
Unit-1

Apache Hadoop

Prepared By

Prof. Rajkumar Chalse

Prof. Rajkumar Chalse, DCS, Indus
University

1

What is Hadoop ?
Open source software framework designed for storage
and processing of large scale data on clusters of
commodity hardware

Prof. Rajkumar Chalse, DCS, Indus
University

2

History of Hadoop
 Hadoop came from the Google File System paper published in October

2003.

 Hadoop was created by Doug Cutting and was first released in April 2006.

 Cutting named it after his son’s toy elephant.

 Elephant symbolically represents large data that can be stored and

processed by Hadoop.

Prof. Rajkumar Chalse, DCS, Indus
University

3

Biggest Users Hadoop

Prof. Rajkumar Chalse, DCS, Indus
University

4

Why not use RDBMS ?

 Scalability is an issue especially in RDBMS when

data is in TB.

 Databases are designed for structured data only

whereas >85% of Big Data is unstructured.

 As data get bigger indexes need to be changed,

queries need to be optimized etc to achieve minor

improvements .

 We can't add more computing power to increase

performance, i.e horizontal scalability is not

possible.

 Hardware cost and Database License cost are

quite expensive. Prof. Rajkumar Chalse, DCS, Indus
University

5

What our solution must have

 Handle high volume of data.

 Data loss should be avoided.

 Horizontally scalable.

 Cost effective.

 Easy to work on(even for non programmers or

new programmers).

Prof. Rajkumar Chalse, DCS, Indus
University

6

Hadoop meets all of there

requirements

 As data grows more nodes can be added

seamlessly.

 Works faster than RDBMS.

 Data replication prevents data loss.

 Hadoop is cost effective, Commodity hardware

can be used no specialized hardware is needed.

 Hadoop is open source and freely available so no

licensing fee.

Prof. Rajkumar Chalse, DCS, Indus
University

7

RDBMS vs Apache Hadoop

 Hadoop is useful when dealing with data in PB while RDBMS is

good for data in GB.

 Hadoop supports dynamic schema while RDBMS is best suited

for static schema.

 RDBMS is vertically scalable i.e we can improve resource and

modify queries that won't speed up the performance that much

since you cannot distribute the problem into a number of nodes.

 Hadoop enables horizontal scaling i.e the more nodes we add

the more quickly the problem is solved.

 Hadoop allows use of commodity hardware while RDBMS

needs specialized hardware.

 Hadoop is more used for batch queries while RDBMS is for

batch interactive.

 Hadoop is write once read many times and RDBMS is read and

write many times.
Prof. Rajkumar Chalse, DCS, Indus

University
8

Hadoop Architecture
 The base Apache Hadoop framework is composed of the

following modules:

 Hadoop Distributed File System (HDFS) – a distributed file-

system that stores data on commodity machines, providing

very high aggregate bandwidth across the cluster;

 Hadoop MapReduce – an implementation of the MapReduce

programming model for large scale data processing.

 Hadoop YARN – a resource-management platform

responsible for managing computing resources in clusters and

using them for scheduling of users' applications; and

 Hadoop Common – contains libraries and utilities needed by

other Hadoop modules;

Prof. Rajkumar Chalse, DCS, Indus
University

9

HDFS
 The Hadoop Distributed File System (HDFS) is the

underlying file system of a Hadoop cluster. It provides

scalable, fault-tolerant, rack-aware data storage

designed to be deployed on commodity hardware.

Several attributes set HDFS apart from other

distributed file systems. Among them, some of the

key differentiators are that HDFS is:
 designed with hardware failure in mind

 built for large datasets, with a default block size of 128 MB

 optimized for sequential operations

 rack-aware

 cross-platform and supports heterogeneous clusters

Prof. Rajkumar Chalse, DCS, Indus
University

10

 Data in a Hadoop cluster is broken down into

smaller units (called blocks) and distributed

throughout the cluster.

 Each block is duplicated twice (for a total of three

copies), with the two replicas stored on two nodes in

a rack somewhere else in the cluster. Since the data

has a default replication factor of three, it is highly

available and fault-tolerant.

 If a copy is lost (because of machine failure, for

example), HDFS will automatically re-replicate it

elsewhere in the cluster, ensuring that the threefold

replication factor is maintained.
Prof. Rajkumar Chalse, DCS, Indus

University
11

Prof. Rajkumar Chalse, DCS, Indus
University

12

Map Reduce

 MapReduce is a framework for processing highly

distributable problems across huge datasets using a large

number of computers (nodes), collectively referred to as a

cluster. The framework is inspired by the map and reduce

functions commonly used in functional programming.

 In the “Map” step, the master node takes the input,

partitions it up into smaller sub-problems, and distributes

them to worker nodes. The worker node processes the

smaller problem, and passes the answer back to its

master node. In the “Reduce” step, the master node

then collects the answers to all the sub-problems and

combines them in some way to form the output – the

answer to the problem it was originally trying to solve.

Prof. Rajkumar Chalse, DCS, Indus
University

13

Prof. Rajkumar Chalse, DCS, Indus
University

14

Namenode
 NameNode is the centerpiece of HDFS.

 NameNode is also known as the Master

 NameNode only stores the metadata of HDFS – the directory

tree of all files in the file system, and tracks the files across the

cluster.

 NameNode does not store the actual data or the dataset. The

data itself is actually stored in the DataNodes.

 NameNode knows the list of the blocks and its location for any

given file in HDFS. With this information NameNode knows how

to construct the file from blocks.

 NameNode is so critical to HDFS and when the NameNode is

down, HDFS/Hadoop cluster is inaccessible and considered

down.

 NameNode is a single point of failure in Hadoop cluster.

 NameNode is usually configured with a lot of memory (RAM).

Because the block locations are help in main memory.Prof. Rajkumar Chalse, DCS, Indus
University

15

Typical Namenode Configuration

 Processors: 2 Quad Core CPUs running @ 2

GHz

 RAM: 128 GB

 Disk: 6 x 1TB SATA

 Network: 10 Gigabit Ethernet

Prof. Rajkumar Chalse, DCS, Indus
University

16

Datanode
 DataNode is responsible for storing the actual data in

HDFS.

 DataNode is also known as the Slave

 NameNode and DataNode are in constant communication.

 When a DataNode starts up it announce itself to the

NameNode along with the list of blocks it is responsible

for.

 When a DataNode is down, it does not affect the

availability of data or the cluster. NameNode will arrange

for replication for the blocks managed by the DataNode

that is not available.

 DataNode is usually configured with a lot of hard disk

space. Because the actual data is stored in the DataNode.

Prof. Rajkumar Chalse, DCS, Indus
University

17

Typical Datanode Configuration

 Processors: 2 Quad Core CPUs running @ 2

GHz

 RAM: 64 GB

 Disk: 12-24 x 1TB SATA

 Network: 10 Gigabit Ethernet

Prof. Rajkumar Chalse, DCS, Indus
University

18

Checkpointing

 HDFS metadata can be thought of consisting of

two parts: the base filesystem table (stored in a

file called fsimage) and the edit log which lists

changes made to the base table (stored in a file

called edits).

 Checkpointing is a process of reconciling

fsimage with edits to produce a new version of

fsimage.

 There are two benefits arising out of this: a

more recent version of fsimage, and a

truncated edit log.
Prof. Rajkumar Chalse, DCS, Indus

University
19

 fsimage is like a snapshot of the state of the

filesystem as at particular moment whereas

the edit log is a list of changes to the

filesystem state since then.

 When the namenode starts up it reads the

fsimage file as its starting point and then

applies any edits from the log and then starts

listening to data nodes for details of where the

blocks of data reside (this information is not

stored in fsimage or the edit log but rather is

maintained in the memory of the name node).
Prof. Rajkumar Chalse, DCS, Indus

University
20

Prof. Rajkumar Chalse, DCS, Indus
University

21

Secondary Namenode

 Secondary Namenode does not serve as a

backup namenode but it only periodically reads

file system changes log and ap-plies them to

fsimage file in order to bring the system upto

date. This allows the system to start faster next

time.

Prof. Rajkumar Chalse, DCS, Indus
University

22

YARN
 Stands for Yet Another Resource Negotiator and was

introduced in Hadoop 2.0.

 In Yarn, the job tracker is split into two different daemons

called Resource Manager and Node Manager (node

specific). The resource manager only manages the

allocation of resources to the different jobs apart from

comprising a scheduler which just takes care of the

scheduling jobs without worrying about any monitoring or

status updates. Different resources such as memory, cpu

time, network bandwidth etc. are put into one unit called

the Resource Container. There are different AppMasters

running on different nodes which talk to a number of these

resource containers and accordingly update the Node

Manager with the monitoring/status details.
Prof. Rajkumar Chalse, DCS, Indus

University
23

YARN is the most important part of

Hadoop 2.0

Prof. Rajkumar Chalse, DCS, Indus
University

24

Problems with Hadoop 1.0

 It limits scalability: JobTracker runs on single

machine doing several task like

 ->Resource management

 ->Job and task scheduling and

 ->Monitoring

 Although there are so many machines

(DataNode) available; they are not getting used.

This limits scalability.

 Availability Issue: In Hadoop 1.0, JobTracker

is single Point of availability. This means if

JobTracker fails, all jobs must restart.
Prof. Rajkumar Chalse, DCS, Indus

University
25

 Problem with Resource Utilization: In Hadoop

1.0, there is concept of predefined number of map

slots and reduce slots for each TaskTrackers.

Resource Utilization issues occur because maps

slots might be ‘full’ while reduce slots is empty (and

vice-versa). Here the compute resources

(DataNode) could sit idle which are reserved for

Reduce slots even when there is immediate need

for those resources to be used as Mapper slots.

 Limitation in running non-MapReduce

Application: In Hadoop 1.0, Job tracker was tightly

integrated with MapReduce and only supporting

application that obeys MapReduce programming

framework can run on Hadoop.
Prof. Rajkumar Chalse, DCS, Indus

University
26

Advantages of YARN
 Yarn does efficient utilization of the resource. There are

no more fixed map-reduce slots. YARN provides central

resource manager. With YARN, you can now run multiple

applications in Hadoop, all sharing a common resource.

 Yarn can even run application that do not follow

MapReduce model.

 YARN decouples MapReduce's resource management and

scheduling capabilities from the data processing

component, enabling Hadoop to support more varied

processing approaches and a broader array of

applications. For example, Hadoop clusters can now run

interactive querying and streaming data applications

simultaneously with MapReduce batch jobs. This also

streamlines MapReduce to do what is does best - process

data. Prof. Rajkumar Chalse, DCS, Indus
University

27

 YARN is backward compatible. This means that

existing MapReduce job can run on Hadoop 2.0

without any change.

 No more JobTracker and TaskTracker needed in

Hadoop 2.0

 JobTracker and TaskTracker has totally

disappeared. YARN splits the two major

functionalities of the JobTracker i.e. resource

management and job scheduling/monitoring into 2

separate daemons (components).

 ->Resource Manager

 ->Node Manager(node specific)

Prof. Rajkumar Chalse, DCS, Indus
University

28

Limitations of Hadoop
 Security Concerns. Just managing a complex application such as Hadoop

can be challenging. A classic example can be seen in the Hadoop security

model, which is disabled by default due to sheer complexity. If whoever’s

managing the platform lacks the know how to enable it, your data could be

at huge risk. Hadoop is also missing encryption at the storage and network

levels, which is a major selling point for government agencies and others

that prefer to keep their data under wraps.

 Vulnerable By Nature. Speaking of security, the very makeup of Hadoop

makes running it a risky proposition. The framework is written almost

entirely in Java, one of the most widely used yet controversial programming

languages in existence. Java has been heavily exploited by cybercriminals

and as a result, implicated in numerous security breaches. For this reason,

several experts have suggested dumping it in favor of safer, more efficient

alternatives.

 Not Fit for Small Data. While big data isn't exclusively made for big

businesses, not all big data platforms are suited for small data needs.

Unfortunately, Hadoop happens to be one of them. Due to its high capacity

design, the Hadoop Distributed File System or HDFS, lacks the ability to

efficiently support the random reading of small files. As a result, it is not

recommended for organizations with small quantities of data.
Prof. Rajkumar Chalse, DCS, Indus

University
29

 Potential Stability Issues. Hadoop is an open source platform. That

essentially means it is created by the contributions of the many developers

who continue to work on the project. While improvements are constantly

being made,like all open source software, Hadoop has had its fair share of

stability issues. To avoid these issues, organizations are strongly

recommended to make sure they are running the latest stable version, or

run it under a third-party vendor equipped to handle such problems.

 General Limitations. When it comes to making the most of big data,

Hadoop may not be the only answer. Apache Flume, Mill-wheel, and

Google’s own Cloud Data-flow as possible solutions. What each of these

platforms have in common is the ability to improve the efficiency and

reliability of data collection, aggregation, and integration.

 Multiple copies of already big data. Because HDFS was built without

the notion of efficiency, it results in multiple copies of the data. At a

minimum, there are generally three copies of the data. And because of the

need for data locality in maintaining performance, we very often see six

copies of the data required and that’s for data that’s already “big” by

definition.
Prof. Rajkumar Chalse, DCS, Indus

University
30

 Very limited SQL support. There are open source

components which attempt to set up Hadoop as a

queryable data warehouse, but these offer very

limited SQL support. Typically they lack such basic

SQL functions such as subqueries, ‘group by’

analytics, etc.

 Inefficient execution. HDFS has no notion of a

query optimizer, so cannot pick an efficient cost-

based plan for execution. Because of this, Hadoop

clusters are generally significantly larger than would

be required for a similar database.

 Challenging framework. The MapReduce

framework is notoriously difficult to leverage for more

than simple transformational logic. There are open

source components which attempt to simplify this, but

they also use proprietary languages.
Prof. Rajkumar Chalse, DCS, Indus

University
31

Demand of Big Data Professionals

Prof. Rajkumar Chalse, DCS, Indus
University

32

Prof. Rajkumar Chalse, DCS, Indus
University

33

Prof. Rajkumar Chalse, DCS, Indus
University

34

