
Unit-4 Big Data and Data Analytics

 Page 1

UNIT 4

Nearest neighbor search:

Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of

finding the point in a given set that is closest (or most similar) to a given point. Closeness is

typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the

function values. Formally, the nearest-neighbor (NN) search problem is defined as follows:

given a set S of points in a space M and a query point q ∈ M, find the closest point in S to q.

Donald Knuth in vol. 3 of The Art of Computer Programming (1973) called it the post-office

problem, referring to an application of assigning to a residence the nearest post office. A direct

generalization of this problem is a k-NN search, where we need to find the k closest points.

Most commonly M is a metric space and dissimilarity is expressed as a distance metric, which is

symmetric and satisfies the triangle inequality. Even more common, M is taken to be the d-

dimensional vector space where dissimilarity is measured using the Euclidean distance,

Manhattan distance or other distance metric. However, the dissimilarity function can be

arbitrary. One example is asymmetric Bregman divergence, for which the triangle inequality

does not hold.

Applications of Near-Neighbor Search:

The nearest neighbour search problem arises in numerous fields of application, including:

 Pattern recognition – in particular for optical character recognition

 Statistical classification – see k-nearest neighbor algorithm

 Computer vision

 Computational geometry – see Closest pair of points problem

 Databases – e.g. content-based image retrieval

 Coding theory – see maximum likelihood decoding

 Data compression – see MPEG-2 standard

 Robotic sensing
[2]

 Recommendation systems, e.g. see Collaborative filtering

 Internet marketing – see contextual advertising and behavioral targeting

 DNA sequencing

 Spell checking – suggesting correct spelling

 Plagiarism detection

 Similarity scores for predicting career paths of professional athletes.

 Cluster analysis – assignment of a set of observations into subsets (called clusters) so that

observations in the same cluster are similar in some sense, usually based on Euclidean

distance

 Chemical similarity

 Sampling-based motion planning

https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/Metric_space
https://en.wikipedia.org/wiki/Distance_metric
https://en.wikipedia.org/wiki/Triangle_inequality
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://en.wikipedia.org/wiki/Statistical_distance
https://en.wikipedia.org/wiki/Bregman_divergence
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computational_geometry
https://en.wikipedia.org/wiki/Closest_pair_of_points_problem
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Content-based_image_retrieval
https://en.wikipedia.org/wiki/Coding_theory
https://en.wikipedia.org/wiki/Decoding_methods
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/MPEG-2
https://en.wikipedia.org/wiki/Robotic
https://en.wikipedia.org/wiki/Nearest_neighbor_search#cite_note-panSearch-2
https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Internet_marketing
https://en.wikipedia.org/wiki/Contextual_advertising
https://en.wikipedia.org/wiki/Behavioral_targeting
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Spell_checking
https://en.wikipedia.org/wiki/Plagiarism_detection
https://en.wikipedia.org/wiki/Similarity_score
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Chemical_similarity
https://en.wikipedia.org/wiki/Motion_planning#Sampling-based_algorithms

Unit-4 Big Data and Data Analytics

 Page 2

Collaborative Filtering as a Similar-Sets Problem

Collaborative filtering (CF) is a technique used by recommender systems. Collaborative

filtering has two senses, a narrow one and a more general one.

In the newer, narrower sense, collaborative filtering is a method of making automatic predictions

(filtering) about the interests of a user by collecting preferences or taste information from many

users (collaborating). The underlying assumption of the collaborative filtering approach is that if

a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion

on a different issue than that of a randomly chosen person. For example, a collaborative filtering

recommendation system for television tastes could make predictions about which television

show a user should like given a partial list of that user's tastes (likes or dislikes). Note that these

predictions are specific to the user, but use information gleaned from many users. This differs

from the simpler approach of giving an average (non-specific) score for each item of interest, for

example based on its number of votes.

In the more general sense, collaborative filtering is the process of filtering for information or

patterns using techniques involving collaboration among multiple agents, viewpoints, data

sources, etc.
[2]

 Applications of collaborative filtering typically involve very large data sets.

Collaborative filtering methods have been applied to many different kinds of data including:

sensing and monitoring data, such as in mineral exploration, environmental sensing over large

areas or multiple sensors; financial data, such as financial service institutions that integrate many

financial sources; or in electronic commerce and web applications where the focus is on user

data, etc. The remainder of this discussion focuses on collaborative filtering for user data,

although some of the methods and approaches may apply to the other major applications as well.

Data Stream Mining is the process of extracting knowledge structures from continuous, rapid

data records. A data stream is an ordered sequence of instances that in many applications of data

stream mining can be read only once or a small number of times using limited computing and

storage capabilities.

In many data stream mining applications, the goal is to predict the class or value of new

instances in the data stream given some knowledge about the class membership or values of

previous instances in the data stream. Machine learning techniques can be used to learn this

prediction task from labeled examples in an automated fashion. Often, concepts from the field of

incremental learning are applied to cope with structural changes, on-line learning and real-time

demands. In many applications, especially operating within non-stationary environments, the

distribution underlying the instances or the rules underlying their labeling may change over time,

i.e. the goal of the prediction, the class to be predicted or the target value to be predicted, may

change over time. This problem is referred to as concept drift. Detecting concept drift is a central

issue to data stream mining. Other challenges that arise when applying machine learning to

streaming data include: partially and delayed labeled data, recovery from concept drifts, and

temporal dependencies.

https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/End_user
https://en.wikipedia.org/wiki/Taste_(sociology)
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Television
https://en.wikipedia.org/wiki/Average
https://en.wikipedia.org/wiki/Vote
https://en.wikipedia.org/wiki/Collaborative_filtering#cite_note-recommender-2
https://en.wikipedia.org/wiki/Data_stream
https://en.wikipedia.org/wiki/Incremental_learning
https://en.wikipedia.org/wiki/Online_Machine_Learning
https://en.wikipedia.org/wiki/Concept_drift
https://en.wikipedia.org/wiki/Concept_drift

Unit-4 Big Data and Data Analytics

 Page 3

Examples of data streams include computer network traffic, phone conversations, ATM

transactions, web searches, and sensor data. Data stream mining can be considered a subfield of

data mining, machine learning, and knowledge discovery.

https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Knowledge_discovery

Unit-4 Big Data and Data Analytics

 Page 4

A data stream management system (DSMS) is a computer software system to manage

continuous data streams. It is similar to a database management system (DBMS), which is,

however, designed for static data in conventional databases. A DSMS also offers a flexible query

processing so that the information needed can be expressed using queries. However, in contrast

to a DBMS, a DSMS executes a continuous query that is not only performed once, but is

permanently installed. Therefore, the query is continuously executed until it is explicitly

uninstalled. Since most DSMS are data-driven, a continuous query produces new results as long

as new data arrive at the system. This basic concept is similar to Complex event processing so

that both technologies are partially coalescing.

Count-distinct problem

In computer science, the count-distinct problem (also known in applied mathematics as the

cardinality estimation problem) is the problem of finding the number of distinct elements in a

data stream with repeated elements. This is a well-known problem with numerous applications.

The elements might represent IP addresses of packets passing through a router, unique visitors to

a web site, elements in a large database, motifs in a DNA sequence, or elements of RFID/sensor

networks.

Formal definition

Instance: A stream of elements with repetitions, and an integer . Let be the

number of distinct elements, namely , and let these elements be .

Objective: Find an estimate of using only storage units, where .

An example of an instance for the cardinality estimation problem is the stream: . For this

instance, .

Naive solution

The naive solution to the problem is as follows:

 Initialize a counter, c, to zero, .

 Initialize an efficient dictionary data structure, D, such as hash table or

search tree in which insertion and membership can be performed quickly.

 For each element , a membership query is issued.

 If is not a member of D ()

 Add to D

 Increase c by one,

 Otherwise () do nothing.

https://en.wikipedia.org/wiki/Data_stream
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Complex_event_processing
https://en.wikipedia.org/wiki/IP_addresses
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Unique_visitor
https://en.wikipedia.org/wiki/DNA
https://en.wikipedia.org/wiki/RFID
https://en.wikipedia.org/wiki/Sensor_networks
https://en.wikipedia.org/wiki/Sensor_networks

Unit-4 Big Data and Data Analytics

 Page 5

 Output .

As long as the number of distinct elements is not too big, D fits in main memory and an exact

answer can be retrieved. However, this approach does not scale for bounded storage, or if the

computation performed for each element should be minimized. In such a case, several

streaming algorithms have been proposed that use a fixed number of storage units.

https://en.wikipedia.org/wiki/Streaming_algorithms

