
and Taiwan are the world leaders in the international bicycle maricet
cannot beignored. Indian players have tofocus on research and de
sign development in order to face the future challenges.

1. Suppose a leading bicycle manufacturer has divided its
products into six brands. Price ofthese brands and unit sold
for 2005 and 2006 are shown in Table 13.01. Use the
twhniques presented in this chapter and examine whether
the distribution of unit sales has changed from 2005
—2006.

TABLE 13.01

sold by a leading_bicycle manufacturer In 2005 and 2006
Brand Price category 2005 (in 2006 (in

fa tepees) thousands) thousands)
1 Less than 1200 HQ 120
2 1200-1400 95 IO5
3 1400-1800 105 102
^ 1800-2000 102 98
5 2000-2200 90 102

~ 80 88
Cycles has launched three brands—Hero

^^ce Precin 4nd Hero Smart. Let us assume theen (Sales) ofthe Hero Cycles company wants to

2006 (in
thousands)

120

105

102

98

102

^ith pen^^OQ°°^ accessed September 2008, reproduced
•herocycles.coin/about.php,accessedSeptember2008.

determine whether the sales ofbicycle brands are indepen
dent ofage group. He has appointed amarketing research
er for this purpose. This researcher has taken a random
sample of the consumers who have purchased bicycles b
2005. TTie market researcher has conducted a surveyforan
alysing the consumerpreferencefor the threebrands ofbi
cycles. TTie researcher has also divided the age groups into
four categories; 05 to 07, 07 to 09, 09 to 12, and 12to 17.
The observations made by the researcher are given m
Table 13.02:

TABLE 13.02

Consumer preference for three leading btcycle brands

^^^"""'̂ rand Hero Hero Hero smart Row
Agegfvt^'^^ premium pa.tsion total

05 to 07 20 25 32 77

07 to 09 10 20 22 52

09 to 12 15 12 10 37

12to 17 25 22 23 70

Column total 70 79 87 236

Determine whether brand preference is independent ofage
group. Use a = 0.05.

www.hindubusinessline.com/catalyst/2004/05/20/stories
/2004052000120100.htm, accessed September 2008.
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A statistical analysis, properly conducted, is a delicate dissection ofuncertainties, a
surgery ofsuppositions.

- M. J. Moroney

LEARNING OBJECTIVES

upon completion of this chapter, you will be able to:

• Use the simple linear regression equation

• Understand the concept of measures of variation, coefficient
of determination, and standard error of the estimate

• Understand and use residual analysis for testing the
assumptions of regression

Measure autocorrelation by using the Durbin-Watson statistic

Understand statistical Inference about slope, correlation
coefficient of the regression model, and testing the overall
model

STATISTICS IN ACTION: TATA STEEL
Tata Steel, established in 1907, is the world's sixth-largest steel company
with an existing annual crude steel capacity of 30 million tonnes. It is
Asia's first integrated steel plant and India's largest integrated private-
sector steel company with operations in 26 countries and commercial
presence in 50 countries.'

In line with its vision of becoming a globai companywith a 50 million
tonne steel capacity by 2015, the company has expanded through the
acquisition route. Tracing the company's history of inorganic growth in
recent years. Tata Steel acquired Natsteel in February 2005 and Millen
nium Steel Company renaming It as Tata Steel Thailand in April 2006. In
April 2007. the company acquired Corus. the second-largest steel pro
ducer in Europe and the ninth-largest steejproducer in theworld for USD
^3.7 billion. With the acquisition of Corus. Tata Steel has become the
world's sixth-largest steel company.2 Tata Steel made its maiden entry
in the list of Global 500 Companies released by Fortune in 2008. Table
14.1 shows the sales volumes and marketinq expenses ofTata Steel from
1995 to 2007.

sales volume of the company has increased over the years.
The increase in marketing expenses (includes commissions, rebates, dis
counts, sales promotional expenses on direct selling agents, and enter
tainment expenses) could be one of the factors that have contributed
to the increasing sales. Aresearcher may like to analyse the relationship

: .petween sales and marketing expenses. If there isa relationship, what Is

TABLE 14.1

Sales volumes and marketing
from 1995-2007

Year Sales (in mil-

lionrupees)
1995 46.274.1

1996 58.541.2

1997 63,485.0

1998 64,292.7

1999 55,160.0

2000 61,562.8

2001 71,966.3

2002 75,954.1

2003 97.884.9

2004 119,178.8

2005 158,676.2

2006 171.329.4

2007 197,711.9

I expenses of Tata Steel

Marketing expenses
(in million rupees)

576.4

571.5

916.8

781.4

747.9

895.6

332.2

709.3

871.9

819

861.8

807.5

647.1

Source: Prowess (V. 3.1), Gattreto Monhoriiig Indiao Economy Pv^
Ltd, Mumbai, accessed Sqptember 2008, reproduced whfa petmisriral,.

-
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the proportion of change in sales that can be attributed to marketing expenses? How can we develop a model topredict th
ship between sales volume and marketing expenses? This chapter focuses on the answer to all these questions. The Cp estimate
on the concept of simple linear regression equation measures of variation, coefficient of determination, standard error of^
and the use of residual analysis for testing the assumptions of regression. The chapter also deals with the concept of ^
by using the Durbin-Watson statistic and explains the understanding of statistical inference about slope, correlation coeff'C
regression model, and testing the overall model. ._MHI

Regression analysis is the pro
cess of developing a statistical
model, which is used to predict
the value of a dependent van--
able by at least one indepen
dent variable. In simple linear
regression analysis, there are
two types of variables. The .
variable whose value is influ
enced or to be predicted is
called dependent variable and
the variable which influences
the value or Is used for pre-'
diction is called independent
variable.

regression analysis. Inde^
pendent variable Is also known
as regressor or predictor, or"
explanatory while the depen-"
dent variable is also known as
regressed or explained vari
able. in a simple linear regres
sion analysis, only a straight
line relationship between two i
variables is examined.

458 Business
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74.7 INTRODUCTION
the under-la many business situations, it has been observed that decision making is based ^might be

standing of the relationship between two or more variables. For example, a sales as an
interested in knowing the impact of advertising on sales. Here, advertising can be of
independent variable and sales can be considered as the dependent variable. This is ^ jjumerical
simple linear regression where a single independent variable is used to predict a sing®
dependent variable. "regres-

The meaning of the term regression is "stepping back towards the average." The te
sion" was first used by Sir Francis Gatton in 1877. His study onthe height ofonethousand
sons exhibited an interesting result. He found that tall fathers tend to have tall sons and sho
tend to have short sons. However, the average height ofthe sons ofagroup oftall fathers was
that ofthe fathers, and the average height ofthe sons ofa group ofshort fathers was o-back"
ofthe fathers. Gatton concluded that abnormally tall orshort parents tend to"regress" ot" s
to the average population height.

74.2 INTRODUCTION TO SIMPLE LINEAR REGRESSION

Regression analysis is the process ofdeveloping astatistical model, which is used to predict the
ofadependent variable by atleast one independent variable. Insimple linear regression the
are two types ofvariables. The variable whose value is influenced or is to be predicted is j
dependent variable and the variable which influences the value or is used forprediction is
independent variable. In regression analysis, the independent variable isalso known as rep"
predictor or explanatory while the dependent variable is also known as regressed or is
able. In a simple linear regression analysis, only a straight line relationship between two van
examined. In fact, simple linear regression analysis is focused on developing a regression m
which the value ofthe dependent variable can bepredicted with the help of the independent v »
based on the linear relationship between these two. This does not mean that the value ofa
variable cannot be predicted with the help ofa group of independent variables. This concept
discussed in the next chapter (Chapter 15). In the next chapter, we will focus on non-linear rela
ship and regression models with more than one independent variable. Determining the
advertisement on sales is an example ofsimple linear regression. Determining the impact of
variables such as personal selling, distribution support and advertisement on sales in an examp
multiple regression.

14.3 DETERMINING THE EQUATION OF A REGRESSION LINE
Simple linear regression is based on the slope-intercept equation ofa line. This equation is giv®°

y= ax + b
where a is the slope ofthe line and bthe y intercept of the line.

The straight line regression model with respect to population parametersand can be given as

whereis the population y mtercept which represents the average value of the dependent vaname
when a: =0and the slope ofthe regression line which indicates expected change in the value oiy
for per unit change in the value ofx.

In case of specific dependent variable

Intercept

Error ofthe
prediction

Regression
line

whereis the population y intercept,/S, the slope of the regression line,yj thevalue of thedependent
variable for /th value, .v the value of the independent variable for /th value, and e. the random error in
y for observation / (f is the Greek letter epsilon).

E is the error of the regression line in fitting the points of the regression equation. If a point is on
the regression line, the corresponding value of € is equal to zero. If the point is not on the regression
line, the value of £ measures the error. This concept leads to two models in regression; deterministic
model and probabilistic model.

A deterministic model is given as

A probabilistic model is given as

It can be noticed that in the deterministic model, all the points are assumed to be on the regression
line and hence, in all the cases random error e is equal to zero. Probabilistic model includes an error
term which allows the value ofy to vary for any givenvalue ofx. Figure 14.1 presents error insimple
regression.

Inorder to predictthevalue ofy, a researcher has to calculate the value of^^ andjS,. In this process,
difficulty occurs in terms of observing the entire population. This difficulty can be handled by taking a
sample data and ultimately developing a sample regression model. This sample regression model can
be used to make predictions about population parameters. So, and (population parameters) are
estimated onthe basis ofthe sample statistics b^ and b^. Thus, the simple regression equation (based on
samples) is used to estimate the linear regression model.

The equation of the simple regression line is given as
y = bo+b^x

where is the sampley intercept which represent the average value ofthe dependent variable when
X—0 and b^ the slope of the sample regression line, which indicates expected change inthe value ofy
for per unit change in the value of x.

For determining the equation ofthe simple regression line, values of (sampleyintercept) and b^
(slope ofthe sample regression line) must be determined. Once b^ and 6, are determined, aresearcher
can plot a straight line and the comparison ofthis straight line wi^ the original data can be performed
very easily. The main focus of simple regression analysis is on finding the straight line that fits the
data best. In other words, we need to minimize the difference between the actual values (y.) and the
regressed values (T/) • This difference between the actual values (y,) and the regressed values (y,)
is referred to as residual (e). In order to minimize this difference, a mathematical technique "least-

FIGURE 14.1

Error in simple regression

s is the error of the regression
line in fitting the points of the

, regression equation. If a point
is on the regression line, the
corresponding value of e is
equal to zero. If the point is
not on the regression line, the
value of £ measures the error.

It can be noticed that in the
. deterministic model, all the
: points are assumed to be on
, the regression line and hence,

in ail the cases random error
i'e is equal to zero. Probabilistic

model includes an error term

j'Vyhich allows the value of y to

lyie main foc'iis of the simple
if^ression analysis is on find-
'Ing the straight line that fits
Vie data best. In other words,

need to minimize the dif-
rence between the actual

Values (y) and the regressed
[ialues (y,). This difference
'"©etween the actual values (y)
4nd the regressed values (y.)
Life referred toasresidual (e).
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squares method" developed by Carl Friedrich Gauss is applied The sample data are used in the east
me least squares metticxi tof squares method to determine the values of and A, that minimizes the sum ofsquared differences
determtne the values of£|q and^ u ♦, u o i uic suin wi m ^
b, that minimizes the sum of j between the actual values (y) and the regressed values {y ). Least squares criterion is g'̂ en by
squared differences between | - n •
the actual values (y) arxJ the j ~y,y
regressed where is the actual value ofy for observation and (y,) the regressed (predicted) value ofy for

observation!. '
An equation for computing the slope ofaregression line is given below:
Slope of a regression line

FIGURE 14.2

process'Tofsimyellnear"
regression.

Business Statistics

~^)(y - y) T.xy-njxxy) 2-*"- '̂

«

•SIS., = JO= ~

ssb,=~d2L
SS„

The sampley intercept ofthe regression line isgiven as

n n

It has already been discussed that in the estimation process through a simple linear regression,
unsown population parameters, and/3j, are estimated by sample statistics and by Figure 14.2
exhibits the summary ofthe estimation process for simple linear regression.

Regression model
y/ =^0 +/5iX,f fi;
with unknown

population parameters

Sample statistics bgaud
b] provide the estimate
ofpopulation parameters

fioand^i.

Sample data

X] yi

X2 yi

Estimated regression
equation^ = bo + bix
is computed.

Values of bo and bi are
also computed.

A cable wire company has spent heavily on advertisements. The sales and
advertisement expenses (in thousand rupees) for the 12 randomly selected
months are given inTable 14.2. Develop a regression model to predict the
impact of advertisement on sales.

TABLE 14.2

Sales and advertisement expenses (in thousand
rupees) of a cable wire company

Months Advertisement (in Sales (in thou-
thousand rupee's) sand rupees)

Example 14.1

• -tft ,

Solution The first step is to determine whether the relationship between two variables is
linear. For doing this, a scatter plot, drawn by any of the statistical software pro
grams (MS Excel, Minitab, or SPSS) can be used. Figure 14.3 is the scatter plot
produced using Minitab.

Scatter plot (Figure 14.3) exhibits the linear relationship between sales and
advertisement. After this linear relationship is confirmed, further steps for devel
oping a linear regression model can be adopted. For computing the regression co
efficient, b^ and 6,, the values of Xx,2y, Zx^, and Zxy mustbe determined. Sales
is a dependent variable and advertisement is an independent variable.

I 1100
00

100

Advertisement

S advertisement produced
using Minitab
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Easiness Statistics

Computation of Sx. Zy. Zx'. and Zy for Example 14.1

Months Advertisement Sales (in thousand
(in thousand ru- rupees): y
pees): x

91

94

97

98

100

102

104

105

105

107

107

110

2x=122I

930 8464 85,560

900 8836 84,600

1020 9409 98,940

990 9604 97,020

1100 10,000 110,000

1050 10,404 107,100

1150 10,816 119,600

II20 ] 1,025 117,600

II30 11,025 118,650

1200 11,449 128,400

1250 11,449 133,750

1220 12,100 134,200

2y= 13,060 = 124,581 Zxy = 1,335,420

^ n 12

SS„ =Yx" - =124,581 - .SHOl =344 25
" ^ _ ' n

*,=^=^=,9.0704
' SS„ 344.25

b =Xz_AGf)=iM6£_
° 4 ' w 12

(19.0704) X = - 852.08

Equation of the simple regression line

y = b^+b^x = (-852.08) + (19.07)^:

This result indicates that for each unit increase in x (advertisement), y (sales) is predicted to in
crease by 19.07 units, (sampley intercept) indicates the value ofy when a:= 0. It indicates that when
there is no expenditure on advertisement, sales is predicted to decrease by 852.08 thousand rupees .

74.4 USING MS EXCEL FOR SIMPLE LINEAR REGRESSION

The first step is to select Tool from the menu bar. Then select Data Analysis from this menu bar. The
Data Analysis dialog box will appear on the screen as shown in Figure 14.4. From the Data Analysis
dialog box, select Regression andclick OK (Figure 14.4). The Regression dialog box will appear on
the screen (Figure 14.5). Place independent variable in Input X Range and place dependent variable
in InputYrange. Place appropriate confidence level in the Confidence level box. In the Residuals
box, check Residuals, Residual Plots, Standardized Residuals, and Line Fit Plot. From Normal
Probability, select Normal Probability Plots and click OK (Figure 14.5). The MS Excel output
(partial) as shown in(Figure 14.6) will appear onthescreen.

Analysis Tools

Exponential Smoothing
F-Test Two-Sample for Variances
Fourier Analysis
Histogram
Moving Average
Random Number Generation

Rank and Percentlle

Sampling
t-Test: Paired Two Sample for Means

OK

Cancel

Input

Input Y Range:

Input X Range:

$C$2:$C$13

I IConstant Is Zero

[95 1%
I \ Labels [

0 Confidence Level: [

Output options

O Output Range:

<5) New Worksheet Ply:

O New Workbook
Residuals

0 Residuals
0 Standardized Residuals

Normal Probability
0 Normal Probability Plots

OK

Cancel

regression!

0 Residual Plots
0 L[ne FitPlots

t A, _ ! B j
. 1 iSUMMARY OUTPUT " " " 1
.21 " ""j
.3 ReQfeo&ion Stalr'el/ca 1
4 Multiple R , 0 949166574;

.5 R Square . O.MDC©17ie8i
6 "lAdjusted R'Square I' 0.891008^;

J', jstandard Error " ' 37.10^4034
8 ibbseivalione 12i

-9.. . ^ ^ r1
.10 lANDVA I i
11"| ; cff I
J2 Regression i 1i 125197.4(^'
ifResiduai _ " "lOT" 137^.'^42r
14 Total ^ if

.15' ~
J6 Coffffk;isnta i

1^966.6667:

.-17 Jln^rcept
ie1x Variable 1

Coeff/cfenta jStandard Error •
-852.08424111 _2ra775^7!
19 070442^: i999W25lT

WS I F i SianificBnce F
125197.4582! 9Q.925BB| 2.453^E-06
137B.'9i^"2 j

t Siat ! P-v9lua I Lcmr 96% ! Upper 95% I
•4.1B1477243 . 0.0018831 •1306.125214! -^.043271

" 9.S3549^i 2.'45E-06' 14.61429339I23.S26592Bi

FIGURE 14.4
MSExcel Data Analysis dialog
box

wfErcel^Regresslon dialog
box

'̂f^Sloufput (partial) for
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figure 14.7
Minitab Regression dialog

FIGURE 14.8

Minitab Regression-Graphsdialog box ^

Business Statistics

74.5 USING MINITAB FOR SIMPLE LINEAR REGRESSION
Select Sfat from the menu bar. From the pull-down menu select Regression. Another
will appear on the screen. Select Regression (linear) as the first option from this pull dowTi inenu.

The Regression dialog box will appear on the screen (Figure 14.7). Place dependent vana em
the Response box and independent variable in the Predictors box. Minitab has the abili^ ^
various dimensions ofregression. From the Regression dialog box. click Graph, Options,
and Storage. The Regression-Graphs dialog box (Figure 14.8). the Regression-Options dialog box
(Figure 14.9), the Regression-Results dialog box (Figure 14.10), and the Regression-Storage la eg
box (Figure 14.11) will appear on the screen. The required output range can be selected
dialog boxes. Afrer selecting required options from each of the four dialog boxes, click ^ ^
Regression dialog box will reappear on the screen. Click OK. The partial regression output produced
using Minitab will appear on the screen as shown in Figure 14.12.

Months
Advertisene
Sales

Response; |Sales

Predictors: IAdver t isemen t

Select

Graphs...

Results...

Residuals for Plots:

<• Regular P Standardized

Residual Plots

(* individual plots

R Histogram of residuals
17 Normal plot of residuals

17 Residuals versus fits

17 Residuals versus order

G Four In one

Residuals versus the variables:

Options..

Storage..

Cancel

P Deleted

Cancel

Regression • Options

Months
Advertiseme
Sales

Weights: ||

Display

P Variance inflation factors

P Durbin-Watson statistic

P PRESS and predicted R-square

Fit intercept

Lack of Fit Tests

P Pure error

P Data subsetting

Select

Prediction intervals for new observations:

Confidence level;

Slorafjc

r Fits

P SCs of fits

r Cuntidcnce limits

P Prediction limits

Control the Display of Results

P Display nothing

Regression equation, table of coefficients, s, R-squared,

and basic analysis of variance

(* in addition, sequential sums of squares and the unusual
observations in the table of fits and residuals

P in addition, the full table of fits and residuals

Cancel

Cancel

Diagnostic Measures

17 Residuals

P Standardized residuals

P Deleted t residuals

P Hi (leverages]

P Cook's distance

r DFITS

Characteristics of Estimated Equation

P Coefficients

17 Fits

P MSE

P X'X inverse

P R matrix

Cancel

FIGURE 14.9
Minitab Regression-Options
dialog box

SabVegression-Results
dialog box

dialog box
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FtGURE 14.12
Minitab output (partial) for
Example 14.1

FIGURE 14.13

SPSS Linear Regressiondialog box '

Regression Analysis: Sales versus Advertisement

The regression equation is
Sales = - 852 + 19.1 Advertisement

Predictor

Constant

Advertisement

Coef SE Coef T P
-352.1 203.8 -4.18 0.002
19.070 2.000 9.54 0.000

S = 37.1069 R-Sq = 90.1% R-Sq(adj) = 89.1%

Analysis of Variance -

Source DF SS HS F P
Regression 1 125197 125197 90.93 0.000
Residual Error 10 13769 1377
Total 11 138967

74.6 USING SPSS FOR SIMPLE LINEAR REGRESSION
Select Analyze from the menu bar. Select Regression from thepull-down menu. Another pull-d™
menu will appear on the screen. Select Linear from this menu. .

The Linear Regression dialog box will appear on the screen (Figure 14.13). Place "CP
variable in the Dependent box and independent variable in the Indepcndent($) box. Like M
SPSS also has the ability to open various dimensions ofregression. From the Regression d'®
click Statistics, Plots, Options, and Save. The Linear Regression: Statistics dialog
14.14), the Linear Regression: Plots dialog box (Figure 14.15), the Linear Regression-
dialog box (Figure 14.16), and the Linear Regression: Save dialog box (Figure 14.17) will
the screen. The required output range can be selected from these dialog boxes. After selecting r®"
options from each of the four dialog boxes, clickOK. The Linear Regression dialog box wi
pear onthe screen. Click OK. The regression output (partial) produced using SPSS will app®^
screen as shown in Figure 14.18.

j Advertisement Dependent'

14^ Sales

Block 1 of 1 -

Independents):

I<$> Adverttsement

Method: lEnlei

Selection Variable:

Case Labels:

VAS Weigl^:

Statistics... Plots... j Save... j Options...

• 4-

^•1. •'

Regression Coefficients —

Estimates

17 Confidence intervals

Covariance matrix

- Residuals

l~ Durbin-Watson

^ Casewise diagnostics

|7 Model fit

r~ R squared change

n* Descriplives

r~ Part and partial correlations

r* Colinearlty diagnostics

standard deviations

"ZPRED
'ZRESID

"DRESID
"ADJPRED

"SRESID

"SDRESID

Scatter 1 of 1

PievioLis I

- standardized Residual Plots-, p 3,1 pip,^
I Histogram

r Normal probability plot

Continue

Continue

Cancel

- Stepping Method Criteria

Use probability of F

Entry: Removal; j.10
r* Use F value

Entry: 13.84 Removal. j2.71

17 Include constant in equation

- Missing Values

(* Exclude cases listwise

^ Exclude cases pairwise
^ Replace with mean

Continue

Cancel

figure 14.14
SPSS LinearRegression:
Statistics dialog box

figure 14.15
SPSS Linear Regression,
dialog box
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FtGURE 14.17

FIGURE 14.18

SPSS output (partial) for
Example 14.1

Business Statistics

- Predicted Values

17 Unstandardized

r Standardized

f Adjusted

r s.E. of mean predictions j

- Distances

r vlahalanobis j
r" Cook's

r" Leveragevalues

- Prediction Intervals 1

r f^ean f" Individual I

Confidence Interval: | 95 %

- Save to New File

r" Coefficient statistics: File.-. |

-Export model information to XML file

lloiMSiinnaiy>

-Residuals— -

Jnstandardized

r Standardized

r Studentized

R Deleted

[r Studentized deleted
- Influence Statistics

r~ DfBetafsJ

r" Standardized DfBeta(s)

r DfFit

R Standardized DfFit

R Covariance ratio

Browse

R R Square

.9<9» ,901

Adjusted
_R_S2uaf^

.991

Std. Error of

_^ie_EsflrTiat9_
37.10698

a. Predictors: (Constam), Adrertlsement

D.OependantVatlable: Sales

ReBreaslon

Residual

Total

Sum of

Squares

125197-5

13789-209

136966.7

8. Predictors: (Constant), Adverdsemenl

b. Dependent Variable: Sales

Mean Square

125197.458

1378.921

Continue

Cancel

.n

M-.

(ConstsnQ

Advertisement

Unstandardized

Coefficients

B Std. Error
•052.094 203.776

19.070 2.000

Standardized

Coefficients

Beta

95% Confidence Intaival for B

Lower Bound UpperBound,
•1306.125 •399.043

14.614 23.527

a. DepsndetilVerleble: Sales

_SELF-PRACTICE problemsmm
I4A1. Taking x as the independent variable and y asthe dependent

variable from the following data, determine the line of re
gression. Let a = 0.05.

14A2. Taking x as the independent variable and>' as the dependent
variable from the following data, construct a scatter plot and
determine the line of regression. Let a = 0.05.

* 13 18 25 30 22 24 40

y 14 16 17 18 15 22 38

14A3. A company believes that the number of salespersons em
ployed is a good predictor of sales. The following table ex
hibits sales (in thousand rupees) and number of salespersons
employed for different years.

Sales(in 120 125 118 115 100 130 140 135 130 123
thousand

rupees)

Number of 10 15 12 18 20 21 22 20 15 19

salespersons
employed

Develop a simple regression model to predict sales based on
the number of salespersons employed.

14A4. Cadbury India Ltd, incorporated in 1948, is the wholly owned
Indian subsidiary of the UK-based Cadbury Schweppes
Pic., which is a global confectionary and beverages com
pany. Cadbury India Ltd operates in India in the segments
of chocolates, sugar confectionary, and food drinks.^ The
following table provides data relating to the profit after tax

and advertisement ofCadbuiy India Ltd from 1989-1990 to
2006-2007.

Advertisement (in Profit aftertax (in
Year million rupees) million rupees)

Mar 1990 73.4 55.5

Mar 1991 101.8 55.1

Mar 1992 99 37.1

Mar 1993 110.9 13.6

Mar 1994 145.3 86.8

Mar 1995 127.7 95.9

Mar 1996 190.3 200.8

Mar 1997 255.9 196.3

Mar 1998 296.2 185.7

Mar 1999 394.1 262.1

Mar 2000 532.8 367

Mar 2001 577.8 520.2

Mar 2002 731.6 574

Mar 2003 876.7 749.1

Mar 2004 904.4 456.5

Mar 2005 910.2 462.1

Mar 2006 958.2 459.6

Mar 2007 1218.5 688.1
Source: Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt Ltd,
Mumbai, accessed December 2008, reproduced with permission.

Develop a simple regression line to predict the profit after
tax from advertisement.

74.7 MEASURES OF VARIATION

While developing a regression model to predict the dependent variable with the help of the inde
pendent variable, we need to focus on a few measures of variations. Total variation (SST) can be
partitioned into two parts: variation which can be attributed to the relationship between x andy and
unexplained variation. The first part of variation, which can be attributed to the relationship between
Xand y is referred to as explained variation or regression sum of squares (SSR). The second partof
variation, which is unexplained can be attributed to factors other than the relationship between x and
y, andis referred to as errorsumof squares (SSE). So, ina simple linear regression model, total varia
tion, thatis, the total sum of squares is given as:
Totalsumof squares (SST) = Regression sumof squares (SSR) + Error sum ofsquares (SSE)

Total sum of squares (SST) is the sum of squared differences between each observed value (Vf)
andthe average valueofy.

Total sum of squares = (SST) =

Regression sumof squares (SSR) isthe sum ofsquared differences between regressed (predicted)
values and the average value ofy.

Regression sum ofsquares =(SSR) = ""P)

friuAY"-" '"" —f" " tt-."-;
^hile developing a regression
^Inodel to predict the depen-
jii^ent variable with the help of
'i^e independent variable, we
^eed to focus on a few mea-
;sures of variation. Total varia
^-tion (SST) can be partitioned
^to two parts; variation which
*an be attributed to the reia-
L^onship between x and y and
Unexplained variation

first part of \rariation
^hich can be attributed to the
Relationship between x and
;:.y. is referred to as explained
^Variation or regression sum
i'oi squares (SSR). The second
ifeart of the variation, which is
ginexplained can be attributed
Ifofactors other than the reia-
itionship between x and y. and
is referred to as error sum of
^usr^
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FIGURE 14.19
Measures of variation in
simple linear regression

FIGURE 14.20
Values of SSI, SSR and SSE
for Example 14.1 produced
using MS Excel

• •• : The of regression-aSufff:
of squares (SSR) to total suBfi
of squares (SSD leads tb
very important result which '
referred to as coefficient
determination. The values

Business Statistics

SST = ZO'/-P)^

MO ANOVA
_n
12 Regression
13 Residua^
14 Total '

SSE =Z CV/ -Vj)*

SSR = L(y,-yr

5*5 MS I F SiQivficenceFl
125197.^82 125197.5' 90.92560. 2.45382E.g^
13769.2M42^ 1376.921, ' Zl

'138956.56KL 1 , I

Errorsum ofsquares (SSE) isthe sum ofsquared differences between each observed value (y)
regressed (predicted) value ofy.

Error sum ofsquares = (SSE) =

Figure 14.19 exhibits the measures ofvariation in simple linear regression. It can be seen easily
that Total sum ofsquares (SST) =regression sum ofsquares (SSR) + error sumof squares (SSE)j
is. 138,966.6667(SST)= 125,197.4582 (SSR) +13,769.20842 (SSE)

Figure 14.20 is the ANOVA table produced using MS Excel exhibiting values of SST, SSR
SSE and other values for Example 14.1. The same ANOVA table as shown in Figure 14.20 can be
obtained using Minitab and SPSS. Figures 14.12 and 14.18 exhibit this ANOVA table containing SST,
SSR, andSSE values obtained from Minitab and SPSS,respectively.

14.7.7 Coefficient of Determination

Coefficient of determination is avery commonly used measure offit for regression models and is
denoted by The utility ofSST, SSR, and SSE is limited in terms ofdirect interpretation. The rado of
regression sum ofsquares (SSR) to total sum ofsquares (SST) leads to avery important result, which
is referred to as coefficient ofdetermination. In a regression model, the coefficient of determination
measures the proportion ofvariation in y that can be attributed totheindependent variable x:. The val
uesofcoefficient ofdetermination range from 0 to 1.Coefficient of determination can be defined as

Regression sum ofsquares _SSR
Total sum of squares SSI

In Example 14.1, coefficient ordeteimination Hcan be calculated as

2_ Regression sum ofsquares ^ SSR _ 125,197.4582 ^q
Total sum ofsquares SST 138,966.6667

. As discussed, the cocfricient of determination leads to an important interpretation ofthe regres
sion model. In Example 14.1. r- is calculated as 0.9009. This indicates that 90.09% of the variation in
sales can be explained by the independent variable, that is, advertisement. This result also explains

^ ^he variation in sales is explained by factors other than advertisement.
^ '̂gures 14.21, 14.22, and 14.23, are the partial regression outputs from MS Excel, Minitab, andSPSS respectively, exhibiting cocfTicient of determination and other important results.

Standard Error of the Estimate
It has already been discussed that sample data are used in the least squares method to detennine the
^lues of and that minimize the sum of squared differences between the actual values (y.) and
"t® regressed values (.y, ). Variability in actual values (y,) and the regressed values (y,) ismeasured in
tenns ofresiduals. A residual is the difference between the actual values (y,) and the regressed values
(-Pf), determined by the regression equation for agiven value of the independent variable x. The re
sidual around the regression line is given as

Residual (e.) = actual values (y.)- regressed values (y,)

Rearession Slal/stics

A Multiple R
5 R Square
6 Adjusted R Square
7 Standard Error

8 Observations

0.949166574;

0.9009171861

0.891008904

37.106884031
121

r2(coefficient of determination)

^..jCStandard error)

5y._r(Standard error)

s = 37.1069 R-Sq « 90.1% R-Sq(adj) = 89.1%

Model Summaiy''

^ Adjusted I Std. Error of
R Square R Square the Estimate

.901 .891 37.10688

a. Predictors; (Constant), Advertisement

b. DependentVarlable: Sales

r2(Coefficient of
determination)

?^{Coefricient of
determination)

Standard error

A'resldrj^ differerrce
between actual values (y)
and the regressed values (/().
determined by the regressiori

Iequation for a given value of

FIGURE 14.21
Partial regression output from
MS Excel showing coefficient
of determination and other
important results

FIGURE 14.22
Partial regression outputfrom
Minitab showing coefficient
ofdetermination and other
important results

imDortant results
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Standard deviation measures

the delation of data around

the arithmetic mean; simi
larly, standard error can be
underetood as the standard
deviation around the regres-;

A large standard error indta
cates a large amount of varia||
tion or scatter around th^
regression line and a smalK
standard error Indicates small^
amount of variation or scatter,^
around the regression line. A
standard error equal to zero
indicates that all ttie observed
data points fall exactly on the
regression line.

Variation ofthe dots around the regression line represents the degree ofrelationship
variables xandy. Though the least squares method results in a regression line that fits the da t,
all the observed data points do not fail exactly on the regression line There is an obvious vanahon of
the observed data points around the regression line. So, there is aneed to develop astatistic which can
measure the differences between the actual values (y) and the regressed values (//)• S^dard error
fulfils this need. Standard error measures the amount by which the regressed values (//) ^
from the actual values (y). This is the same as the concept ofstandard deviation that we developed m
Chapter 4. Standard deviation measures the deviation ofdata around the arithmetic mean; similarly,
standard error can be understood as the standard deviation around the regression line. Standard error
of the estimate can be defined as

Standard error of the estimate

. .. IZ(y.-yy

where y, is the actual value ofy, for observation i and i', the regressed (predicted) value ofy, for
observation /.

In the above formula, the numerator is the error sum of squares and the denominator is degrees
offreedom determined by subtracting the number ofparameters, and y3 , that is, 2 from sample size
n. Hence, the degrees offreedom is n- 2. In Example 14.1, the sample size is 12 and there are two
parameters. Therefore, the degrees of freedom can becomputed as 12 —2= 10. A largestandard error
indicates a large amount of variation or scatter around the regression line and a small standard error
indicates smallamountofvariationor scatter around the regression line. A standard error equal tozero
indicates that all the observeddata points fall exactly on the regression line.
For Example 14.1,standarderror of the estimate can be computed as

(13769.20842
12-2

= 37.1068

Figures 14.21,14.22, and 14.23 exhibit the computation of standard error from MS Excel, Minit-
ab,and SPSS, respectively. Figure14.24is the scatter plot exhibiting actual values and the regression
line for Example 14.1.

Table 14.3 indicates the predicted (regressed) values and residuals for Example 14.1.

TABLE 14.3

Predicted (regressed) values and residuals for Example 14.1

Months Advertisement (in thou- Sales
sand rupees): x (in thousand

rupees): y

930

Predicted values:

y

902.39651

940.53740

997.74873

1016.81917

1054.96006

1093.10094

1131.24183

1150.31227

1150.31227

1188.45316

1188.45316

1245.66449

Residuals (y/ - y,-)

21.60349

-40.53740

22.25127

-26.81917

45.03994

-43.10094

18.75817

-30.31227

-20.31227

11.54684

61.54684

-25.66449

Z(y,-yy) = 0.000

•3 100
CO

100

Advertisement

Pigures 14.25, 4.26, and 14.27 exhibit the computation of predicted values (fits) and residuals,
andare thepart of the regression outputs obtained from MS Excel, Minitab, and SPSS, respectively.

Observation Predicted Y Residuals Standard Residuals

1 902.3965142 27.60348584 0.780199711

2 940.5374001 -40.53740015 -1.145770793

3 997.7487291 22.25127088 0.62^184

4 101B.819172 -26.81917211 -0.758031447

5 1054.360058 45.0399419 1.273033046

6 1093.100944 -43.10094408 -1.218228172

7 1131.24183 18.75816993 0.530190384

8 1150.312273 -30.31227306 -0.856762324

9 1150.312273 -20.31227306 -0.574116967

10 1188.453159 11.54^4(Ba 0.326366098

11 1188.453159 61.54684096 1.739592883

12 1245.664488 -25.66448802 -0.725394838

C1 D a C3 C4 C5
Months Advertisement Sales Residuals Fits

^n| 92 OT 27.6035 902.40
Febl §4 900 -40.5374 940.64
Mar ~97 1020 22.2513 997.75
Apr m OT -26.8192 1016.82

May Too" 1100 45.0399 1054.96
Jun 'l02 1050 -43.1009 1093.10
Jul ' " "104" 1150 " 18.7582 1131.24

^ rd5 -30.3123 1150.31
ii^ -20.3123 1150.31

bcf ^i07 r2b0 "^^468 1188.45
Nov" 107 1250* 61.5468 1188.45
Dec 110 1220 -25.6645 ~ 1245.86

FIGURE 14.24
Scatter plot exhibiting actual
values and the regression
line for Example 14.1

figure 14.25
MS Excel output (partial)Sngthecomputaionof
predicted values res dua s.
and standardized residuals
for Example 14.1
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FIGURE 14.27

SPSS output (partial)
exhibiting the computation
of predicted values (fits) and
residuals for Example 14.1

ASveilisernerrt ''Safes 1 Predicted Residuals'

1 92 930.00 902.39651 27.60349

2 94 900.00 940 53740 -40.53740

3 " 97 1020.00 997 74873 22.25127

4 ' 98 33G.GG 101601917 -26.81917

5 " 100 1100.00 1054.96006 45.03994

6 102 1050.00 1093 10094 -43 10094

7 104 1150.00 1131 24183 18.75817

B 105 1120,00 1150.31227 -30,31227

9 105 1130.00 1150.31227 -20.31227

10 107 1200.00 1188.45316 11.54684

11 107 1250.00 1188.45316 61.54684

12 110 1220.00 1245.66449 -25.66449

ft is important to note tfratlh^
sum of residuals is approxi
mately zero. The logic behind
this is very simple. In fact, re
siduals are geometrically the
vertical distance from the re
gression line to data point. The
regression equation which we
solve for intercept and slope,
place the line of regression
in the middle of all the data

points. So. the vertical distance
from the line to data points
cancel each other and lead

to a sum that is approximately
equal to zero.

It is important to note that the sum ofresiduals is approximately zero. Ignoring some rounding
off errors, the sum ofresiduals is always equal to zero. The logic behind this is very simple- Residu
als aregeometrically the vertical distance from the regression line to the data point. The regression
equation used to solve for the intercept and slope place the line ofregression in the middle ofall "le
data points. So, the vertical distance from the line to data points cancel each other and lead to a sum
that is approximately equal to zero. Figm-e 14.24 is thescatterplot with residuals (distance be^een
actual values and predicted values) for Example 14.1. This figure clearly exhibits that that the line of
regression is geometrically in the middle ofall the data points. This also exhibits that the residuals
with (-1-) sign fall above the regression line and residuals with (-) sign fall below the regression line.
Table 14.3 clearly exhibits that the sum ofresiduals isapproximately equal tozero. Residuals are also
used to find out outliers in thedataset. This can be done by examining the scatter plot. Outho*^ can
produce residuals with large magnitudes. These outliers may be due to misreported or miscoded data.
These outliers sometimes pull the regression line towards them and hence put undue influence on the
regression line. Aresearcher after identifying the origin of the outlier can decide whether the outlier
should beretained in theregression equation or regression line should be computed without it-

SELF-PRACTICE PROBLEMS

14B1. Compute the value of ri and standard error for Problem
I4A1. Discuss the meaning of the value of ri and standard
error in developing a regression model.

14B2. Compute the value of ri and standard error for Problem
14A2. Discuss the meaning of the value of and standard
error in developinga regressionmodel.

14B3. Nestle India Ltd, incoiporated in 1959, isone of the largest
dairy product companies in India. Thecompany hasa broad

Quarters Net sales (in
million rupees)

3639

4169

4230

3478

4198

4694

4403

4516

Jun 1999 363'

Sep 1999 416^
Dec 1999 423(

Mar 2000 3478

Jun 2000 4198

Sep 2000 4694

Dec 2000 4403

Mar 2001 4516

Jun 2001 4683

Sep 2001 5329.6

Business Statistics

Salaries and wages
(in million rupees)

220

211

111

243

259

264

284

308

product portfolio comprising of milk products, beverages,
prepared dishes, cooking aids, chocolate, and confectio"^-
The following table shows the net sales (in million rupees)
and salaries and wages (in million rupees) of the company
for different quarters.

Develop a simple regression line to predict net sales
from salaries and wages. Discuss the meaning of the value
of and standard error indeveloping a regression model.

Quarters

Dec 2001

Mar 2002

Jun 2002

Sep 2002

Dec 2002

Mar 2003

Jun 2003

Sep 2003
Dec 2003

Mar 2004

Net sales (in mil
lion rupees)

4681

5300.1

5114.8

5235

4827.1

5981

5460.7

5326.1

5305

6200.7

Salaries and wages
(in million rupees)

__

321.9

336.9

500.3

303

388.3

380.7

390.7

424.4

413.1

Quarters Net sales (in Salaries and wages Quarters Net sales (in mil- Salaries and wages

Jun 2004

Sep 2004
Dec 2004

Mar 2005

Jun 2005

Sep 2005

million rupees)

5143.9

5600.2

5719.8

6135.3

6157.7

6248.1

(in million rupees)
412 Dec 2005

Mar 2006

Jun 2006

Sep 2006
Dec 2006

Mar 2007

lion rupees)
6227.9

6759.2

6811.8

7226.6

7362.9

8630.8

(in million rupees)
440.7

542.8

565.1

566.1

569.4

1399.8

Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd, Mumbai, accessed September 2008, reproduced
pemussion.

'4-8 USING RESIDUAL ANALYSIS TO TESTTHE ASSUMPTIONS OF
REGRESSION

Residual analysis is mainly used to test the assumptions of the regression model. We will take Exam-
^ 4.1 as the base example for understanding residual analysis to test the assumption of regression,

^sumptions of regression analysis are as follows:

'4.8.7 Linearity of the Regression Model
Linearity of the regression model can be obtained by plotting the residuals on the vertical axis against

corresponding values of the independent variable onthe horizontal axis. There should not be
^^^PP^rent pattern in the plot for afit regression model. Any deviation from linear residual plot (plot

appearent pattern) indicates that there is a non-linear relationship between the independent vari-
^ 0sndthe dependent variable.

Ligure 14.28 (MS Excel plot ofresiduals and x, values for Example 14.1) clearly exhibits no ap-^rent pattern in the plot between residuals and x. values of the independent variable. It is important
o note thatfor meaningful interpretation of the residual plot, large sample size isrequired. Residual

and interpretation for small sample size. Figure 14.29 (MS Excel plot ofresidualsValues for a large samplesize)exhibits thenon-linearity inthe plot between residuals andx. val
ues ofthe independent variable for a large sample size. Similarly, Figure 14.31 exhibits the non-Iinear-
tty in the Minitab produced plot between residuals and xwalues ofthe independent variable for alarge
sample size. Figure 14.30 isa part ofMinitab regression analysis output for Example 14.1 and does not

c^tean apparent pattern in the plot between residuals andxwalues of the independent variable.

X Variable 1 residual plot

X Variable 1

X Variable 1 residual plot

X Variable I

dnearity of ttib regresska^
model can be obtained by
plotting the residuals on the
vertical axis against the cor
responding X; values of the
independent variable on the
horizontal axis. There should
not be any apparent pattem
in the plot for a fit regression

_modeL

figure 14.28
MS Excel plot of residualsfo'SamJe 14.1 exhibiting
linearity

pigURE 14.29
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FtGURE 14.30
Mtnitab plot ofresiduals
versus independent variable
(advertisement) for Example14.7 showing linearity

100

Advertisement

figure 14.31
Minrtab Plot of residuals
showing non-linearity for a
large sample size

constant ermr , to as
AS

sumption of
«v or constant
requires that ^riance
around the line of
should be constant
values of fie

Business Statistics

15 20 25

Independent variable

14.8.2 Constant Error Variance (Homoscedastlcity)
The assumption of homoscedasticity is also referred to as constant error variance. As the nam®
gests, the assumption ofhomoscedasticity orconstant error variance requires that the variance around
the line of regression should be constant forail the values of x^. This means that the error variance
should be constant for low values of as well as for high values of As shown in Figure 14.32, the
assumption ofhomoscedasticity can be judged from aplot ofresiduals and values of Figure 14.32
exhibits the violation of the homoscedasticity assumption ofregression. From Figure 14.32, it clear
that error variance increases with the increase in x, which is not constant. Ifwe examine Figur® 14.28
(MS Excel plot ofresiduals for Example 14.1), we find that there is no apparent violation ofdi® as
sumption ofhomoscedasticity. While determining the regression coefficient from least squares m®tu°y'
the assumption of homoscedasticity isa very important consideration. Any serious violation
assumption leads to either data transformation or leads to applying weighted least squares method.

The assumption ofconstanterrorvarianceorhomoscedasticity can also be understood by examining
the Minitab graph between residuals and the fitted values for Example 14.1 (Figure 14.33). Inthisplot
the residuals are scattered randomly around zero, hence, the errors haveconstant variance or do not

0-

-25^

950 1000 1050 1100 1150 1200

violate the assumption of homoscedasticity. If the residuals increase ordecrease with fitted value ina
funnel pattern (shown in Figure 14.32),errorsmaynothave constant variance.

14.8.3 Independence of Error
The assumption of independence of errorindicates that the value ofenore, for any particular value of
ind^endent variable x, should not be related tothe value oferror e, for any other value ofindependent
variable x.This means that theerrors around theline ofregression should beindependent for each value
of the independent variable x. This assumption is particularly important when a researcher collects the
data over aperiod oftime. Inthis situation, there is apossibility that the errors for aspecific time period

correlate with the errors of another time period. Inother words, we can say that the data collected
overa specific period of timemayexhibit autocorrelation effect with the data collected over another spe
cific period of time. In thissituation, there exists a relationship between consecutive residuals. The effect
of autocorrelation can be measured by the Durbin-Watson statistic, which we will discuss later in fliis
chapter. Residual versus time graph can be plotted to ascertain the assumption ofindependence oferror.

FIGURE 14.32
Violation of the
homoscedasticity assumption
of regression

Example 14.1

• of indepen-

! S error indicates thatC value terror ..for any
w ^iue of indepen-i-particular should not be

me -SSe of ermrifforiny other value of inde-

Ithatthe be inde-
each value of the
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I {
figure 14.34
Minitab sheet showing
independence of errorfor
Example 14. i

figure 14.35
Graph of non-independence
oferror (Case 1)

figure 14.36
Graph of non-i^denpnHc^.
of error (Case

•I «•
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shows the Minitab worksheet indicating independence oferror (for Example 14.1)^Figures 14.35 and 14.36 illustrate the two specific cases ofagraph showing non-independence of

^4.8.4 Normality of Error
of normality around the line ofregression can be measured by plotting ahistogram^tween residuals and frequency distribution. Figure 14.38 is the histogram produced using Minitab

rtesting the normality assumption for Example 14.1. From the figure, it can be seen that the residu-
right-skewed distributed. Here, it is important tounderstand that for a small sample size such
^^ering the assumption of normality and its interpretation by the histogram plot is difficult.

~ this kind of samole size any deviation from the assumption ofnormality should not be amatter
of concern.^ F'̂ re 14.37 is the normal probability plot of residuals (generated using Minitab) for testing the
lin^ assumption. The normal probability plot of the residuals should roughly follow astraight
the^ "Meeting the assumption of normality. Astraight line connecting all the residuals indicates ^atresiduals are normally distributed. If we observe Figure 14.37 closely, we will find that the line
the residuals isnot exactly straight but rather close to astraight line. This indicates thatresiduals are nearly normal inshape. Acurve in the tail is an indication ofskewness. Figure 14.38

iThe assumption ot normality
Iaround the line of regression
I can be measured by plotting
[ a histogram between residuals
^and frequency distribution.

The nohnalprobao'ilty plot or
the residuals should roughly
follow a straight line for meet
ing the assumption of normal
ity. A straight line connecting
all the residuals indicates that
the residuals are normally dis
tributed.

FIGURE 14.37
Normal probability plot of
residuals for testing the
normality assumption for
Example 14.1 produced using
Minitab

figure 14.38
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Nomialprobability plot

FIGURE 14.39
MS Excel normal probability
plot ofresiduals for testing
the normality assumption for
Example 14.1

Sample percentile

figure 14.40

Mfnitab generated four-in-
one-residual plot for
Example 14.i

Residiial Plots for Sales

Normal probability of the residuals

Residuals

Histogram of the residuals

Residuals

Residual versus the fitted values

900 1000 1100 1200

Fitted value

Residual versus the order of the data

1 2 3 4 5 8 9 10 11 12

Observation order

confinns this fact. Figure 14.39 is the normal probability plot of residuals produced using MS Excel
for testing the normality assumption.

Minitab also helps in generating a four-in-one residual plot (Figure 14.40). Figure 14.40 is the
four-in-one residual plot for Example 14.1. It is important to note that these plots are vital parts of
the regression output generated through any statistical software program. This four-in-one-residual
plot displays four different residual plots together in one graph window. This is useful in determin
ing whether the regression model is meeting the assumptions of the regression. These four plots are
explained separately in the section on the assumptions of regression.

PROBLEMS

residual analysis to test the assumptions ofthe regres- 14C3. Use residual analysis to test the assumptions ofthe regres-
U°" '̂̂ ='forproblemI4Al.
Qinn ^j analysis to test the assumptions ofthe regres- 14C4.

model forp,obleml4A2.

sion model for problem 14A4.
Use residual analysis to test the assumptions of the regres
sion model for problem 14B3.

Positive
autocorrelation Inonclusive No autocoTTelation

iNcganve
Inconclusive autocorrelation

A-du

FIGURE 14.41
Using Durbin-Watson statistic
for detecting autocorrelation

74.9 MEASURING AUTGCGRRELATION: THE DURBIN-WATSON
STATISTIC

As discussed, in the previous section, independence oferrors is one ofthe basic assumptions ofre-
^ssion analysis. When a researcher collects data over aperiod of time, there is apossibility that
the errors for a specific time period may be correlated with the errors ofanother time period because
residuals at any given time period tend to be similar to residuals at another period oftime. This is
*®^6d as autocorTelation and the presence ofautocorrelation in aregression model raises questions
about the validity of the model.

Aresidual versus time graph may beplotted for determining autocorrelation (Figure 14.34). Posi
tive autocorrelation can be detected by the cluster ofresiduals with the same sign. In case ofnegative
autocorrelation, residuals tend to vary from positive to negative to positive and so on. This pattern is

observed in regression analysis, so we will focus on positive autocorrelation. It has also been
iscussed earlier that the pattern of residual—time plot may be observed for determining autocorrela

tion. In addition to this, the status of autocorrelation in regression analysis may also be determined
ough the Durbin-Watson statistic. The Durbin-Watson statistic measures the degree ofcorrelation

otween each residual and the residual ofthe immediately preceding time period. The Durbin-Watson
statistic can be defined as

Durbin-Watson statistic

I'l

where is the residual for the time period iand , the residual for the time period i- 1.
Here, it is important to note that the numerator of the Durbin-Watson statistic is the sum of

differences between two successive residuals from the secondobservation to the«th observation ecause for the first observation, the squared differences between two successive residuals cannot
c computed. If there is no correlation between residuals, the value ofD will beclose to2. Incase of

negative correlation, the value ofDwill be greater than 2and can reach its maximum value 4.
values of the lower-critical value (t/^) and the upper-critical value (dj) can be obtained from

® Watson statistical table given in the appendices. The values of the lower critical value (d^)and the upper critical value (d^j) can be obtained for agiven level ofsignificance (a); sample size («),
and number ofindependent variables in the model (k). Figure 14.41, shows how the Durbin-Watson
statistic can be used for detecting autocorrelation.

Example 14.2 explains the concept ofpositive autocorrelation clearly.

A retail outlet of a footwear company is faciuR a slump in sales. The Example 14.2
has adopted a policy of giving incentives to its salesmen for

a^itional sales in order to boost the sales volume. The total incentives
offered by the company and the sales volumes for 15 weeks (in thousand
rupees) selected at random are given in Table 14.4.

' When a researcher collects
• data over a period of time.
: there is a possibility that the

errors for a specific time peri
od may be correlated with the
errors of another time period
because residuals at any given
time period may tend to be
similar to residuals at another

period of time. This is called
autocorrelation and the pres
ence of autocorrelation in any
regression model raises ques
tions about the validity of the
model.

The Durbin-Watson statistic
measures the degree of cor
relation between each residual

and the residual of the immedi

ately preceding time period.

If there is no correlation be
tween residuals, the value of
0 will be close to 2. In case

of negative correlation, the
value of D will be greater than
2 and can reach its maximum

value 4.

Chapter 14 | Simple Linear Regression Analysis



figure 14.42
MS Excel produced residuals
versus time plot for
Example 14.2

TABLE 14.4
Incentive offered to salesmen (m rupees) and
sales (in thousand rupees) ''H

Weeks Total incentive Sales fin thou-

offered (in rupees) sand rupees) ,

3 850 8.6 ^

4 870 10.2

5 855 10.9

6 845 11.1

7 865 12.1

8 880 12.45

9 890 13.05

10 930 13.55

11 905 12.9

12 865 11.4

13 945 11.75

14 995 12.15

15 845 9.65

Fit a line ofregression and also determine whether autocorrelation is present.

Solution Itis clear from the example that the data are collected over a period of15 random
lyselected weeks from the sameretail store. So, apart from verifying theassump
tions ofhomoscedasticity and normality, verification of independenceoferror in
terms of using Durbin-Watson statistic is also very important. The first step m
determining autocorrelation isthe examination ofresidual versus time graph- The
MS Excel plot between residuals versus time is shown in Figure 14.42.

Itisclear from Figure 14.43,14.44, and 14.45 thattheDurbin-Watson statistic
iscalculated as0.51. From the Durbin-Watson statistic table, for a given level of
significance (0.05); sample size(15) and number of independent variables inthe
model (1), lower critical value (d^) and the upper critical value (d^) are observed

0.5 -
tJ9

13

M ® '
*co 10 12 14 j6

-1-

Weeks

E

Weeks

lSum=

Residuals
1 0.3645479

2 -0.6613715

3 -2.2021773

4 -Q.9725802

5 0.DG5222

6 0.3904234

7 1.0200205

8 1.0922183

9 1.5070169

10 1-266211

11 1.0792147

12 ••3200205

13 -0,8115912

14 -1.3375984

15 -1.0595766

0.1328952

0.4374122

4.8495849

0-9459123

2.727E-05

0.1524304

1.0404418

1.1929409

2.2710998

1.6032904

1.1647043

0.1024131

0.6586802

1.7891696

1.1227025

17.463705

Model Summary^

-1.025919417

-1.540805828

1.229597086

0.977802186

0.385201457

0.629597086

0.072197814

0.414798543

-0.240805828

-0.186996357

-0.759194172

-1.131611657

-0.526007286

0.278021857

0.510802147

1.052510651

2.374082601

1.511908993

0.956097114

0.148380163

0.39639249

0.0G5212524

0.172057831

0.057987447

0.034967638

0.57637579

1.280544942

0.276683664

0.077296153

8.920498001

R Square

.403I .635^1 .403 I

a- Predictors; (Constant), Incentive

b. DependentVariable; Sales

Adjusted
R Square

.357

Std. Error of

the Estimate

1.15903

Durbln-

Watson

.511«

ANOVA'>

Sum of

idel Squares _
Regression 11.789

Residual 17.464

Totai 29.252
a. Predictors: (ConstanO, Incentive

b. DependentVariable: Sates

Mean Square

11.789

1.343

CoefTicients^

Unstandardized

CoefTicients

B Std, Error

(Constant -4.940 5.495
incentive .019 .006

a. DependentVariable: Sales

Standardized

Coefficierits

Beta

Durbin-watson statistic

t

-.899

2.962

SIg.
.0113

FIGURE 14.43 .
MS Excel worksheetshowing
computation ofthe Durbin-
Watson statistic for
Example 14.2

SplsreVetlon output tor
Example 14.2
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Regression Analysis: Sales versus Incentive

Tlie regression equation is
Sales = - 4.94 + 0.0185 Incentive

Predictor Coef SE Coef t p
Constant -4.940 5.495 -0.90 0.385
Incentive 0.018520 0.006252 2.96 O.'oil

S = 1.15903 R-Sq = 40.3% R-Sq(adj) = 35.7%

figure 14.45

^alysis of Variance

Source DF SS HS F P
Regression 1 11.789 11.789 8.78 0.011
Residual Error 13 17.464 1.343
Total 14 29.252

Durbin-Uatson statistic = 0.510802

Positive
autocorrelation Inonclusive No autocorrelation

Negative
Inconclusive autocorrelation

figure 14.46

1.08 1.36 2.64 2.92

484 Business Statistics

as 1.08 and 1.36, respectively. By substituting the values of the lower critical
value (dj) and the upper critical value (d^^) in therange presentedin Figure 14.41,
the acceptance and rejection range can be determined easily. After placingthe
values ofthelowercritical value(dj and the upper critical value (d^) in therange
presented in Figure 14.41, the Durbin-Watson static range for Example 14.2 is
constructedas shown in Figure 14.46. The Durbin—Watson statistic for Example
14.2 is calculated as 0.51. This value (0.51) is less than the lower critical value
(d^= 1.08). Hence, it can be concluded that a significant positive autocorrelation
exists between the residuals. So, the outputs (Figure 14.43, Figure 14.44, and
Figure 14.45) based on least squares method are inappropriate. There is a need to
focus on alternative approaches.

14.10 STATISTICAL INFERENCE ABOUT SLOPE, CORRELATION
COEFFICIENT OF THE REGRESSION MODEL, AND TESTING THE
OVERALL MODEL

If there is no serious violationof the assumption of linear regression and residual analysis has con
firmed that thestraight line regression model is appropriate, an inference about the linear relationship
betweenvariables can be obtainedon the basis ofsample results.

'4.10.7 fTestforthe Slope of the Regression Line
^ verifying toe assumptions of linear regt^sion. areseai^er has to determine wheth«asi^-

linear relationship exits between the independent vanablexand the dependentvantole;,.^,^det^ndby performing ahypothesis test to eheck whether the populahon slope (?,) is zero. The
ypo eses for the testcanbe stated as below:

H:P =0 (There is no linear relationship)
^0 (There isa linear relationship)

negative or positive value of the slope will lead to the rejwtion of the mm hypothesis and
a^^tance ofthe alternative hypothesis (as the above hypothesis test is two-tailed). Anegative value
offte slope indicates the inverse relationship between the independent variables and the dependent
v^abley. This means that larger values ofthe independent variable xare related to smaller values of

dependent variable y and vice versa. In order to test the significant positive relationship betweene two variables, the null and alternative hypotheses can be stated as below:

/3, =0(There is no linear relationship)
> 0 (There isa positive relationship) ;

To t^ the significant negative relationship between the two variables, tiie null and alternative hypoth-
osescanbe stated as below:

/3, =0(There is no linear relationship)
//,: /5, < 0(There is anegative relationship)

Theteststatistic / can be defined as below:

where

(VxV

The teststatistic t follows a t distribution with n-2 degrees offi»edom andjS, as the hypothesized
population slope.
On the basis ofabove formula, the t statistic for Example 14.1 can be computed as

19.07-0_q^^
c " 37.1068

where 55.
a22i)^=124,581-^^—^ =344.25

S = fill- =37.1068
^ Vn-2 Y 12-2.

figures 14.47(A), 14.47(B), and 14.47(C) show the computation ofthe /statistic using MS Excel,
Minitab, and SPSS, respectively.

Using the p value firom the above outputs, the null hypothesis is rejected and the alternative
hypothesis is accepted at 5% level ofsignificance. In light of the positive value of 6j and p value
—0.000, itcan be concluded that asignificant positive linear relationship exists between the indepen
dent Variable xand the dependent variable y.
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FIGURE 14.47(A)
Computation of the (statistic
for Example 14.1 usingMS
Excel

16 Coefficients Standerd Error tStet P-vsiue Lower 95% Upper 95%
Intercept «2.O042411 203.7758807 .4 18148 0 001883 -1306 125214j -390.043

;10 XVariablel 19.07044299 1.999942514 9 5354S6.J 456-08 14 61429339! 23.52659

figure 14.47(B)
Computation of t statisticfor
Example 14.1 using Minitab

figure 14.47(0
Computation ofthe t statistic
for Example 14.1 using SPSS

Predictor Coef

Constant -852.1

Adevertlsement 19.070

SE Coef T

203.8 -4.18

2.000 9.54

0.002

0.000

t statistic

/ statistic

Model

Coefncients

Standardized

Coefficients 95% Confidcttoo Intervol fbrS

B SfaL Enor Beta t Sig. Lower Bound Upper Bound

(Conttani)

edvcrtiian

ect

-852.084

19.070

203.776

ZOOO .949

^.181

9.535

.002

.000

-1306.125

14.614

-398.043

23.527

/ statistic

14,10.2 Testing the Overall Model

The F test is used to determine the significance of overall regression model in regression analysis.
Morespecifically, in caseof a multiple regressionmodel, the F test determines that at least oneofthe
regression coefiBcients is different fi"om zero. In case of simple regression, where there is only one
predictorthe F test for overall significance tests the same phenomenon as the (-statistic test in simple
regression. The F statistic can be defined as the ratio ofregression mean square (MSR) and error mean
square (MSE).

F statistic for testing the slope

F =
MSR

MSE

where MSR =
SSR SSE

MSE = and k is the number of independent (explanatory) variables
k ' n-k-r

in regression model (In case ofsimple regression ^ = 1).
The F statistic follows the F distribution with degrees of freedom k and n —k— 1.

Figures 14.48(A), 14.48(B), and 14.48(C) illustrate the computation ofF statistic using MS Ex
cel, Minitab, and SPSS, respectively.On the basis of the p value obtained firom the outputs, it can be

figure 14.48(A)
Computation ofthef
from MS Excel for ^
Example 14.t

486 Business Statistics

!-lP ANOVA 1 i i
11 df j SS i MS F 1Sianificance F

Regression 1 125197.4582! 125197.5 90.925681 2.45382E-06
Residual 10 13769.20842! 1376.921 W ;

• Total 111 138966.6667! \

F statistic

Analysis of Variance

Source

Regression
Residual Error
Total

DF ss HS

1 125197 125197

10 13769 1377

11 138967

ANOVAP

90.93 0.000

F statistic

Sum of

Mods! Squares df Mean Square F 810.
1 Regression 125197.5 1 125197.458 90.926 .000«

Residual 13769.208 10 1376.921

Total 138966.7 11

a. Predictors: (Constant), advertisement

b. Dependent Variable: sales

F statistic

concluded that expenses on advertisement issignificantly (at 5% level ofsignificance) related to sales.
we compare the p value obtained from Figures 14.47 and 14.48, we find that the p v^ues are the

®^®e in both the cases.

14.10,3 Estimate of Confidence Interval for the Population Slope (/?,)
of confidence interval for the population slope (|S,) provides an altemative ^proach to teste linear relationship between the independent variable x and the dependent variable y. This can be

one by determining whether the hypothesized value of03, =0) is within the interval or outside the
interval. For understanding the concept, we will take Example 14.1 again. Confidence interval for the
population slope O^i) isdefined as
Estimate of confidence interval for the population slope 08,)

^ ± K-i^b

From the outputs given inFigures 14.6,14.12, and 14.18, the following values can be obtained

h, = 19.0704 n = 12, and 1,9999

From the table, for ^=0-05 =0.025^ and degrees of fiieedom =n—2=10, the value oft
2.2281. By substituting all these values in the formula ofconfidence interval estimate for the popula
tion slope, we get

'n-2'S'b = 19.0704 ± 2.2281 (1,9999) = 19.0704± (4.4559)

44559) 23.5263 (19.0704 +4.4559) and the lower limit is 14.6145 (19.0704 -
So, population slope is estimated with 95% confidence to be in the interval of 14.6145 and

23.5263. Hence,
14.6145 s < 23.5263

The Upper limit as well as the lower limit is greater than 0and population slope lies in between
®se two limits. So, it can be concluded with 95% confidence that there exists a significant linear

relationship between advertisement and sales. If the interval would have included 0, the inference
would have been different. In this situation, the existence ofasignificant linear relationship between
the two variables could not have been concluded. This confidence interval also indicate Ibatfor each
thousand rupee increase in the advertisement expenditure, sales will increase by at letet 14,614.50
but less than Rs 23,526.30 (with 95% confidence).

is

figure 14.48(B)
Computation of F statistic for
Example 14.1 using Minitab

FIGURE 14.48(0
Computation ofFstatistic for
Example 14.1 using SPSS
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14.10.4 Statistical Inference about Correlation Coefficient of the Regression Model
FromFigures 14.6,14.12, and 14.18, itcan be seen that the value ofcorrelation coefficient
output Correlation coefficient (r) measures the strength ofthe relationship between two van _
relation coefficient (r) specifies whether there is astatistically significant relationship betwee
ables. The t test can be applied to check this. The population correlation coefricient (p)
esized as equal to zero. In this case, the null and the alternative hypotheses can be stated as lono .

Correlation rae^ient O7
measures the strength of ths-
relationship between two vari?
ables. > ^

Business Statistics

H,:p = 0

//,;p 0
In order to test the significant relationship between two numerical variables

statistic can be defined as

Thet statistic for testing the statistical significantcorrelation coefficient

statistically, the t

r =+V^,if6,S0

r = —\[f^ , if <0
The tstatistic follows the tdistribution with n—2 degrees offreedom. From Figures l4.6, 1^*
14.18, the following values can be obtained:
r = 0.9491 andZ?, = 19.0704
Bysubstituting these values intheabove formula we get

1-0.9009

From the table, for a=0.05 ĵ =0.025j and degress of freedom =n-2=10, the value of/is
2.2281. The calculated value of t is 9.53. The calculated value of r(= 9.53) > tabular value of/(-
2.2281). Hence, the null hypothesis is rejected and the alternative hypothesis is accepted.
be concluded there is asignificant relationship between two variables. It is important to note tna
valueof/isthesameascalculatedinFigures 14.6, 14.12, and 14.18.

The statistical significance ofcorrelation coefficient can be directly inferred using Miiu^^ an
SPSS.

14.10.5 Using SPSS for Calculating Statistical Significant Correlation Coeff'ciBfit
for Example 14.1

Select Analyze from the menu bar and select Correlate from the pull-down menu. Another pull-do^
menu will appear on the screen, select Bivariate from this pull-down menu. The Bivariaf® Corre a-
tions dialog box will appear on the screen (Figure 14.49). Place both the variables in the Vanab'es
box, select Pearson Correlation Coefficient and Two-tailed testofsignificance. Select Flag signifi
cant correlations and click OK. SPSS will compute the Pearson Correlation Coefficient as shown
in Figure 14.50.

14.10.6 Using Minitab for Calculating Statistical Significant Correlation Coefficient
for Example 14.1

Select Sfat from the menu bar. Select Basic Statistics from the pull-down menu. Another
menu will appear on the screen, from this pull-down menu, select Correlation. The Correl^^on
dialog box will appear on the screen (Figure 14.51). Place both the variables in the Variable® box,
select Display /7-values and click OK. The Minitab output will appear on the screen as shown m
Figure 14.52.

CD

Vaiiables:
advertisement

sales

- CoiTelation Coefficienls

Iv'' Pearson V Kendall's tau-b F* Spe^man

Tesl of Significance

f Two-tailed ^ One-tailed

W Flag significant correlations

Advertisement

Sales

Advertisement

1

Correlations

Pearson Correlation

Sig. (2-talled)

jsl
Pearson Correlation

Sig. (2-lalled)

N

Correlation Is significant atthe 0.01 level (2-tailed).

Months Variables:
Advert iseme ||, ,
Sales [AdvertisAdvert isement Sales

W Display p-values

I OK I

Cancel

Options...

Sales

.949^

.000

22.
1

aSUDfl

.. r"9pr".'>»vn "n-: -»...•»>

rOAH'^ -^J33

•:ri

I-"

figure 14.49
SPSS Bivariate correlation
dialog box

figure 14.50
Calculation of Pearson
correlation coefficientusing
SPSS

r store matrix (display nothing]

SVo'J^laticn dialog
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FIGURE 14.52
Calculation of Pearson
correlationcoefficientusing
Minitab

Correlations: Advertisement. Sales

Pearson correlation of Advertisement and Sales = 0.949
P-Value = G.GOO

self-practice PROBLEMSr ""H
4D1, '̂ '®Durbin-Watson statistic for Problem I4A4 and 14D2. Compute Durbin-Watson statistic for Problem 14B3 and

in erpret it. Test the slope ofthe regression line and signifi- interpret it. Test the slope of the regression line and signifi
cance 0 the overall model. cancc of theoverall model.

2SS Statistics

Example 14.3̂ Glaxosmithkline India (GSK) is asubsidiary of Britain-based majorphar-
maceutical company—Glaxosmithkline Pic. The company was formally
known as Glaxo before its merger with French pharmaceutical company
Smithkline Beecham. In 2006, the pharmaceutical business accounted for
nearly 92% of GSK's business.^ Table 14.5 exhibits income (in million
rupees) and expenses (in million rupees) of Glaxosmithkline Pharmaceu
ticals Ltd from 1989-1990 to 2006-2007 (except 1993-1994).

TABLE 14.5

Income (in million rupees) and expenses (in million
rupees) of Glaxosmithkline Pharmaceuticals Ltd from
1989-1990 to 2006-2007 (except 1993-1994)

Year Income (in mil- Expenses (in
lion rupees') million rupees)

1989-1990 3566.4 3441.8

1990-1991 4232 4241.5

1991-1992 5024.8 5052.3

1992-1993 5650.8 5666.3

1994-1995 8076.4 7641.2

1995-1996 11478.9 9678.5

1996-1997 7315.3 6881.9

1997-1998 7883.5 7695.7

1998-1999 9171.8 8185.5

1999-2000 9482.5 8789.8

2000-2001 9958.2 9571.6

2001-2002 12607.8 12015.7

2002-2003 12390.9 11513.6

2003-2004 12974.8 11297.6

2004-2005 16702.4 13403.4

2005-2006 18901.2 13874.9

2006-2007 19807.5 14578.3

Source: Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd, Mumbai, December 2008, reproduced with
permission.

Use a = 0.05 and develop a regression model to predict income from expenses incurredbyperform
ing the following steps:

1. Construct a scatterplot betweenincome and expenses.
2. Calculate the coefficient of determination, standard error of the estimate, and state its

interpretation.
3. Predict income when expenses are 20,000 million rupees.

4. Use residual analysis to test the assumptions of the regression model.
5. Perform the t test for the slope of the regression line.
6. Test the overall model.

Solution It is important to note that students will be able to imderstand all the important
points discussed in the chapter to perform a simple regression analysis from the
step-wise solution provided for this problem. As discussed earlier, regression
analysis starts with examining the relationship between two variables. In this
case, the dependent variable is income and the independent variable is expenses.
The six steps (mentioned in the question) can be performed as below:

1. Construction of a scatter plot between income and expenses
The first step is to construct a scatter plot between income and expenses

u

I 10000
s

5000 7500 10000 12500 15000 ^
Expenses

The scatter plot shown in Figure 14.53 (produced using Minitab) clearly exhibits a linear relationship
between income and expenses. We can proceed further for regression analysis after confirming the
linearrelationship.

2. Calculation of coefficient of determination, standard error of the estimate, and its
interpretation

Figure 14.54 is the regression analysis output generated byMinitab for Example 14.3. As discussed
earlier in the chapter, is the coefRcient of determination. The Minitab output (Figure 14.54) shows
that the value of is 95.8%. This indicates that 95.80% of the variation in income can beexplained
by the independent variable, thatis, expenses. This result also explains that 4.20 %ofthe variation in

Regression Analysis: Income versus Expenses

The regression equation is
Income = - 2323 + 1.40 Expenses

predictor Coef SE Coef T P
Constant -2323.3 722.9 -3.21 0.006
Expenses 1.39857 0.07520 18.60 0.000

1021.97 R-SqfadJ)

Analysis of Variance

Source DF

Regression 1 ;
Residual Error is
Total 16

SS

361293779

15666447
376960226

MS

361293779
1044430

r P

345.92 0.000

figure 14.53
Scatter plot betweenincome
and expenses for
Example 14.3
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F'GURE 14.55
Minitab generated four-in-
ons-residual plotfor
Example 14.3

figure 14.56
Minitab outputexhihit;«
aplot between rSdS?and independent vaSe
fexpenses) for Exampl 14.3

492 Business Statistics

mcome is explained by factors other than expenses. The standard error is computed as 1021.9 ,w ch
IS relatively low and is an indication ofastrong predictor regression model. The high value ot r and
the low value ofstandard error provides a foundation for agood estimator model.
3. Predicting income when expenses are 20,000 million rupees
As exhibited in the Minitab output, regression equation is given as;
Income =-2323 + 1.40 (Expenses)
The predicted income when expenses are 20,000 million rupees can be computed as
Income = -2323 + 1.40 x (20,000) = 25,677
Hence, when expenses are Rs 20,000 million, the predicted income will be Rs 25,677 mil''®"*
4. Using residual analysis to test the assumptions ofthe regression model .
As discussed in the chapter, we need to test the following four assumptions ofthe regression model:
(i) Linearity of the regression model

(ii) Constant errorvariance (Homosccdasticity)
(iii) Independence oferror
(iv) Normality oferror

Figure 14.55 is the Minitab generated four-in-one-residual plot, which is mainly used for residual
analysis.

Residual plots for income 1
Normal probability of the residuals

1 i__L 1

'2000 -KXW 0 1000 2000

Residuals

Histogram of the residuals

1000 2000

Residuals

CO 1000
s
-a

0

Residuals versus fitted values

jOOO 10000 15000

Fitted value

Residuals versus order of data
20001

4 6 8 10 12 14 16

Observation order

(i) Linearity of the regression model
As discussed inthe chapter, for testing the assumption of linearity wehave toconstruct a plot between
residuals and the independent variable. Figure 14.56 shows the plot between residuals and indepen
dent variable expenses produced using Minitab.

7500 10000

Expenses

Figure 14.56 clearly exhibits that there is no apparent pattern in the plot between residuals andx, val-
of the independent variable (expenses). Hence, the assumption of Imeanty is not violated,

i") Constant errorvariance (Homosccdasticity) . ^
The assumption ofconstant error variance or homoscedastici^ can aso be examined by the
second part of the Minitab graph titled "residuals versus the fitted values (Figure 14.55). In
this plot, residuals arescattered randomly around zero. Hence, errors have constant vanance or

... there is no violation of ilic assumption ofhomoscedasticity.
t"*) independence of error

Residuals versus time graph can be plotted to ascertain the assumption ofindependence oferror.
This is shown as "residuals versus the order of the data" inthe Minitab output (Figure 14.55).

apparent pattern again indicates independence oferror.
Normality of error
The assumption ofnomiality around the line ofregression can be measured by plotting ahis
togram between residuals and frequency distribution. This is shown as "histogram ofthe re
siduals" inFigure 14.55. In additiontothis,"nonnalprobabi!ity plot ofthe residuals", which is a
part ofthe Minitab output shows astraight line connecting all the residuals. This indicates that the

g residuals are normally distributed.
' Test for the slopeof the regression line
Figure 14.54 clearly shows that the tvalue is computed as 18.60 and the correspondingp value is
0-000. Using thep value from the output (Figure 14.54), it can be concluded that the null hypoth
esis (slope is zero) is rejected and the alternative hypothesis (slope isnot zero) isaccepted at5%
level of significance.
Testing the overall model
Figure 14.54 includes a ANOVA table. TheF* value iscomputed as345.92 and correspondingp
value is 0.000, The p value (0.000) indicates the significance of the overall model.

^nbaxy Laboratories Ltd, incorporated in 1961, is one of India's largest ~) Example 14,4 |
P ^^aceutical companies. Table 14.6 exhibits the sales volume and ad
vertisement expenditure (in million rupees) ofRanbaxy Laboratories Ltd

1989-1990 to 2006-2007.

TABLE 14.6

Sales and advertisement expenditure of Ranbaxy Laboratories
Ltd from 1989-1990 to 2006-2007

1989-1990

1990-1991

1991-1992

1992-1993

1993-1994

1994-1995

1995-1996

1996-1997

1997-1998

1998-1999

1999-2000

2000-2001

2001-2002

2002-2003

2003-2004

2004-2005

2005-2006

2006-2007

Sales (in mil
lion rupees)

2064.5

2587.8

3396.9

4622.2

5944.7

7139.2

8940.1

10,427.3

12,421.3

11.296.5

16,670.3

17,757.1

19,597.8

31.317.6

38,889.8

38.658.7

32,840.3

35,991.5

Advertisement (in
million rupees)

30.4

224.8

169.8

409.3

560.2

863.5

1306.5

1822.6

2017.2

2008.1

1487.1

Soutye: Prowess (V. 3.1), Centre for Monitoring Indian Economy Pvt. Ltd, Mumbai, accessed December 2008, reproduced
Psrmissicn.
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Usea - 0.05 and develop a regression model to predict sales froin advertisement expenses m-
•ciured by performing the following steps;

1. Constructa scatterplot between sales and advertisement.
2. Calculate the coefficient of determination, standard error of the estimate, and state its

inteipretation.
3. Predict sales when advertisement is 3000 million rupees.
4. Use residual analysis to test the assumptions of the regression model.
5. Perform the t test for the slope of the regression line.
6. Test the overall model.

Solution The first step in developing a regression model is to construct a scatter plotbe
tween sales and advertisement to ascertain the type of relationship between sales
and advertisement.

1. Constroction of a scatter plot between sales and advertisement expenditure
Figure 14.57 is the scatter plot between sales and adverticement of Ranbaxy Laboratories Ltd pro
duced using Minitab. Since the scatter plot between sales and advertisement exhibits a linear relation
ship as shown in the figure, the fiuther steps ofperforming a regression analysis can be carried out

r^—

i" : • •• • • •
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0 500

1 1

1000 1500

Advertisement

2000

2. Calculation of coefficientof determination, standard error of the estimate, and its inter
pretation
Figure 14.58 istheregression analysis outputgeneratedusing MS Excel for Example 14.4. From
the regression statistics part ofthe figure, it canbeseenthatthevalue of is 0.9355 (93.55%).
This clearly explains that 93.55% of the variation in sales can be explained by the variation

10

1.4

15

16

\7

18

SUMMARY OUTPUTi
I .fc

Regroaaion Siatiatica

Mu^Hiple R
R Square

0.9872346

0.93^^
Adjusted RSquare . 0.^15146
Standa^ri^Error :
Obsetvations 18

ANOVA

Regression
Residual

Total

Intercept
X Variable 1

df SS

2732519348

J£effi4ji27.6'
2920783^5:

Standard Error

Jf079.M324;
1.1206700011

MS

2732519348

11768526.72

tStat

232 2282

I -value

^E-05i
6.027'E-ll!

Significance F
B02655E-11

Lov»rQ5% Upper 95%
3505.526186 , 8083.05141
14.70221^!' 19.4536442

the explanatory variable (advertisement). The standard error is computed as 3430.23. The valueof is an indication ofagood predictor regression model.
Predicttng sales when advertisement is3000 million rupees
As exhibited in the MS Excel output, the regression equation can be written as:

Sales = 5794.28 + 17.07(Advertisement)
predicted sales when advertisement is Rs 3000 million can be computed as

Sales = 5794.28 + 17.07 x (3000) = 57,004.28 Rs.
Hence, thepredicted income is Rs 57,004.28 million, when the advertisement expenditure is

^3000 million.
^slng residual analysis to test the assumptions ofthe regression model
^ °t'der touse residual analysis to test the assumptions ofthe regression model, we have to test®following four assumptions:

(0 Linearity ofthe regression model
error variance (Homoscedasticity)

Ciii) Independence of error
(iv) Normality oferror

Figure 14.59 is the Minitab generated four-in-one-residual plot, which is mainly used for residual
analysis.
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(i) Linearity of the regression model
Figure 14.60 clearly exhibits that there is no apparent pattem in the plot between residuals
andjCj values of the independent variable (advertisement). Hence, the assumption oflinearity is
not violated.

(II) Constant error variance (Homoscedasticity)
The assumption ofconstant error varianceor homoscedasticity canbe investigated by"residu
als versus the fitted values"part of theMinitab graph (Figure 14.59). Inthis plot, residuals are
scattered randomly around zero. Hence, errors have constant variance or there isnoviolation
of the assumption ofhomoscedasticity.

(III) Independence of error
Forverifying the assumption ofindependence oferror, residuals versus time graph can be plot
ted. This is shown as "residuals versus the orderof the data" in the Minitab ou^ut (Figure
14.59).No apparent pattem indicates independence oferror.

Fou^Mne-resitlus' plot torSSe 14.4 generated
using Minitab
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Minitab output exhibiting
a f^ot between residuals
and independent variable
(advertisement) for
Example 14 4
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Advertisement

(iv) Normality of error
Apart ofthe Minitab output "histogram ofthe residuals" in Figure 14.59 shows a left-skewed
normol distribution. By observing "normal probability plot of the residuals" in Fig^ 14.59
closely, we find that the line connecting all the residuals is not exactly straight but rather close
to astraight line. This indicates that the residuals are nearly normal in shape. Acurve around
the upper part ofthe line is an indication ofskewness.

5. r Test for the slope of the regression line
Figure 14.58 shows that the /value is computed as 15.23. The correspondingvalue test (0.000)
indicates that this is significant. Hence, thealternative hypothesis that the slope is flO*
zero is accepted.

6. Testing the overall model
The ANOVA table is apart ofthe MS Excel output as shown in Figure 14.58. The coiup"^^
valueis232.22.Thecorresponding/?value is0.0000, which is significant. Thispvalue indie®*®®the
significance ofthe overall model.

summary

which is useTr process ofdeveloping astatistical model
one independ the value ofadependent variable by at least
are two types^ ^®riable. In simple linear regression analysis, there
is to be predi t* The variable whose value is influenced or
influences the dependent variable and the variable which
variable. Sim I ^ prediction is called ind^endent
equation ofa regression is based on the slope-intercept
can be used to regression analysis, sample regression model
®ndi®, (populati^^^^ Predictions about population parameters. So,fig
statistics b and^h ^®*^®t®rs) are estimated on the basis of sample
Least-squares u puipose, least squares method is used,
of ^0 and b th^ • ? sample data to detennine the values
actual values ( the sum ofsquared differences between
sion is develop regressed values (y,). Once line ofregres-
values ofregre • ®"hstituting the required variable values and
can be obtained^^^^ ooeflScient, regressed values, orpredicted values

variaS'wift ®regression model to predict the dependent
few measures f independent variable, we need to focus on a
in two parts- v ^^®tions. Total variation (SST) can be partitioned•vanation which canbeattributed to therelationship be
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tweenxandy and unexplained variation. First part ofvarintion^i"*^
can be attributed to the relationship between xandy is referred to ^
explained variation or regression sura of squares (SSR). The ^
part ofthe variation, which isunexplained can beattributed to f®® rs
other than therelationship between x andy is referredto 8® error sum
of squares (SSE). Coefficient of determination is also a veiy
tant phenomenon in regression analysis. Coefficient ofdeterniin^on
measures the proportion ofvariation in y that can be attributed to
independent variable x. A residual is the difference between actual
values (y^) and the regressed values (y,) and is used to examine &e
magnitude of theerrors produced by the regression model. Ina
tion, residual analysis can be used to verify the assumptions ofregi^-
sion analysis. These assumptions are (1) linearity of the regmssmn
model (2) constant error variance (homoscedasticity) (3) ^ ®P®n
dence oferror (4) normality oferror.

After verifying the assumptions oflinear regression, aresearcher
determines whether asignificant linear relationship between in epCT
dent variable xand dependent variabley exists. This can be done by
performing ahypothesis test to check whether the population slope
0,) is zero or not. The / test is applied for this puipose. Asignificant
p value for the t statistic establishes the linear relationship between

Aand the dependent variable^, totegtesston
the ^-test isused to detennine the significance ofthe ove^l

J^ott model. More speeifically, in case ofamulUple regresston
fi^h^' ^determinesthat at least one of the regresston t^f-IS different from zero. In case of simple regression where
-1,^ o*fly one, the Ftest for overall significance tests the s^e
Pnenomenon as the /-statistic test in simple regression. Apart &om

coefficient of determination (f), regression analysis also provides
the correlation coefficient (r), which measures the strength of the
relationship between two variables. Correlation coefficient (r) speci
fies whether there isa significant relationship between twovariables.
Again t statistic is used to detennine the significant relationship be
tween two variables.

iSEVlTERMS
Aut^yreigjl^j^^ 481
^^fficient of

?^™hiation(r'),470
coefficient (r), 488

Dependent variable, 458
Durbin-Watson statistic, 481
Errorsumof squares (SSE), 470
Homoscedasticity, 476

Independence of error,477
Independent variable, 458
Least-squaresmethod,460
Regression sum of squares

(SSR), 469
Residual, 471
Standard error, 472
Total sum ofsquares (SST), 469

NOTE^
L www.tatasteel.com/Company/profile.asp,accessed Septem

ber 2008.
Prowess (V. 3.1), Centre for Monitoring Indian Economy

SifiCyssiON QUESTIONS
1.

2.

3.

4.

5.

^^^at is the conceptual fi-amework ofsimple linear reces
sion and how can we use it for business decisionmaking?
Regression analysis is an important tool for forecasting.
Explain this statement.
What are the assumptions of regression analysis?
Write short notes on;
Linearity of the regression model
Constant errorvariance (Homoscedasticity)
Independence of error
Normality of error
Explain the concept of regression sum of squares (SSR)
and error sum of squares(SSE)in a regression model.

ULIMerical
Alarge supermarket has adopted a new strategy to increase its
sales. It has adopted a few consumer friendly policies and is
J|sing video clips of 15 minutes to propagate the new policies.
The following table provides data about the number ofvideo
clips shown in a randomly selected day and the sales turnover
cfthe supermarket inthe corresponding day.

Oays
1

2

3

4

5

6

7

8

9

10

11

12

No. ofvideo clips shown Sales (in thousand rupees)
25

25

25

35

35

35

40

40

40

50

50

50

150

210

140

180

230

270

310

330

300

270

310

340

Pvt Ltd, Mumbai, accessed September 2008, reproduced
with permission.

6. Explain the concept of coefficient of detenniMtion and
standard error ofthe estimate in aregressicm ^ ^Wtson

7. What is autocorrelation? How can we use Duibin-watson
statistic indetecting autocorrelation. ..tafictiral

8. Howcan we use the t test for determinuig e
signifiomce ofthe slo^ ofthe ^ regression

9. How canwetestthesignificance of theo

10. Howcanweusecorrelation coefficient
the statistical significance ofthe relationship ^
variables inaregression model?

1 o frnm the number
(1) Develop a regression model topredict sale

ofvideo clips shown. , interoret it.
(2) Calculate the coefficient ofdetermination ^
(3) Calculate the standard error ofthe estimate. ^ (jgter

2. The HR manager of amultinational company w^^^
mine the relationship between expenence an jgndomly
ployees. The following data are collected o
selected employees.

7. fhnusand rupees)
Employees Experience (inyears) Income (m
1 2 30

2 4' 40

3 5 45

4 6 35

5 7 50

6 8 60

7 9 70

8 10 65

9 12 60

10 13 55
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(1) Develop a regression model to predict income based on the
years ofexperience.

(2) Calculate the coefficient ofdetermination and interpret it.
(3) Calculate the standard error ofthe estirnate.
(4) Predict the incomeofan employeewho has 22 years ofexperi

ence.

3. A dealerofa motorcycle companybelieves that there is a posi
tive relationship between the numberofsalespeople employed
and the increase in the sales of bikes. Data for 14 randomly
selected weeks are given in the following table.

JVe^ No.ofsalespeo- Sales (in
pie employed units)

1 17 34

2 14 39

3 25 60

4 40 80

5 15 38

6 18 50

7 13 35

8 11 25

9 27 51

10 12 29

11 38 89

12 36 85

13 41 90

14 28 63

(1) Develop a regression model topredict sales from thenumber
ofsalespeopleemployed.

(2) Calculate the coefficient ofdetermination and interpret it.
(3) Calculatethe standarderror ofthe estimate.
(4) Predict sales when number ofsalespeople employed are ICQ.

4. For Problem 3, use residual analysis to verily the following as-
®timption of linearregression:

(1) Linearity ofthe regression model
(2) Constant error variance (Homoscedasticity)
(3) Normality oferror

For Problem 3, estiinate the following:

fortheslope of theregression line
(2) Testog the overall model
( ) Statistical inference about the correlation coefficient of

6 P o-^®^®gression model°r oblem 2, estimate the following:

slope ofthe regression line

(31 °v®rall model^ ^^tistical inference about the correlation coefficient ofthe
^ regression model

plani?^^^^ corporation of anewly formed capital city is
this th ^®^ch anew water supply scheme for the city. For
ter ' ^"wcipal Corporation has considered past data on wa-ous^°®^P^°" in 16 randomly selected weeks of the previ-sununer and the average temperature in the corresponding

498 Business Statistics

week. On the basis ofthe data, the corporation^^
the water requirement for the current year,
below:

Weeks Tempera Water com

ture (in °F) (in million^
1 37 Tso
2 38 160
3 39 168

4 35 145

5 34 140

6 33 142

7 37 155

8 40 165

9 41 167

10 42 175

11 44 185

12 42 180

13 40 170

14 38 165

15 42 170

16 44 173

(1) Develop a regression model to predict wate
from the temperatiwe of the corresponding

(2) Calculate the coefficient ofdetermination ^
(3) Calculate the standard error of the estimate.
(4) Predict the water consumption when tempetatur©
(5) t Test for the slope of the regression line
(6) Test the overall model . *ofthere-
(7) Statistical inference about correlation coeflScia

gression model
(8) Calculate Durbin—Watson statistic and interptat i

8. A company is a concerned about the high rates
among its employees. It organized a training
boost the morale ofits employees. The following ^ ®̂
munber ofdays that sixteen randomly selected emp " gygjjgjj
received training, and the munber of days they ^a
leave.

Employee Training days Leave

1 12 20

2 14 18

3 16 16

4 13 22

5 11 18

6 10 19

7 15 14

8 17 12

9 18 10

10 19 9

11 17 11

12 15 16

13 13 19

14 15 17

15 17 15

16 12 21

(1) Develop a regression model to predict leaves based on train
ing days.

(2) Calculate the coefficient of determination and state its inter
pretation.

(3) Calculate, the standard error of the estimate.
(4) Predict the leaves when training days are 25.

FORMULAS I

(5) t Test for the slope ofthe regression line
(6) Test the overall model
(7) Statistical inference about foe correlation coefficient of foe

regression model
' (8) CalculateDuibin-Watson statistic and interpret it

Equation of the simple regression line

Slope of a regression line

y = b^+t\x

a:x)(i.y)

b Z(x-300>-7) Z^-nQcxy) „

where

and

y Intercept of the regression line

Coefficient of determination (r^)

Residual (e)

Standard error of the estimate

SB
^ QLx)(^y)

=Y(x-^(y-30 =2^jy-^
^ n

SS^ =Z(Jc - jc)^ =Z*'

SS
6, =-^

* SS^

n n

2 Regressionsum of squares SSR
Total sum ofsquares SST

Residual (e,) = actual values (y)- regressed values iy)

1^^ EO'.-
Vn-2 V n-

-Jf
2

where y^ is theactual value ofy, for observation i and y the regressed (predicted) value ofy,for observationi.
Rurhin—Watson statistic

ZCei-e,-,)"

Zer
(-1

where is the residual for the time period iand ,the residual for foe time period i-1.
The test statistic t

. s.
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where

•f statistic for testing slope

where MSR -
k • -Number of independent (explanatoiy) variables in the regression model (In case ofsimple

regression 1)

tiinate ofconfidence interval for the population slope (/S,)

SSE

' tte »»»«»<ieal significant correlation

5.=

fSS£
2in-:

F =
MSR

MSE

coefficient

/ =
r-p

£— r

where
r=+47,ifb, >Oand r=-^, ifb,<0

CASE STiinv

Case 14. Boom mtheIndian CementIndustry;ACC's Role
aunique track record ofinnovative research, product developro
and specialized consultancy services. ACC's brand name is
mous with cement and itenjoys a high level ofequity in tbe sn
market."

The Impact of Cartelization
Cartelization is one ofthe major problems in the cement indush^
Cartelization takes place when dominant players ofthe industry jc®
together to control prices and limit competition. In the India®
ket, manufacturers have been known to enter into agreeme®^ ®
tificially limit the supply ofcement so that the price remai®® 8®-
When markets are not sufficiently regulated, large compa®'®®
be tempted tocollude instead of competing with each other. For m-
ample, inMay 2006, theCompetition Council of Romania impo®®® ®
combined fine of27 million euros on France's Lafarge, Switz®^^®®° ®
Holcim, and Germany's Carpatcement for being involved r® die ce
ment cartel in the Romanian market. These three compani®® a®®'®
98% ofRomanian cement capacity." The government should take ap
propriate action to check acts ofcartelization.

Escalating input and fuel costs have forced manufacturers to tap
new sources of supply and increase the quest for alternativ® ®
and raw materials. The cement industry is faced with the challe®^
ofoptimizing the utilization ofscare basic raw materials a®d f®®®"
fuels while simultaneously protecting the environment and ®iai®tein
ing emission levels within acceptable limits. It is vital for thecement
industiy to achieve high levels ofenergy utilization efficiencies and
to sustain them continuously.' Table 14.01 exhibits sales turnover
and advertisement expensesofACC from 1995 to 2007.

Introduction
industry was delicensed in 1991. After China, In-

for cement is producer ofcement The estimated demand
cement industrv 2114-2115.' The Indian
2007 also witnest! a ^ 11.6% in 2006. The financial year
increasing demand. ^ growth of 7.1%. In order to meet thecant capacity exp^gj^^^ nianufecturers have embarked on signifi-

1936, after the mere (AGO) came into existence in
business groups- companies belonging tofour important
The Tata group w ^ ^^teus, Killick Nixon, and FEDinshaw.
14.45% of its sha^ ®®sociated with ACC since its inception. It sold
and 2000. After this Ambuja Cements Ltd between 1999
became the largest .®^^Sic alliance, Gujarat Ambuja Cements Ltd
into a strategic rel stakeholder in ACC. In 2005, ACC entered
aworld leader in ^ ®®®ldp with the Holcim group of Switzerland,
gregates, and certa^ '̂̂ * ^ ^ ® supplier ofconcrete, ag-
tegic alliances have related services. These global stra-
ACC is India's fore^o!?^®°!? company.'
company has awid ®nnufacturer ofcement and concrete. The
tones, more than 30 operations with 14 modem cement fac-
several zonal concrete plants, 20sales offices, and•ACCs research and development facility has

500 Business Statistics

I

TABLE 14.01
Sales turnover and advertisement expenditure of ACC from
1995-2007

Year Sales (in million
rupees)

Advertisement (rs
in million rupees)

1995 20 ,427.0 58.6

1996 23 ,294.6 72.6

1997 24,510.5 122.3

1998 23 ,731.1 61.9

1999 25 ,858.3 144.7

2000 26 ,792.2 132.2

2001 29 ,361.2 172.6

2002 32 ,260.0 184.3

2003 33 ,718.8 259.8

2004 39 ,003.7 334.8

2005 45 ,498.0 321.9

2006 37 ,235.1 336.0

2007 64 ,680.6 442.3

2.

3.

www.indiastat.com, accessed September 2008, reproduced
with permission.
Prowess (V. 3.1), Centre for Monitoring Indian Economy
Pvt. Ltd, accessed September 2008, reproducedwith per
mission.

www.acclimited.com/newsite/heritage.asp, accessed Sep
tember 2008.

1. Develop an jqapropriate regression model to predict sales
from advertisement

2. Calculate the coefficient of determination and state its inter
pretation.

3. Calculate die standard error ofthe estimate.
4. Predict thesales whenadvertisement is Rs 500million.
5. Testthesignificance of theoverall model.

4. www.acclimited.com/newsite/coiprofile.asp,access
tember 2008.

5. ww.businesstoday.org/index.php?oplion-com
taslF=viewed&id=370&Itemi, accessed Sep

Chapter 14 1Simple Linear Regression Analysis 501

thii]
III

I I

I I

IP,.:

•Ill


