Chapter 19:
Database Recovery Concepts

Prof. Kirtankumar Rathod
Dept. of Computer Science

Indus University

Purpose of database recovery

 To bring the database into the last consistent state, which existed
prior to the failure.

* To preserve transaction properties (Atomicity, Consistency, Isolation
and Durability)

 Example: Suppose, the system crashes before a fund transfer
transaction completes its execution, then either one or both accounts
may have incorrect value. Thus, the database must be restored to the
state before the transaction modified any of the accounts..

Purpose of Backup and Recovery

e As a backup administrator, your principal duty is to devise,
implement, and manage a backup and recovery strategy.

* In general, the purpose of a backup and recovery strategy is to
protect the database against data loss and reconstruct the database
after data loss.

What is Data Recovery?

* Data recovery is the process of salvaging and handling the data through the
data from damaged, failed, corrupted, or inaccessible secondary storage
media when it cannot be accessed normally.

* Recovery may be required due to physical damage to the storage device or
logical damage to the file system that prevents it from being mounted by
the host operating system (OS).

 Recovery should protect the database and associated users from
unnecessary problems and avoid or reduce the possibility of having to
duplicate work manually.

Two main techniques:

* We can distinguish two main techniques for recovery from
noncatastrophic transaction failures:

(1) deferred update and (2) immediate update.

1. Deferred update

* These techniques do not physically update the database on disk until
after a transaction reaches its commit point; then the updates are
recorded in the database.

* If a transaction fails before reaching its commit point, it will not have
changed the database in any way, so UNDO is not needed.

 REDO could be needed During transaction execution, the updates are
recorded only in the log and in the cache buffers.

1. Deferred update

A transaction cannot change the database on disk until it reaches
Its commit point.

A transaction does not reach its commit point until all its REDO-
type log entries are recorded in the log and the log buffer is force-
written to disk.

2. Immediate update

* When a transaction issues an update command, the database on disk
can be updated immediately, without any need to wait for the
transaction to reach its commit point.

* Provisions must be made for undoing the effect of update operations
that have been applied to the database by a failed transaction.

* If the recovery technique ensures that all updates of a transaction are
recorded in the database on disk before the transaction commits,
there is never a need to REDO any operations of committed
transactions.

Checkpoints in the System log

* A [checkpoint] record is written into the log periodically at that point
when the system writes out to the database on disk all DBMS buffers
that have been modified.

 All transactions that have their [commit, T] entries in the log before a
[checkpoint] entry do not need to have their WRITE operations
redone in case of a system crash, since all their updates will be
recorded in the database on disk during check-pointing.

Checkpoints in the System log

Example of Checkpoints

T
3 ’
H| 2
s
T4
checkpoint system failure

T, can be ignored (updates already output to disk due to
checkpoint)
e T, and T, redone.

e T, undone

Transaction Rollback

* If a transaction fails for whatever reason after updating the database,
it may be necessary to roll back the transaction.

* If any data item values have been changed by the transaction and

written to the database, they must be restored to their previous
values.

* The undo-type log entries are used to restore the old values of data
items that must be rolled back.

Consider following example:

|:a}| T Ts Ti])
read_item(A) read_item(B) read_item|C)
raead_item(D) write_item{B) writa_itermn(B)
write_item{ D) read_item{0) read_itern{A)
write_item(D) write_item(A)

e There are 3 transactions T1, T2 and T3.
 Values of A,B,C and D are 30,15,40 and 20 respectively.

* Also, consider the given read and write operations of all transactions
which is given in next slide....

Schedule is given below...

[start_transaction, 7]

[read_itemn, Ty, C]

[write__item, T,,8,15,12] 12
|start_transaction, T5)

[read_itemn, 75, B]

[write_item, T, 8,12 18] 18
[start_transaction, Ty]

[read_item, T,, A]

[read_item, T,,0]

[write_item, T,,0,20,25] 25
[read_itern, T5, 0]

[write_item, T, 0,25, 26] 26
[read_itern, Ty, A]

+=system crash

*T5is rolled back because it did not reach its commit point.
Tz is rolled back because it reads the value of item B written by T,

Log-Based Recovery

* Logs are the sequence of records, that maintain the records of actions
performed by a transaction.

* In Log — Based Recovery, log of each transaction is maintained in
some stable storage. If any failure occurs, it can be recovered from

there to recover the database.

* The log contains the information about the transaction being
executed, values that have been modified and transaction state.

e All these information will be stored in the order of execution.

Example..

* Assume, a transaction to modify the address of an employee. The
following logs are written for this transaction,

Log 1: Transaction is initiated, writes 'START' log.
Log: <T, START>

Log 2: Transaction modifies the address from 'Pune’ to 'Mumbai'.
Log: <T, Address, 'Pune’, 'Mumbai'>

Log 3: Transaction is completed. The log indicates the end of the transaction.
Log: <T, COMMIT>

* There are two methods of creating the log files and updating the
database,

1. Deferred Database Modification

2. Immediate Database Modification

1.

In Deferred Database Modification, all the logs for the transaction
are created and stored into stable storage system. In the above
example, three log records are created and stored it in some
storage system, the database will be updated with those steps.

In Immediate Database Modification, after creating each log
record, the database is modified for each step of log entry
immediately. In the above example, the database is modified at
each step of log entry that means after first log entry, transaction
will hit the database to fetch the record, then the second log will be
entered followed by updating the employee's address, then the
third log followed by committing the database changes.

Example

<To start>
<To A, 1000, 950>
<To B, 2000, 2050:>

<To commlt>
<T1 start>
<T1 C, 700, 600>

<T1 commilit>

Here, we consider an example of banking system taken earlier for transaction To and
T1 such that To is followed by T1.

If the system crash occurs just after the log record and during recovery we do redo (To)
and undo (T1) as we have both < To start > and <To commit> in the log record.

But we do not have <T1 commit> with <T1 start> in log record. Undo(T1) should be
done first then redo (To) should be done.

SHADOW PAGING

* This recovery scheme does not require the use of a log in a single-
user environment. In a multiuser environment, a log may be needed
for the concurrency control method.

* Shadow paging considers the database to be made up of a number of
fixed-size disk pages (or disk blocks)-say, n-for recovery purposes.

 When a transaction begins executing, the current directory-whose
entries point to the most recent or current database pages on disk-is
copied into a shadow directory. The shadow directory is then saved
on disk while the current directory is used by the transaction.

SHADOW PAGING

* During transaction execution, the shadow directory is never modified.

* When a write_item operation is performed, a new copy of the
modified database page is created, but the old copy of that page is
not overwritten.

* Instead, the new page is written elsewhere-on some previously
unused disk block.

* The current directory entry is modified to point to the new disk block,
whereas the shadow directory is not modified and continues to point
to the old unmodified disk block.

Example of shadow paging...

current directory

(after updating pages

@0 o = W =

database disk blocks (pages)

page 5
(old)

page 1

page 4

page 2
{old)

shadow directory
(not updated)

e

page 3

AR\ dA

page 6

N
N

«

page 2
(new)

page 5
(new)

o B W N =

