupees): x (in thousand 3 Residuals (% =n) i C4 c5
rupees). y Months [Advertisement Sales |Residuals| Fits : |
Jan 92 930 902.39651 27.60349 Jan | g2 930! 27.6035! 902.40 '\ |
74 _ — il e
;"a’ ;’; ;‘;30 ‘]’33678?;?7 22 zfg‘j; | | Mar 97|  1020] 222513| 997.75
pr ; _26. - 1 - X -1
Apr 98 990, -26.8192| 1016.82
May 100 1100 1054.96006 45.03994 [ — A - T o -
Jun 102 1050 1093.10094 —43.10094 L= - May - i 7";'[1 1100 45.0393) 1054.96
Jul 104 1150 1131.24183 18.75817 | 6 Jun| . 102]  1050] -43.1009| 1093.10
Aug 105 1120 1150.31227 _30.31227 i 7 :JIJ| l - " 104 o 1150__ 18.7682| 1131.24
Sep 105 1130 1150.31227 _20.31227 i 8 | A—Ug" ) 105 1120§ -30.3123| 1150.31
Oct 107 1200 1188.45316 11.54684 i 9 Sep| 105 1130 -20.3123| 1150.31 T
Nov 107 1250 1188.45316 61.54684 ‘ Oct 107|  1200| 11.5488| 1188.45 P ot (partiah
. S ne T e u
Dec 110 1220 1245.66449 -25.66449 i Nov | 107| 1250 61.5468| 1188.45 exh'b'.‘;”%éhaen?;g:ﬁdiaed
| T i i f residu
(y; - ;) = 0.000 ! Dec| 110]  1220] -25.6645| 124566 values (fits) for Example 14.1
472 Busine et ! : a7
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FIGURE 14.27

SPSS output (partial)
exhibiting the computation
of predicted values (fits) and
residuals for Example 14.1

It is important to note that the
sum of residuals is approxi-

mately zero. The logic behind

this is very simple. In fact, re-
siduals are geometrically the
vertical distance from the re-
gression line to data point. The
regression equation which we
solve for intercept and slope,
place the line of regression
in the middle of all the data
points. So, the vertical distance
from the line to data points
cancel each other and lead
to a sum that is approximately
equal to zero.

“Advertisement Sales [ Predicted Residuals
1 92 930.00 90239651 27.60349
P 94 900.00 940 53740 -40.53740
3 97 1020.00 997 74873 22.25127
4 o8 990.00 1016 81917 -26.81917
5 100 1100.00 1054 96006 45.03994
3 102 1050.00 1093 10094 -43.10094
7 104 1150.00 113124183 18.75817
8 105 1120.00 1150.31227 3031227
9 105 1130.00 115031227 2031227
10 107 1200.00 1188.45316| 11.54684
1 107 1250.00 1188 45316 61.54684
12 110 1220.00 1245 66449 25 66449
T I

It is important to note that the sum of residuals is approximately zero. Ignoring some rounding
off errors, the sum of residuals is always equal to zero. The logic behind this is very simple- Resu_iu-
als are geometrically the vertical distance from the regression line to the data point. The regression
equation used to solve for the intercept and slope place the line of regression in the middle of all the
data points. So, the vertical distance from the line to data points cancel each other and lead t0 @ Sull
that is approximately equal to zero. Figure 14.24 is the scatter plot with residuals (distance betWeen
actual values and predicted values) for Example 14.1. This figure clearly exhibits that that the l.me of
regression is geometrically in the middle of all the data points. This also exhibits that the residuals
with (+) sign fall above the regression line and residuals with (-) sign fall below the regression line.
Table 14.3 clearly exhibits that the sum of residuals is approximately equal to zero. Residuals ar¢ also
used to find out outliers in the data set. This can be done by examining the scatter plot. Qutliers can
produce residuals with large magnitudes. These outliers may be due to misreported or miscoded data.
These outliers sometimes pull the regression line towards them and hence put undue influence 00 t-he
regression line. A researcher after identifying the origin of the outlier can decide whether the outlier
should be retained in the regression equation or regression line should be computed without it-

Quarters  Net sales (in Salaries and wages Quarters  Net sales (inmil-  Salaries and wages
o million rupees)  (in million rupees) lion rupees) (in million rupees)

Jun 2004 51439 412 Dec 2005 62279 440.7

Sep 2004 5600.2 390.3 Mar 2006 6759.2 542.8

Dec 2004 57198 427.1 Jun 2006  6811.8 565.1

Mar 2005  6135.3 4439 Sep 2006  7226.6 566.1

Jun 2005 6157.7 475 Dec 2006  7362.9 569.4

Sep 2005 6248.1 4733 Mar 2007 _ 8630.8 1399.8

f‘g:gre: Pl:uwess (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd, Mumbai, accessed September 2008, reproduced
PeMmission,

14.8 Us

ING RESIDUAL ANALYSIS TO TEST THE ASSUMPTIONS OF

REGRESSION

Residua analysis is mainly used to test the assumptions of the regression model. We will take Exam-

Th

14.8.1 Linearity of the Regression Model

Linearity of

b corresponding x, values of the independent variable on the horizontal axis. There should not be

an‘y apparen

abl

Figure
parent patte
to note that

ith appearent pattern) indicates that there is a non-linear relationship between the independent vari-
€ and the dependent variable.

plee14.1 as the base example for understanding residual analysis to test the assumption of regression.
assumptions of regression analysis are as follows:

the regression model can be obtained by plotting the residuals on the vertical axis against

t pattern in the plot for a fit regression model. Any deviation from linear residual plot (plot  independe

14.28 (MS Excel plot of residuals and x, values for Example 14.1) clearly exhibits no ap-

m in the plot between residuals and x, values of the independent variable. It is important s

for meaningful interpretation of the residual plot, large sample size is required. Residual

analysis cap, lead to over interpretation for small sample size. Figure 14.29 (MS Excel plot of residuals

and X, valye

s for a large sample size) exhibits the non-linearity in the plot between residuals and x, val-

ues of the independent variable for a large sample size. Similarly, Figure 14.31 exhibits the non-linear-

independent variable on the
" not be any apparent pattern
plot for a fit regression -

ae——

lstznllgl:l:_Minitab produced plot between residuals and x, values of the independentlvariable t(;o(; alarge
s T 1ze. Figure 14.30 is a part of Minitab regression analysis output for Example 14.1 and does not
S ELF- PRACTICE P ROBLEMS f indicate an apparent pattern in the plot between residuals and x, values of the independent variable.
14B1. Compute the value of > and standard error for Problem product portfolio comprising of milk products, beverages, X Variable | residual plot R
14A1. Discuss the meaning of the value of #* and standard prepared dishes, cooking aids, chocolate, and confectionary. RN
error in developing a regression model. The following table shows the net sales (in million rupees) 100 ‘ i
14B2. Compute the value of #* and standard error for Problem and salaries and wages (in million rupees) of the company - ; J
14A2. Discuss the meaning of the value of 7* and standard for different quarters. | T:‘,‘ ¢ ) 3
error in developing a regression model. Develop a simple regression line to predict net sales =2 0 AR B i
14B3. Nestle India Ltd, incorporated in 1959, is one of the largest from salaries and wages. Discuss the meaning of the value E oh -"95' 28 {] [
dairy product companies in India. The company has a broad of 12 and standard error in developing a regression model- _ —100 - 'JSG gﬁ:illijét of residuals \
; » for Example 14.1 exhibiting L
o X Variable 1 3 :
Quarters  Net sales (in Salaries and wages Quarters  Net sales (in mil-  Salaries and wages l lineart
million rupees) (in million rupees) lion rupees)  (in million rupees)
Jun 1999 3639 220 Dec 2001 4681 369
Sep 1999 4169 211 Mar 2002 5300.1 321.9 . X Variable 1 residual plot H
Dec 1999 4230 277 Jun 2002 5114.8 336.9 1|
Mar 2000 3478 243 Sep2002 5235 500.3 200 ||
Jun 2000 4198 259 Dec 2002  4827.1 303 & '-
Sep 2000 4694 264 Mar 2003 5981 388.3 _‘g 0
Dec 2000 4403 284 Jun 2003  5460.7 380.7 ‘A ! l‘ ' |
Mar 2001 4516 308 Sep 2003  5326.1 390.7 e~ : 29 "
Jun 2001 4683 314 Dec 2003 5305 424 .4 -200 ! ',f,,'g gz;'ér;lo% of residuals l :
Sep2001  5329.6 329.7 Mar 2004 6200.7 413.1 X Variable 1 showing non-linearity for |
~ e g large sample siz€ '
474  Business Statistics Chapter 14 | imple Linear Regression Anaysis 475 Ll




FI_G'URE 14.30
Mmltab.plot of residuals
VErsus independent variable y l

(advertisement) for Example

141 showing linearity

FIGURE 14,31

Minitab
showing non.(i
large sample sjze

The assumptj
! a
dasticity s Z, AL

t
around the fing or .. a0aNce

Shouid be cony
values of X, &
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14.8.2 Constant Error Variance (Homoscedasticity)

The assumption of homoscedasticity is also referred to as constant error variance. As the name SUg-
gests, the assumption of homoscedasticity or constant error variance requires that the variance 31"0““‘1
the line of regression should be constant for all the values of x,. This means that the error vanafet
should be constant for low values of x as well as for high values of x. As shown in Figure 14.32, the
assumption of homoscedasticity can be judged from a plot of residuals and values of x,. Figure 14.32
exhibits the violation of the homoscedasticity assumption of regression. From Figure 14.32, it 18 clear
that error variance increases with the increase in x, which is not constant. If we examine Figur® 14.
(MS Excel plot of residuals for Example 14.1), we find that there is no apparent violation of the as-
sumption of homoscedasticity. While determining the regression coefficient from least squares M€ 0(}.
the assumption of homoscedasticity is a very important consideration. Any serious violation from this
assumption leads to either data transformation or leads to applying weighted least squares methO‘d‘_
The assumption of constant error variance or homoscedasticity can also be understood by examining
the Minitab graph between residuals and the fitted values for Example 14.1 (Figure 14.33). In this plot
the residuals are scattered randomly around zero, hence, the errors have constant variance or do 1ot
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E. v T

violate the assumption of homoscedasticity. If the residuals increase or decrease with fitted value in a
funnel pattern (shown in Figure 14.32), errors may not have constant variance.

14.8.3 Independence of Error

'_I“he assumption of independence of error indicates that the value of error ¢, for any particular value of
independent variable x, should not be related to the value of error &, for any other value of independent
variable x. This means that the errors around the line of regression should be independent for each value
of the independent variable x. This assumption is paxtwular ly important when a researcher collects the
data over 5 period of time. In this situation, there is a possibility that the errors for a specific time period
may correlate with the errors of another time period. In other words, we can say that the data collected
OVEr a specific period of time may exhibit autocorrelation effect with the data collected over another spe-
cific period of time. In this situation, there exists a relationship between consecutive residuals. The effect
of autocorrelation can be measured by the Durbin—Watson statistic, which we will discuss later in this
chapter, Regidual versus time graph can be plotted to ascertain the assumption of independence of error.

Chapter 14 | Simple Linear Regression A

FIGURE 14.32

Violation of the. :
homoscedasticity assumption
of regression

4.33 )
Minitab worksheet showing
constant error v_arlapce

(homoscedast:mty) or

Example 14.1
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FIGURE 14,34
Minitab sheet showing

independence of erro
Example 14.1 i

Ji! FIGURE 1435

Graph of non-ing
;' of error (Case 1) ~2efdence

FIGURE 14.3¢

Graph of non-,

i
of error (Case g;iependence
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Figure 14 34 shows the Minitab worksheet indicating independence of error (for Example 14.1)

;nrccl; Figures 14.35 and 14.36 illustrate the two specific cases of a graph showing non-independence of
I.

14.8.4 Normality of Error

gt;ass“mp}ion of normality around the line of regression can be gneasured by plotting 3 histo-gx:am
oot €en residuals and frequency distribution. Figure 14.38 is the histogram produced using Mln:ltab
als &‘m.]g the normality assumption for Example 14.1. From the figure, it can be seen that thn? residu-
- laée nght_'SkeWed distributed. Here, it is important to unders!;and that for‘a small sample size such
With, l'fleesmg the assumption of normality and its interpretation by the h*stogram plot is difficult.
fhls kind of sample size, any deviation from the assumption of normality should not be a matter

of st’.n‘ous concern,
norm;]g'ure 14.37 is the normal probability plot of residuals (generated using Minitab) for testing the
line fo Ly assumption. The normal probability plot of the resxduals-should rough.ly follf)w.a straight
. resr Meeting the assumption of normality. A straight line connecting all the resEduals indicates t!:lat
conne.;:(-}uals are normally distributed. If we observe Figure 14.37 closelj..r, we_wﬂ] ﬁnd th:‘at the line
ALY ting all the residuals is not exactly straight but rather close to a straight line. This indicates that
s1dual$ are nearly normal in shape. A curve in the tail is an indication of skewness. Figure 14.38
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FIGURE 14.37 g

Normal probability plot of
residuals for testing the
normality assumption for
Example 14.1 produced using

Minitab

RE 14.38
I'-:i'isGtggmm of resnduai?t
for testing the norma |lz s
assumption for Exz_anjpb y
produced using Minita
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FIGURE 14.39
MS Excel normal probability
plot of residuals for testing

the normality assumption for
Example 14.1

FIGURE 14.40

Minitab generated <

: four-in-
one-residual plot for L
Example 14,1

SELF-PRACTICE

Normal probability plot

Sample percentile

Residual Plots for Sales

Residual versus the fitted values
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confirms this fact. Figure 14.39 is the normal probability plot of residuals produced using MS Excel
for testing the normality assumption.

Minitab also helps in generating a four-in-one residual plot (Figure 14.40). Figure 14.40 is the
four-in-one residual plot for Example 14.1. It is important to note that these plots are vital parts of
the regression output generated through any statistical software program. This four-in-one-residual
plot displays four different residual plots together in one graph window. This is useful in determin-
ing whether the regression model is meeting the assumptions of the regression. These four plots are
explained separately in the section on the assumptions of regression.
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ysis to test the assumptions of the regres- 14C3. Use residual analysis to test the assumptions of the regres-
roblem 14A1.

8 i i .
.5 Iesidual analysis 1o test the assumptions of the regres- 14C4. Use residual analysis to test the assumptions of the regres-
o0 model for problem 14A2.

sion model for problem 14A4.

sion model for problem 14B3.

g T

Positive ! ! Negative
autocorrelation Inonclusive No autocorrelation Inconclusive autocorrelation

14.9 MEASURING AUTOCORRELATION: THE DURBIN-WATSON
STATISTIC

As di.scusscd, in the previous section, independence of errors is one of the basic assumptions of re-
Bression analysis. When a rescarcher collects data over a period of time, there is a possibility that
'he_ElTors for a specific time period may be correlated with the errors of another time period because
residuals at any given time period tend to be similar to residuals at another period of time. This is
termed as autocorrelation and the presence of autocorrelation in a regression model raises questions
about the validity of the model.

Aresidual versus time graph may be plotted for determining autocorrelation (Figure 14.34). Posi-
autocorrelation can be detected by the cluster of residuals with the same sign. In case of negative
autocorrelation, residuals tend to vary from positive to negative to positive and so on. This pattern is
1"%1'@1)' observed in regression analysis, so we will focus on positive autocorrelation. It has also been
discussed earlier that the pattern of residual—time plot may be observed for determining autocorrela-
tion. In addition to this, the status of autocorrelation in regression analysis may also be determined
through the Durbin—Watson statistic. The Durbin—Watson statistic measures the degree of correlation

etween each residual and the residual of the immediately preceding time period. The Durbin-Watson
statistic can be defined as

Dlll'bin—Watson statistic

tive

where e, is the residual for the time period i and e, the residual for the time period i — 1.

Here, it is important to note that the numerator of the Durbin-Watson statistic is the sum of
sduared differences between two successive residuals from the second observation to the nth observa-
tion because for the first observation, the squared differences between two successive residuals cannot
be COmputed. If there is no correlation between residuals, the value of D will be close to 2. In case of
negative correlation, the value of D will be greater than 2 and can reach its maximum value 4.

The values of the lower-critical value (d,) and the upper-critical value (d,) can be obtained from
the Durbin-watson statistical table given in the appendices. The values of the lower critical value (d,)
and the upper critical value (d,) can be obtained for a given level of significance (a); sample size ().
and'm'lmber of independent variables in the model (k). Figure 14.41, shows how the Durbin-Watson
statistic can be used for detecting autocorrelation.

EXample 14.2 explains the concept of positive autocorrelation clearly.

FIGURE 14.41
Using Durbin—-Watson statistic
for detecting autocorrelation

When a researcher collects
data over a period of time,

there is a possibility that the

errors for a specific time peri-
od may be correlated with the
errors of another time period
because residuals at any given
time period may tend to be
similar to residuals at another
period of time. This is called
autocorrelation and the pres-
ence of autocorrelation in any

| regression model raises ques-

tions about the validity of the
model.

The Durbin-Watson statistic
measures the degree of cor-
relation between each residual
and the residual of the immedi-
ately preceding time period.

If there is no correlation be-
tween residuals, the value of
D will be close to 2. In case
of negative correlation, the
value of D will be greater than
2 and can reach its maximum
value 4.

A retail outlet of a footwear company is facing a slump in sales. The Example 14.2

company has adopted a policy of giving incentives to its salesmen for
additiona] sales in order to boost the sales volume. The total incentives
offered by the company and the sales volumes for 15 weeks (in thousand
TUPees) selected at random are given in Table 14.4.
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TABLE 14.4 E F ) G H | : |
Incentive offered to salesmen (in rupees) and - 2. —&. L —a. |
sales (in thousand rupees) Weeks RES'EjUE"S (2 i) (&; — ;1) !
— —f—:"!— —r‘. A" 1] 0.3645479| 0.1328952 T
EeeKs olat imcenlive ates (in thouv- ] f_\l-:,- — & MY
o rrgies)  .saudmeas) = D.BB 13715 04374122 -1.025919417] 1.052510651 |
A T4 —— 05 3| -2.2021773( 4.8495849( -1.540805828( 2.374082601 ‘ .
’ 4| -0.9725802| 0.9459123 1.229597086( 1.511908993
“ 810 P4 5| 0.005222| 2.727E-05[ 0.977802186| 0.956097114 '
3 850 8.6 6| 0.3904234| 0.1524304] 0.385201457| 0.148380163 !
4 870 10.2 7| 1.0200205| 1.0404418[ 0.629597086 0.39639249
5 855 10.9 8| 1.0922183| 1.1929409( 0.072197814| 0005212524
6 845 1.1 9| 1.5070169| 2.2710998| 0.414798543| 0.172057631
7 865 9.1 10 1.266211| 1.6032904[ -0.240805828| 0.057987447
' 11 1.0792147| 1.1647043] -0.186996357| 0.034967638
% 880 1245 12| 0.3200205| 0.1024131[ -0.759194172| 0.57637579
9 890 13.05 13| -0.8115912| 06586802 -1.131611657| 1.280544942
10 930 13.55 14| -1.3375984| 1.7891696| -0.526007286| 0.276683664
11 905 12.9 15[ -1.0595766| 1.1227025] 0.278021857| 0.077296153
12 865 11.4 I
" 55 15 | Sum=__ | | 17.483705] | 8.920498001 FoURE 1443
| ' | ksheet sho
14 995 12.15 ‘ e T e '%"’* T TRl "C"jrf;jf;ﬁ‘;ﬁro?tﬁz Durbin-
15 845 9.65 i . ¢ SR Watson statistic for
_ ‘ | [D= | 0510002147 - SRusus S B Al 142
Fit a line of regression and also determine whether autocorrelation is present. -
Solution It is clear from the example that the data are collected over a period of 15 random- Model Summaryb
ly selected weeks from the same retail store. So, apart from verifying the assump- Adjustan” | 6oL Erarof Duroin
tions of homoscedasticity and normality, verification of independence of error i Model R R Square | R Square | the Estimate Watson
terms of using Durbin—Watson statistic is also very important. The first step 1 1 6353 403 357 115903 N
determining autocorrelation is the examination of residual versus time graph. The a. Predictors: (Constant), Incentive
MS Excel plot between residuals versus time is shown in Figure 14.42. B b. DependentVarisbie: Sales \
Itis clear from Figure 14.43,14.44, and 14.45 that the Durbin—Watson statistic ' Durbin-watson statistic
is calculated as 0.51. From the Durbin—Watson statistic table, for a given level of
significance (0.05); sample size (15) and number of independent variables in the
model (1), lower critical value (d,) and the upper critical value (d,)) are observed ANOVAb
: . Sum of
g : - Model Squares df Mean Square F Sig.
A ¥ it . 1 1 Regression 11.789 1 11.789 8.775 .011a
. : f Residual 17.464 13 1.343
SERG ; . ; Total 29.252 14
a. Predictors: (Constant), Incentive
Z <o | . b. Dependent Variable: Sales
:a T * T L] L} T T
8 4 6 8 10 12 14 16
3 o Yiie Coefficients®
; bt . Unstandardized ‘Standardized
A & i i Coefficients Coefficients
y Model B Std. Error Beta t Sig.
rl\’ﬂlSGgREf14_4z e 1 {Constant) -4.840 5.485 -.809 .385
Xcel prody , : | ti . 635 2.962 011 14.44
Versus time pjotcfidr residuals o = — “,:i, ablo- B i 20 : g;gg'::gressioﬂ output for
Example ]4‘2 w k E Depeﬂden ariapie:; aleS Example 142
€eKs
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FIGURE 14.45

Minitab regression out,
Example 14.2 put for

FIGURE 14.4¢

Durbin-Watson staticti
for Example 14.§ta fst

»

€ range
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Regression Analysis: Sales versus Incentive

The regression equation is
-Sales = - 4.94 + 0.0185 Incentive

Predictor Coef SE Coef T P
Constant -4.940 5.495 -0.90 0.385
Incentive 0.018520 0.006252 2.96 0.011

S = 1.15903 R-Sq = 40.3% R-Sq(adj) = 35.7%

Analysis of Variance

Source DF SS HS F P
Regression 1l 11.789 11.789 8.78 0.011
Residual Error 13 17.464 1.343

Total 14 29.252

Durbin-Watson statistic = 0.510802

Pogitive . . Negative
autocorrelation Inonclusive No autocorrelation Inconclusive autocorrelation

/1N

.0 1.08 1.36 2 2.64 2.92 4

as 1.08 and 1.36, respectively. By substituting the values of the lower critical
value (d)) and the upper critical value (4,) in the range presented in Figure 1441,
the acceptance and rejection range can be determined easily. After placing the
values of the lower critical value (d,) and the upper critical value (d,) in the range
presented in Figure 14.41, the Durbin—Watson static range for Example 14.2 is
constructed as shown in Figure 14.46. The Durbin—Watson statistic for Example
14.2 is calculated as 0.51. This value (0.51) is less than the lower critical value
(d,= 1.08). Hence, it can be concluded that a significant positive autocorrelation
exists between the residuals. So, the outputs (Figure 14.43, Figure 14.44, and
Figure 14.45) based on least squares method are inappropriate. There is a need to
focus on alternative approaches.

14.10 STATISTICAL INFERENCE ABOUT SLOPE, CORRELATION
COEFFICIENT OF THE REGRESSION MODEL, AND TESTING THE
OVERALL MODEL

If there is no serious violation of the assumption of linear regression and residual analysis has con-
firmed that the straight line regression model is appropriate, an inference about the linear relationship
between variables can be obtained on the basis of sample results.

. 7k\, L
.. - . . R ———

14.10.1 tTest for the Slope of the Regression Line . o
Verifying the assumptions of linear regression, a researcher has to demnethther a SIgmﬁ-
cant linear relationship exl;sts between the independent variable x and the dependent Variable y. This
1; determineq by performing a hypothesis test to check whether the population slope (8,) is zero. The
YPotheses for the test can be stated as below: .
H,: B, = 0 (There is no linear relationship)

H,: B, = 0 (There is a linear relationship)

Any negative or positive value of the slope will lead to the rejection of ﬂ}e null hypotl.xesis and
acceptance of the a]teI:native hypothesis (as mﬁ above hypothesis test'is twq‘-tmled). A negative value
of the slope indicates the inverse relationship between the independent variable x and the dependent
vanable y. This means that larger values of the independent variable x are rel?ted to s'malle.r values of
the dependent variable y and vice versa. In order to test the significant positive relationship between

the th Variables, the null and alternative hypotheses can belstated as pgl_ow;. S
H,: B, = 0 (There is no linear relationship) '
H,: B, > O (There is a positive relationship) .
To test the significant negative relationship between the two variables, the null and alternative hypoth-
©S€s can be stated as below:
H_: B, = 0 (There is no linear relationship)
H: B, < O (There is a negative relationship)
The test Statistic ¢ can be defined as below:

- -
Sy
Wwhere S ____‘5?__
> JSS,
SSE
S, = — .

SS,. = sz ——(—Z’l—{y .

The test statistic ¢ follows a ¢ distribution with n — 2 degrees of freedom and B, as the hypothesized
Population slope.
On the basis of above formula, the ¢ statistic for Example 14.1 can be computed as

_b—B, _1907-0_g
‘=T, T 37.068 |

344.25

. 2 T
Where S8, =Y x* - ) =124,581 —(1—21271)——=344.25
n

s - JSSE _ 1376920842 _ 3, 1063
» ns2 V‘ 12-2.

. Figures 14.47(A), 14.47(B), and 14.47(C) show the computation of the ¢ statistic using MS Excel,

Initab, and SPSS, respectively. L )
Using the p value from the above outputs, the null hypothesis is rejected and the alternative

bypothesis js accepted at 5% level of significance. In light of the positive value of b, and p value
=0.000, it can be concluded that a significant positive linear relationship exists between the indepen-

dent variabe x and the dependent variable >

. ‘S
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FIGURE 14.47(A)

Computation of the t statistic
for Example 14.1 using MS

Excel

FIGURE 14.47(B)

Computation of ¢ statistic for
Example 14.1 using Minitab

FIGURE 14.47(c)

Computation of the t statisti
tistic
for Example 14.1 using SPSS

FIGURE 14 4g
Computation of
from MS Exce| for
Example 14 1
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the F statistic

6] Coefficients  Standard Error ¢ Stat _ P-value _ Lower 95%
37 |interce) 8520842411 203.7750007. -4 18146 0001683 -1306.125214
(181X Variabla 1 19.07044299° 19999425149 5354 45E-06  14.61429333

1 statistic

Predictor Coef SE Coef T P
Constant -852.1 203.8 -4.18 0.002
Adevertisement 19.070 2.000 9. 54‘%
{ statistic
Ui S dard; d
Cocflicients Cocfficicnts 95% Confidenoo Intcrval for B
Mode) B Std. Error Beta t sig. Lower Bound | Upper Bound
1 (Constant) | -gsz084 | 203.776 _a.181 002 1306.125 _39800
advertisem 19.070 2.000 949 9.535 000 14.614 <Xv2]
ent

¢ statistic

14.10.2 Testing the Overall Model

The F test is used to determine the significance of overall regression model in regression analysis.
More specifically, in case of a multiple regression model, the F test determines that at least one of the
regression coefficients is different from zero. In case of simple regression, where there is only one
predictor the F test for overall significance tests the same phenomenon as the ¢-statistic test in simple
regression. The F statistic can be defined as the ratio of regression mean square (MSR) and error mean

square (MSE).
F statistic for testing the slope
F= MSR

MSE

SSE
n-k-
in regression model (In case of simple regression k= 1).

The F statistic follows the F distribution with degrees of freedom kand n — k— 1.
Figures 14.48(A), 14.48(B), and 14.48(C) illustrate the computation of F statistic using MS Ex-
cel, Minitab, and SPSS, respectively. On the basis of the p value obtained from the outputs, it can be

, and k is the number of independent (explanatory) variables

2

where MSR = EEE MSE =

10 JANOVA T
1. df SS MS F Significence F
142 |Regression 1 125197.4582| 125197.5] 90.92568| 2.45382E-06
3'|Residual : 10{ 13769.20842; 1376.921| i
14 |Total 11 136965.6667 |
F statistic

Analysis of Variance - I E
Source DF ss HS F P
Regression 1 125197 125197 9‘0193 0,000 '
Residual Error 10 13769 1377 N -
Total 11 138967 R
F statistic
—_—
ANOVAP
Sum of
Model Squares dr Maarr Square F- | ¢8lg '
1 Regression 125197.5 1 125197.458 80.926 0002
Residual  |13769.208 10 1376.921 \
Total 138966.7 11 N
a. Predictors: (Constanf), advertisement
b. Dependent Variable: sales
F statistic
———————

:fon"l“ded that expenses on advertisement is significantly (at 5% level of significance) related to sales.
W€ Compare the p value obtained from Figures 14.47 and 14.48, we find that the p values are the
same in both the cases. T

14.10.3 Estimate of Confidence Interval for the Population Slope (8,) -

Esm?‘ate of confidence interval for the population slope (8,) provides an alternative approach to test
the linear relationship between the independent variable x and the dependent variable y. This can be
flone by determining whether the hypothesized value of , (8, = 0) is within the interval or outside the
Interval, For understanding the concept, we will take Example 14.1 again. Confidence interval for the
Population slope (8,) is defined as : ' SN

Estimate of confidence interval for the population slope (8,)

bl * tn—zsb
From the outputs given in Figures 14.6, 14.12, and 14.18, the following values can be obtained
b, = 19.0704 =12, and §,=19999 -

o
. From the table, for & = 0.05 (E = 0.025) and degrees of freedom = n — 2 =10, the value of ¢ is
2.2281. By substituting all these values in the formula of confidence interval estimate for the popula-

tion slope, we get :
b, £¢, ,S, =19.0704 + 2.2281 (1.9999) = 19.0704  (4.4559)

4 4533; the upper limit is 23.5263 (19.0704 + 4.4559) and the lower limit is 14:6145 (19.0704 —

So, population slope B, is estimated with 95% confidence to be in the interval of 14.6145 and
23.5263. Hence,
14.6145 < g < 23.5263 R :

€ upper limit as well as the lower limit is greater than 0 and population slopg lies in between

these two Jimits. So, it can be concluded with 95% confidence that there exists a significant linear
relationship between advertisement and sales. If the interval would have included 0, the inférence
Would have peen different. In this situation, the existence of a significant linear relationship between
the two variables could not have been concluded. This confidence interval also indicates that for each
thousand rypee increase in the advertisement expenditure, sales will increase by at least Rs 14,614.50
but less than Rs 23,526.30 (with 95%, confidence). ) o

FIGURE 14.48(B)
Computation of F statistic for
Example 14.1 using Minitab

FIGURE 14.48(C)

Computation of F statistic for

Example 14.1 using SPSS
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. Comelaon coefiicient ()
- measures the strength of the

relationship between two vari-
ables.

488 Business Statistics

14.10.4 Statistical Inference about Correlation Coefficient of the Regression Mods
From Figures lt!.ﬁ, 14.12, and 14.18, it can be seen that the value of correlation coefficient 13 3 g?;o(f;gl:
outp!.lt Corre!a_non coefficient () measures the strength of the relationship between two van? [“r(; vari:
relation coefficient (r) specifies whether there is a statistically significant relationship betweerble hypoth-
ablles. The £ test can be applied to check this. The population correlation coefficient (?) canf ”0£0
esized as equal to zero. In this case, the null and the alternative hypotheses can be stated 35 3 :

H:p=0
H:p=0
In order to test the significant relationship between two numerical variables St
statistic can be defined as

tistically, the ¢

The 1 statistic for testing the statistical significant correlation coefficient

r—=p
1—7?

n—2

I=

where s rz,ifb,BO

r==fr?,ifb <0

The ¢ statistic follows the ¢ distribution with » — 2 degrees of freedom. From F igures 14.6, 1412 e
14.18, the following values can be obtained:

r=0.9491 and b, = 19.0704

By substituting these values in the above formula, we get

0.9491-0 ~-953
[1-0.9009
10

& .
From the table, for @ =0.05 (5 =0.025 | and degress of freedom = n — 2 = 10, the value of £1s

2.2281. The calculated value of ¢ is 9.53. The calculated value of 7 (= 9.53) > tabular value of £ (=
d. So, it can
ote that the

=

2.2281). Hence, the null hypothesis is rejected and the alternative hypothesis is accepte
be concluded there is a significant relationship between two variables. It is important to I
value of ¢ is the same as calculated in Figures 14.6, 14.12, and 14.18. oo

The statistical significance of correlation coefficient can be directly inferred using M™
SPSS.

tab and

14.10.5 Using SPSS for Calculating Statistical Significant Correlation Coefficient
for Example 14.1

Select Analyze from the menu bar and select Correlate from the pull-down menu. Another pull-down
menu will appear on the screen, select Bivariate from this pull-down menu. The Bivariate Co.rrela-
tions dialog box will appear on the screen (Figure 14.49). Place both the variables in the var,'ab,l £
box, select Pearson Correlation Coefficient and Two-tailed test of significance. Select FI128 signifi-
cant correlations and click OK. SPSS will compute the Pearson Correlation Coefficient 35 shoya

in Figure 14.50.

14.10.6 Using Minitab for Calculating Statistical Significant Correlation coefficient
for Example 14.1

Select Stat from the menu bar. Select Basic Statistics from the pull-down menu. Another PY )
menu will appear on the screen, from this pull-down menu, select Correlation. The Correlation

11-down

dialog box will appear on the screen (Figure 14.51). Place both the variables in the Variables box,

select Display p-values and click OK. The Minitab output will appear on the screen as shown in

Figure 14.52.

e e e — —

[m Bivaria:t;g)=_(_l,%l:g'_.elations

— Correlation Coefficients
vV Pearson

(_T;a_st (-:uf"Sit._:;nificance
[ % Two-tailed

¥ Flag significant correlations

[T Kendall'staub [ Spearman

" Dne-tailed

Variables:
@ advertisement

@ sales Paste ‘

Reset l

Cancel l

Help l

Options...

i

Correlations
Advertisement Sales

Advertisement  Pearson Correlation 1 .949%Y

Sig. (2-tailed) : .000

N 12 12
Sales Pearson Correlation 949 1

Sig. (2-tailed) .0o0 .

N 12 12

**. Caorrelation is significant at the 0.01 level (2-tailed).

Correlation

C1l Months
c2 Advertiseme
C3 Sales

Help |

Variables:

Advertisement Sales

¥ Display p-values

[~ Store matrix [display nothing]

OK I Cancel
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FIGURE 14.49 ;
SPSS Bivariate correlation

dialog box

FIGURE 14.50
Calculation of Pearson
correlation coefficient using

SPSS

RE 14.51 _
:flli?iltjab Correlation dialog

box
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Correlations: Advertisement, Sales 4. Use residual analy:qis to test the assumplions_ofth‘e regression model. ’
5. Perform the ¢ test for the slope of the regression line.

Pearson correlation of Advertisement and Sales = 0.949 6. Test the overall model.

FIGURE 14.52
Calculation of Pearson

correlation coefficient using
Minitab P-Value = 0.000 ; A rtan
Solution It is important to note that students will be able to understand all the important

points discussed in the chapter to perform a simple regression analysis from the
G step-wise solution provided for this problem. As discussed earlier, regression

SELF-PRACTICE PROBLEMS
—— analysis starts with examining the relationship between two variables. In this

14D1. _Computc-the Durbin-Watson statistic for Problem 14A4 and ~ 14D2. Compute Durbin—Watson statistic for Problem 14B3 and case, the dependent variable is income and the independent variable is expenses.

Interpret it. Test the slope of the regression line and signifi- interpret it. Test the slope of the regression line and signifi- The six steps (mentioned in the question) can be performed as below: ! ‘

cance of the overall model. cance of the overall model. 1. Construction of a scatter plot between income and expenses ‘
The first step is to construct a scatter plot between income and expenses

Example 14.3] Glaxosmithkline India (GSK) is a subsidiary of Britain-based major phar- _
maceutical company—Glaxosmithkline Plc. The company was formally 20000 ‘ i
known as Glaxo before its merger with French pharmaceutical company
Smithkline Beecham. In 2006, the pharmaceutical business accounted for
nearly 92% of GSK'’s business.? Table 14.5 exhibits income (in million 15000 .
rupees) and expenses (in million rupees) of Glaxosmithkline Pharmaceu-
ticals Ltd from 1989-1990 to 20062007 (except 1993-1994).

TABLE 14.5 g
Income (in million rupees) and expenses (in million s 10000 -
rupees) of Glaxosmithkline Pharmaceuticals Ltd from =
1989-1990 to 2006-2007 (except 1993-1994)
Year Income (in mil-  Expenses (in 5000 A
lion rupees) million rupees) |
1989-1990 3566.4 3441.8 |
r‘ 1
1990-1991 4232 4241.5 0 - . . : . : FIGURE 14.53 I
1991-1992  5024.8 5052.3 5000 7500 10000 12500 15000 s(:gtte;pggésse}ge
ande
1992-1993  5650.8 5666.3 {3 Expenses Example 14.3 |
1994-1995  8076.4 7641.2 ‘ The scatter plot shown in Figure 14.53 (produced using Minitab) clearly exhibits a linear relationship |
g |
1995-1996  11478.9 9678.5 | I:!etween income and expenses. We can proceed further for regression analysis after confirming the
1996-1997  7315.3 6881.9 | linear relationship.
1997-1998  7883.5 7695.7 2. Calculation of coefficient of determination, standard error of the estimate, and its
interpretation
1998— g : H . s : s :
olalala 41833 Flglf-l'e _14.54 is the regression analysis output generated by Minitab for Example 14.3. As discussed
1999-2000 9482.5 8789.8 earlier in the chapter, /2 is the coefficient of determination. The Minitab output (Figure 14.54) shows
2000-2001  9958.2 9571.6 that the value of 2 is 95.8%. This indicates that 95.80% of the variation in income can be explained
2001-2002 12607.8 12015.7 by the lndependcnt variable, that is, expenses. This result also explains that 4.20 % of the variation in !
2002-2003  12390.9 11513.6 Regression Analysis: Income versus Expenses
2003-2004  12974.8 11297.6 The regression equation is
2004-2005  16702.4 13403.4 CReame! = R9R3 i 1.0 EpEnied
2005-2006  18901.2 13874.9
Predictor Coef SE Coef T P
2006-2007  19807.5 14578.3 Constant  -2323.3 722.9 -3.21 0.006
Source: Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd, Mumbai, December 2008, reproduced with Expenses 1.39857 0.07520 18.60 0.000
permission.
¢ . - o " ks i) = 95.6%
Use & = 0.05 and develop a regression model to predict income from expenses incurred by perform- § = 1021.97 R-3q = 95.6% R-Sq(ed))
ing the following steps:
1. Construct a scatter plot between income and expenses. . Analysls of Verisnpe FIGURE 1454
2. Calculate the coefficient of determination, standard error of the estimate, and state 1ts Saitod B ss Hs F P Regression a;’lg‘%fsg';ger Sad
interpretation. Regression 1 361293779 361293779 345.92 0.000 for Exanﬁpi‘:b :
3. Predict income when expenses are 20,000 million rupees. Residual Exror 15 15666447 1044430 using Min!
e I i e Total 16 376960226
z na|ysis 491

Chapter 14 | Simple Linear Regression A

Business Statistics

: LHA

b (T
o o

490




i B ——
.incomﬁj is explained by factors other than expenses. The standard error is cmnpulcd as 1021.97, w;hlch Figure 14,56 clearly exhibits that there is no apparent pattern in.the plo_t bet\_vee‘n res:dgals and x, val-
is relatively low and is an indication of a strong predictor regression model. The high value of 7* and ues_Pf the independent variable (expenses). Hence, the assumption of linearity is not violated.
the low value of standard error provides a foundation for a good estimator model. @ Constant error variance (Homoscedasticity) ‘e :
3. Predicting income when ex illi ‘ The assuy i " constant € variance or homoscedasticity can also be examined by the
edictir ne penses are 20,000 million rupees Optian of Gomstant errox VarETr ™ < the fitted values” (Figure 14.55). In
As exhibited in the Minitab output, regression equation is given as: second part of the Minitab graph titled residuals VETSUS K18 .
Income =-2323 + 1.40 (Expenses) this plot, residuals are scattered randomly around zero..H.ence, errors have constant variance or
The predicted income when expenses are 20,000 million rupeces can be computed as (iii there is no violation of the assumption of homoscedasticity.
Income =-2323 + 1.40 x (20,000) = 25,677 i) Independence of error , R
Hence, when expenses are Rs 20,000 million, the predicted income will be Rs 25,677 million- $e§lquals versus time graph can be plotted to ascertain t}:,elassumpt}OF obfmdepct:ndt.snce oli':rsrgr.
4. Using residual analysis to test the assumptions of the regression model - ths s shown as *‘residuals \’L’EI’SLIS u.]c grderofiig c}ata in the Minltab QURRSSER .
As discussed in the chapter, we need to test the following four assumptions of the regression gt (iv) Nzralil::.r:;“ ?zlttcrn again indicates independence of error
: 3 : . 1ty of error . .
(53 Eg;e:gg 80; (t)};ev ; il_g;'l(:gzl?; :rl;)c(aj::cdasticiry) ;Ic;he assumption of normality around the line of regression can :e measu‘r‘ﬁt_:l :3}' p;;ttz)r;‘g tﬁeh::
i o .gram, b'ctw'ccn residuals ﬂ“d_ffcq“e“°¥ d‘fsmbutmn. Th1§ .15 shown as |§dog1i e
(&) Nawiality of eeror stduals” in Figure 14.55. In addition to this, normal prpbabnhly piot_ of the residuals”, whic l:‘)h a
Figure 14.55 is the Minitab generated four-in-one-residual plot. which is mainly used for residual ?:F‘t ofthe Minitab outqu shpwsastralghtlme connecting all the residuals. This indicates that the
analysis. . 1 plot, which is mainty 5. r_;;dUals are normally dlstnbutcd.. : ,
‘est for the slope of the regression line _ :
Residual plots for income f g‘g“f e 14:54 clearly shows that the 7 value is computed as 18.60 and the corresponding p value is
i 00. Using the p value from the output (Figure 14.54), itcan be concluded tha.t the null hypoth-
% Nolrma] probability of the residuals 2000 Residuals versus _fitted values esis (slope is zero) is rejected and the alternative hypothesis (slope is not zero) is accepted at 5%
& e : o - 6 }:Vel_ of significance.
g2 | S ° . % v F?Stmg the overall model ) X
5 iz T e e igure 14.54 includes a ANOVA table. The F value is computed as 345.92 and corresponding p
B2 o ; B 1000 T " J ; Value is 0.000. The p value (0.000) indicates the significance of the overall model.
e 2000 L ‘ - -
~2000 -meesic?uals 1000° 2000 5000 Fi{(tngg va]ugm 20000 g}?:buy Laboratories Ltd, incorporated in 1961, is one of India’s largest Example 14.4
: ; ; X s TMaceutical companies. Table 14.6 exhibits the sales volume and ad-
, Histogram of the residuals : Dolohaslduals versus order of data ;cmSement expenditure (in million rupees) of Ranbaxy Laboratories Ltd
2 1000 f rom 19891990 to 2006-2007.
g e \ Ay o TABLE 14.6 _
et 5 = N Sales and advertisement expenditure of Ranbaxy Laboratories
Eﬂﬁé’? 14.55 £, _l_]__l 21000 Ltd from 19891990 to 2006-2007
One-l‘esfgﬁgfgalé?cfiofour—m— Vi : 2000 Year Sales (in mil-  Advertisement (in
Example 14.3 f =Ll e 2 L0 2000 2 4. 6 8 A6 12 Ll4aIe lion rupees)  million rupees)
Residuals Observation order o " 1989-1990  2064.5 30.4
(i) Linearity of the regression model 1990-1991 2587.8 51
As discussed in the chapter, for testing the assumption of linearity we have to construct a plot belae 1991-1992 3396.9 59.1
residuals and the independent variable. Figure 14,56 shows the plot between residuals and indepen- 1992-1993 4622.2 79.5
dent variable expenses produced using Minitab. 1993-1994 5044.7 50.8
1994-1995 7139.2 98.2
2000 - 1995-1996 8940.1 112.7
°® 1996—-1997 10,427.3 141.6
1997-1998 12,421.3 2248
10004 © 1998-1999 11,296.5 169.8
E g ° - . 1999-2000  16,670.3 409.3
S B - 2000-2001  17,757.1 560.2
S ° 2001-2002  19,597.8 863.5
« ° ° 2002-2003  31,317.6 1306.5
-1000 1 * 2003-2004  38,889.8 1822.6
h';ﬁg;liol?.ss : e 2004-2005  38,658.7 2017.2
a plot betwgs; ?225352?9 -2000 ° 0052006, . 32,8403 20081
fer;%gfsigf?gfgi g’r??ri?bsle 5000 7500 10000 12500 15000 " 2006-2007  35,991.5 - 14871 e
ple 14.3 Expenses ) “?iz'l:‘:énl:ios\;gss (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd, Mumbai, accessed December 2008, reproduced
.
O
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FIGURE 14.5g
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ySis output
9 MS Excel for

494 Business Statistics

Use a = 0.05 and develop a regression model to predict sales from advertisement expenses in-

-curred by performing the following steps:
1. Construct a scatter plot between sales and advertisement. .
2. Calculate the coefficient of determination, standard error of the estimate, and state its
interpretation.

. Predict sales when advertisement is 3000 million rupees.

Use residual analysis to test the assumptions of the regression model.

Perform the ¢ test for the slope of the regression line.

Test the overall model.

SAw

e —

The first step in developing a regression modecl is to construct a scatter plot be-
tween sales and advertisement to ascertain the type of rclationship between sales
and advertisement.

1. Construction of a scatter plot between sales and advertisement expenditure

Figure 14.57 is the scatter plot between sales and adverticement of Ranbaxy Laboratories Ltd pro-
duced using Minitab. Since the scatter plot between sales and advertisement exhibits a linear relation-
ship as shown in the figure, the further steps of performing a regression analysis can be carried out.

Solution

N 0 N - L] L
“ 0 v 500 1000
' Advertisement

1500 2000

st

2. Calculation of coefficient of determination, standard error of the estimate, and its inter-
pretation
Figure 14.58 is the regression analysis output generated using MS Excel for Example 14.4. From
the regression statistics part of the figure, it can be seen that the value of R? is 0.9355 (93.55%).
This clearly explains that 93.55% of the variation in sales can be explained by the variation

inthe explanatory variable (advertisement). The standard error is computed as 3430.23. The value

ngz is an indication of a good predictor regression model.
: l’“’dicting sales when advertisement is 3000 million rupees )
As exhibited in the MS Excel output, the regression equation can be wriften as:

Sales = 5794.28 + 17.07 (Advertisement)
The predicted sales when advertisement is Rs 3000 million can be computed as
Sales = 5794.28 + 17.07 x (3000) = 57,004.28 Rs. ‘
Hence, the predicted income is Rs 57,004.28 million, when the advertisement expenditure is
3000 million. . »
4. Using residual analysis to test the assumptions of the regression model
th order to use residual analysis to test the assumptions of the regression model; we have to test
' e following four assumptions:
(') Linearity of the regression model
(“) Constant error variance (Homoscedasticity)
(iii) Independence of error
) (iv) Normality of error
:;gal“;e_ 14.59 is the Minitab generated four-in-one-residual plot, which is mainly used for residual
sis.

[ ———

) Residual plots forsales
e Normal probability of the residuals

s L

- 90 1 -

g0 7 o0

Bsodi 1 1 I

S [

) 1 ' : i ' 1
SEERLLE Il S A A S
Lo 1 . ' i 1 1

1 A S SO B .
~10000  -5000 o 5000 10000

Residuals
Histogram of the residuals

77+ -8000-6000 ~4000 2000 O 2000 4000
_ Residuals

) Linearity of the regression model

Figure 14.60 clearly exhibits that there is no apparent pattern in the plot between residuals
and x, values of the independent variable (advertisement). Hence, the assumption of linearity is

not violated.
(i) Constant error variance (Homoscedasticity)

The assumption of constant error variance or homosceda.sticity can be investigated by “residu-
als versus the fitted values” part of the Minitab graph (Figure 14-§9)- In this plot, residuals are
scattered randomly around zero. Hence, errors have constant variance or there is no violation

. Of the assumption of homoscedasticity.
(iii) Independence of error

For verifying the assumption of independence of error, residuals versus time graph can be plot-

1. A {. B D 1 E | F | G

1 |SUMMARY OUTPUT; I
’ : T ] -

3. [ P o
| 4 (Multiple R_

5 |RSquare .

‘6 ]Adjusted R Square

7_{Standard Emor

B |Observations

9 — R R S
10 JANOVA ! : } )
111 | of ! SS i MS F Significence F o
1 12 |Regression 1 2732519348, 2732519348 2322282 6.02655E-11 o
13|Residval - 16 1882644276  11786526.72 ol
(14 Total ‘ 17~ 2900785775 ]
15 ; ; ; ; |
16 \Cosfficienta’_Standard Emor | Stat Pvalue Lower 05% ___ Upper 95%
17 fintercapt 157942860 107965324, 5366605359, 6.235E-05; 3305526165, 8083.05141
*48.|1X Variable 1 i 17.07793} 1.120670001 | 15.23803548  6.027E-11] 14.70221565! 19.4536442

ted. This is shown as “residuals versus the order of the data” in the-Minitab output (Figure
14.59). No apparent pattern indicates independence of error.
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(iv) Normality of error

A part of the Minitab output “histogram of the residuals” in Figure 14.59 shows a left-skewed
norme] distribution. By observing “normal probability plot of the residuals” in Figu® 14.59
closely, we find that the line connecting all the residuals is not exactly straight but rather close
to a straight line. This indicates that the residuals are nearly normal in shape. A curve around
the upper part of the line is an indication of skewness.
5. t Test for the slope of the regression line
Figure 14.58 shows that the ¢ value is computed as 15.23. The corresponding p-value test (0.000)
indicates that this is significant. Hence, the alternative hypothesis that the slope is not equal to

zero is accepted.

6. Testing the overall model

The ANOVA table is a part of the MS Excel output as shown in Figure 14.58. The computed F
valueis232.22. Thecorresponding p value is 0.0000, which is significant. This p value indicatesthe
significance of the overall model.

SUMMARY |

P

Re, i . .
whxg;lelsissl ?xl;ea;f;yms 1s the process of developing a statistical model
one independent I; redict the value of a dependent variable by at least
are two of ariable. In simple linear regression analysis, there
is to be Pl‘edicted‘?nables' The variable whose value is influenced or
influences the vy s called dependent variable and the variable which
variable, Simple ;.}e Or 1s used for prediction is called independent
€quation of j |y, Inear regression is based on the slope-intercept
can be to m:i(ln reg.restion analysis, sample regression model
and 8, (populatiq ¢ predictions about population parameters. So, 8,
Statistics b apq ;,l Parameters) are estimated on the basis of sample
Least—squages m tlh For this purpose, least squares method is used.
of b, and p thate ‘o.d use the sample data to determine the values
actual valyeg (y)mnmmzes the sum of squared differences between
sion is develop anl:j the Tegressed values (§,). Once line of regres-
values of regressiq Y substituting the required variable values and

can be obtaineq. on coefficient, regressed values, or predicted values
ile deVQIO

variable with the P

few measureg of

in two parts: varj

Ing a regression model to predict the dependent
helP of independent variable, we need to focus ona
Vanations. Total variation (SST) can be partitioned
ation which can be attributed to the relationship be-
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tween x and y and unexplained variation. First part of variatio? which
can be attributed to the relationship between x and y is referred to as
explained variation or regression sum of squares (SSR). The second
part of the variation, which is unexplained can be attributed t0 factors
other than the relationship between x and y is referred to as €rror Sum
of squares (SSE). Coefficient of determination is also a very Y0POr-
tant phenomenon in regression analysis. Coefficient of determination
measures the proportion of variation in y that can be attributed to
independent variable x. A residual is the difference bewccn-actual
values (y) and the regressed values () and is used to examine th.e
magnitude of the errors produced by the regression model- I2 addi-
tion, residual analysis can be used to verify the assumptions of regres-
sion analysis. These assumptions are (1) linearity of the regression
model (2) constant error variance (homoscedasticity) (3) indepen-
dence of error (4) normality of error.

Afler verifying the assumptions of linear regression, 8 ,—e‘searcher
determines whether a si gnificant linear relationship between indepen-
dent variable x and dependent variable y exists. This can be done by
performing a hypothesis test to check whether the populaﬁon_ slope
(B)) is zero or not. The ¢ test is applied for thig purpose. A sigmﬁcant
P value for the ¢ statistic establishes the linear rejationship betWeen

an m‘:l.ependgm variable x and the dependent variabley. In regression
l'egrissg’ the Ftest is used to determine the significance of the ovex.-all
mode] l:;ln model. More specifically, in case of 8 muitiple nfgressnott.l
ﬁcient; o F test determines that at lcast one of the regression coef-
IS is different from zero. In casc of simple regression, where

p en::t Oris only one, the F test for overall significance tests the same
Menon as the s-statistic test in simple regression. Apart from

KEY TERMS |

coefficient of determination (#?), regression analysis also provides
the correlation coefficient (r), which measures the strength of the
relationship between two variables. Correlation coefficient (r) speci-
fies whether there is a significant relationship between two variables.
Again ¢ statistic is used to determine the significant relationship be-
tween two variables. ,

c elation, 481 Dependent variable, 458
c‘lem- of Durbin—Watson statistic, 481
Correlati " 2): 470 Error sum of squares (SSE), 470

on coefficient (), 488 Homoscedasticity, 476

NOTEs |

(SSR), 469

Indépéndeﬂce of érror, 477
. Independent variable, 458 - Residual, 471 -
Least-squares method, 460 Standard error, .
_ Total sum of squares (SST), 469

Regression sum of squares

Low WWw.tatasteel.com/Company/profile.asp,accessed Septem-

ber 2008.
Prowess (V. 3.1), Centre for Monitoring Indian Economy

DISCUSSION QUESTIONS |

Pvt. Ltd, Mumbai, accessed September 2008, reproduced
- with permission. '

L. What is the conceptual framework of simple linear regres-

sion and how can we use it for business decision making?
Regression analysis is an important tool for forecasting.
Explain this statement.

at are the assumptions of regression analysis?
V\{rite short notes on:
Linearity of the regression model
Constant error variance (Homoscedasticity)
Independence of error
Normality of error
Explain the concept of regression sum of squares (SSR)
and error sum of squares (SSE) in a regression model.

N

.UOO..';A'D)

NUMERICAL PROBLEMS |

6. Explain the concept of coefficient of d?tcrming:lon and
standard error of the estimate in a regression moce -

i tson
7. What is autocorrelation? How can we use Durbin—Wa
statistic in detecting autocorrelation. -
8. How can we use the ¢ test for determining the statistical

significance of the slope of the regression line?

9. How can we test the significance of the overall regression
model? ..
10. How can we use correlation coefficient () for determining

the statistical significance of the relationship between two

variables in a regression model?

1A large supermarket has adopted a new strategy to increase its
sales. It has adopted a few consumer friendly policies and is
Using video clips of 15 minutes to propagate the new policies.
1€ following table provides data about the number of video
clips shown in a randomly selected day and the sales turnover

of the supermarket in the corresponding day.

Days o
ays _No. of video clips shown Sales (in thousand rupees)

- : number
(1) Develop a regression model to predict sales from the

of video clips shown. — . ret it.
(2) Calculate the coefficient of determination and IntcrP
(3) Calculate the standard error of the estimate.

L wants to deter-
2. The HR manager of a multinational 00111?::?1' income of em-

mine the relationship between experience randoml
ployees. The following data are collected from 14 Y

, 25 150 selected employees. ;

§ 25 210 Employees _Experience (in years) Income (in thousand rupees,
" 25 140 1 2 30
5 35 180 2 4 40
6 35 230 3 5 45
7 35 270 4 6 35
g 40 310 5 7 50
o 40 330 6 8 60
10 40 300 7 9 70
50 270 8 10 65
1 5o 310 9 2 60
12 so 340 10 13 55
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nm - 14 75

12 15 80

13 . .16 .. 8

14 . 18 , 75

(1) Develop a regression model to predict income based on the
years of experience.

(2) Calculate the coefficient of determination and interpret it.
(3) Calculate the standard error of the estimate. '
(4) Predict the income of an employee who has 22 years of experi-

ence.

3. A dealer of a motorcycle company believes that there is a posi-

tive relationship between the number of salespeople employed

and the increase in the sales of bikes. Data for 14 randomly
selected weeks are given in the following table.

Weeks No. of salespeo- Sales (in
ple employed  units)

1 17 34

2 14 39

3 25 - 60

4 40 80

5 15 38

6 18 50

7 13 » 35

8 11 ) 25

9 27 51

10 12 29

11 38 89

12 36 ) 85

13 41 90

14 28 63 .

(1) Develop a regression model to predict sales from the number
of salespeople employed.

(2) Calculate the coefficient of determination and interpret it.
(3) Calculate the standard error of the estimate.
(4) Predict sales when number of salespeople employed are 100.
4. For Problem 3, use residual analysis to verify the following as-
Sumption of linear regression: '
(1) Linearity of the regression model
(2) Constant error variance (Homoscedasticity)
() Normality of error
5. For Problem 3, estimate the following:

(1) #Test for the slope of the regression line
() Testing the overall model :
3) tShtatistical inference about the correlation coefficient of
€ regression model
6. For Problem 2, estimate the following:

(;) 'tI' Test for the slope of the regression line

&) esting the overall model
Statistical inference about the correlation coefficient of the
Tegression mode]

;;h © Municipal corporation of a newly formed capital city is
this, h g to lgupch a new water supply scheme for the city. For
ter oo € Municipal Corporation has considered past data on wa-

sumption in 16 randomly selected weeks of the previ-

OUS summer ang the average temperature in the corresponding
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week. On the basis of the data, the corporation wanlsa:m
the water requirement for the current year- ng> PR
below:
—_— __/ .
Weeks  Tempera-  Water consumphon '
— ture (in °F) (inLnL”eﬂﬁ‘l’l‘—’EL‘ ‘

3 iso |

2 38 160

3 39 168

4 3s 145

5 34 140

6 33 142

7 37 155

8 40 165

9 41 167

10 42 175

11 44 185

12 42 180

13 40 170

14 38 165

15 2 170

16 4 73—

r consumption

(1) Develop a regression model to predict W‘::,e
from the temperature of the corresponding W& i
(2) Calculate the coefficient of determ?nation and interpret it
(3) Calculate the standard error of the estimate- is 47 °F.
(4) Predict the water consumption when tempef“mre )
(5) tTest for the slope of the regression line
(6) Test the overall model
(7) Statistical inference about correlation coe
gression model

(8) Calculate Durbin-Watson statistic and interpret it
f absenteeism

8. A company is a concerned about the high rates ©
among its employees. It organized a training Pro® ’v&:thtz
boost the morale of its employees. The following table &1 have
number of days that sixteen randomly selected employe? i
received training, and the number of days they have.

leave.

ﬁcient Of the re-

Employee Training days  Leave
1 12 20
2 14 18
3 16 , 16
4 13 22
5 11 18
6 10 19
7 15 14
8 17 : 12
9 18 10
10 19 9
11 17 11
12 15 16
13 13 19
14 15 17
15 17 15
16 12 21

(5) tTest for the slope of the regression line

(6) Test the overall model

n Develop a regression model to predict leaves based on train- |
(7) Statistical inference about the correlation coefficient of the

ing days. o
(2) Calculate the coefficicnt of determination and state its inter- .
pretation. regression model
' (8) Calculate Durbin—Watson statistic and interpret it.

(3) Calculate.the standard error of the estimate.
(4) Predict the leaves when training days are 25.

FORMULAS |
Equation of the simple regression line
y=by+bx
Slope of a regression line
sy EDEY -
p < ZG-D-F) _FTwy-nGExy) =¥,
1 T(x-% 2 sz_ﬁz sz—(—z—xz
where
88y =2 (x =¥y —ﬂ=2xy—w
2
and 55, =Z(x-%)’=5x —@—nx2

SS

b=—X

SSe
¥ Intercept of the regression line

n

Coefficient of determination (o)
_SSR

» _ Regression sum of squares
- SST

Total sum of squares

Residual (e‘) - P
Residual (e = actual values () — regressed values ()

Standard error of the estimate

S = ‘SSE = Z(y,—j},)z
= V”_z -

Where y is the actual value of y, for observation i and 7 the regressed (predicted) value of y, for observation i.
Durbin—Watson statistic . : ‘
. Z (e-e.)
D=d=2
. ie’z

i=l

where e, is the residual for the time period i and e, _, the residual for the time period i 1. _

The test statistic 7

. . is
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Introduction

The Indi :

dinis tgf“s;‘:;::t}t industry was delicensed in 1991. After China, In-
for cement is 265 a’gﬁlﬁ PrOducfer of cement. The estimated demand
cement industry s;;l On metric tonnes by 2114-2115.! The Indian
2007 also witgeensy & 80%th of 11.6% in 2006. The financial year
increasing i eav muted growth of 7.1%. In order to meet the
cant capac tyd Emanexpansionez;g;inufacm have embarked on signifi-

ACC—A pj .
Associated l::'e:'eer 'n the Indian Cement Industry
1936, after th, ent Companies Ltd (ACC) came into existence in

business grou;:-] ?rl'ager of 10 companies belonging to four important
The Tata group g, tas, Khataus, Killick Nixon, and F B Dinshaw.
14.45% of it share asmated with ACC since its inception. It sold
and 2000, © to Gujarat Ambuja Cements Ltd between 1999
became the largest S_Strategic alliance, Gujarat Ambuja Cements Ltd
into a strategic rojap o, St2keholder in ACC. In 2005, ACC entered
a world leader i cenr 0ship with the Holcim group of Switzerland,
gregates, and certa: ent as well as a large supplier of concrete, ag-
tegic alliances b, construction related services. These global stra-

ACC is India’s : Ve Strengthened the company.’
company has a w(i):;;moSt manufacturer of cement and concrete. The
tories, more than 30 range °f,°Perations with 14 modern cement fac-
several zonal off; ready mix concrete plants, 20 sales offices, and
ces. ACC’s research and development facility has

500 Business Statistics

a unique track record of innovative research, product de
and specialized consultancy services. ACC’s brand name
mous with cement and it enjoys a high level of equity 1
market.* :

is synony-
the Indian

The Impact of Cartelization

Cartelization is one of the major problems in the cement industry.
Cartelization takes place when dominant players of the ind“_s'ry"om
together to control prices and limit competition. In the Indian mar-
ket, manufacturers have been known to enter into agreements fo ar
tificially limit the supply of cement so that the price rem8ins .
When markets are not sufficiently regulated, large companies M2Y
be tempted to collude instead of competing with each other- For ex-
ample, in May 2006, the Competition Council of Romania imP osed,a
combined fine of 27 million euros on France’s Lafarge, Switzerland’s
Holcim, and Germany’s Carpatcement for being involved in the ce-
ment cartel in the Romanian market. These three companies share
98% of Romanian cement capacity.* The government should take ap-
propriate action to check acts of cartelization.

Escalating input and fuel costs have forced manufacturers © "’,‘s’
new sources of supply and increase the quest for alternatiVe fue
and raw materials. The cement industry is faced with the Challeng;
of optimizing the utilization of scare basic raw materials and_ fos's
fuels while simultaneously protecting the environment and maintain-
ing emission levels within acceptable limits. It js vital for the ?ement
industry to achieve high levels of energy utilization efficience$ and
to sustain them continuously.? Table 14.01 exhibits sales urmover
and advertisement expenses of ACC from 1995 o 2007.

b o ! . , : TABLE 14.01 1. Develop an appropriate regression model to predict sales
IR Y where L § =S Sales tumover and advertisement expenditure of ACC from from advertisement. o o
B o ;; ! ¢ [ss 1995-2007 2. Calculate the coefficient of determination and state its inter-
i ' '; = T Y retation. .
o ,‘ ’ SSE Year Sales (in million {idve‘rl'llfsemem (rs 3. léalculate the standard error of the estimate. .
i ‘I Sy = . rupees) In million rupees) 4. Predict the sales when advertisement is Rs 500 million.
' "2 1995 20,427.0 >8.6 5. Test the significance of the overall model.
) 1996  23,294.6 72.6
=20 - 1997 24,5105 1223
o F statistic for testi 1998  23,731.1 61.9
_ g slope 1999  25,858.3 144.7
» MSR 2000 26,792.2 132.2
) F=SisE 2001  29,361.2 172.6
£ where MSR=25R nsp . SSE o 4 - Number of independ ¢ of simple 2005 337158 2593
) k’ S i1’ = r of independent (explanat ; ; . cas ,718. .
regression k = 1) n—k-1 (explanatory) variables in the regression model (11 2004 39,003.7 334.8
Estimate of confidence _ 2005 45 ,498.0 321.9
ence interval for the population slope @) 2006 37,235.1 336.0
bt s 2007 64 ,680.6 4423
¢ statisti ; - . n-2%% T T
tic for testing the statistical significant correlation coefficient
i NOTES |
_r—p sedS
t= .. . .asp,acces! ep-
1-,2 1. www.indiastat.com, accessed September 2008, reproduced 4, ww;v:c;(l)gxsuted.com/neWSlte/c"meﬁle asp
_ with permission. tember . . S content&
h n-2 2. Prowess (V. 3.1), Centre for Monitoring Indian Economy 5. WW-"“?ineSStqday.Org/mde).(.php?optlosnepi:::ger 2008,
ere r=+r,if b 20and r=—;7. Pvt. Ltd, accessed September 2008, reproduced with per- task=viewed&id=370&Item,
N ) r=—Jr*,ifb,<0. mission.
3. www.acclimited.com/newsite/heritage.asp, accessed Sep-
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