
Subject: ADBMS Code: IMCA0207 / IMSC0207

Faculty Name: Mr. Kirtankumar Rathod

PL/SQL Syntax
Don’t forget to write SET AUTOCOMMIT ON and SET SERVEROUTPUT ON

1) For Creating Anonymous Block
DECLARE

--declaration section

BEGIN

--execution section

[EXCEPTION]

--exception section

END;

2) To declare variable
DECLARE

Variable_name datatype (size) NOT NULL | DEFAULT value [:=value];
BEGIN

END;

3) To declare %TYPE and %ROWTYPE variable
DECLARE

Variable_name TABLENAME.COLUMNNAME%TYPE;

Varibale_name TABLENAME%ROWTYPE;

BEGIN

END;

4) To display message on console

BEGIN

END;

DBMS_OUTPUT.PUT_LINE(message || Variable_name);

5) IF THEN ELSE
BEGIN

IF condition THEN
SQL statement;

ELSIF condition THEN

SQL statement;

ELSE
SQL statement;

END IF;

END;

6) SIMPLE LOOP
BEGIN

LOOP

SQL statement;

END;

EXIT [WHEN condition];

END LOOP;

Subject: ADBMS Code: IMCA0207 / IMSC0207

Faculty Name: Mr. Kirtankumar Rathod

7) WHILE LOOP
BEGIN

END;

WHILE condition LOOP
SQL statement;

END LOOP;

8) FOR LOOP
BEGIN

END;

FOR loop_counter [REVERSE] low_bound..upper bound LOOP

SQL statement;

END LOOP;

9) CASE STRUCTURE
BEGIN

CASE variable
WHEN expression||value THEN

SQL statement;

WHEN expression||value THEN

SQL statement;

ELSE
SQL statement;

END CASE;

END;

10) DYNAMIC SQL

BEGIN

END;

EXECUTE IMMEDIATE ‘DDL | DML STATEMENT’;

11) Select INTO Statement
DECLARE

Variablename datatype;

BEGIN

END;

SELECT COLUMNNAME INTO Variablename FROM TABLE WHERE <condition>;

DBMS_OUTPUT.PUT_LINE(Variablename);

12) Explicit cursor
DECLARE

CURSOR NAMEOFCURSOR IS SELECT STATEMENT;

BEGIN

END;

OPEN MAMEOFCURSOR;

FETCH NAMEOFCURSOR INTO Variable or RowtypeVariable;

CLOSE NAMEOFCURSOR;

Subject: ADBMS Code: IMCA0207 / IMSC0207

Faculty Name: Mr. Kirtankumar Rathod

13) Implicit cursor
DECLARE

BEGIN

SELECT COLUMN INTO VARIABLE FROM TABLE…;

END;

14) Parameterized cursor
DECLARE

CURSOR CURSORNAME (PAR1 DATATYPE) IS SELECT STATEMENT;
BEGIN

END;

OPEN CURSORNAME (VALUE);

FETCH CURSORNAME INTO Variable or Rowtype;

CLOSE CURSORNAME;

Subject: ADBMS Code: IMCA0207 / IMSC0207

Faculty Name: Mr. Kirtankumar Rathod

15) To check procedure / function code
SELECT TEXT, LINE

FROM ALL_SOURCE

WHERE NAME=<NAMEOFSUBPROGRAM>;

16) To delete procedure / function / trigger

DROP PROCEDURE NAMEOFPROCEDURE;

DROP FUNCTION NAMEOFFUNCTION;

DROP TRIGGER NAMEOFTRIG;

Prof. Kirtankumar Rathod
ADBMS PRACTICAL [IMCA0207 / IMSC0207]

Dept. of Computer Science
Indus University

• There is an alternative way to handle cursors.

• It is called the cursor FOR loop because of the simplified syntax that is used.

• With a cursor FOR loop, the process of opening, fetching, and closing is
handled implicitly.

• Use the cursor FOR loop if you need to FETCH and PROCESS every record from
a cursor until you want to stop processing and exit the loop.

DECLARE
CURSOR <cursor_name> IS <SELECT statement>;

BEGIN
 FOR I IN <cursor_name>
 LOOP
 .
 .
 END LOOP;
END;

• In the above syntax, the declaration part contains the declaration
of the cursor.

• The cursor is created for the 'SELECT' statement that is given in
the cursor declaration.

• In execution part, the declared cursor is setup in the FOR loop and
the loop variable 'I' will behave as cursor variable in this case.

FOR record IN cursor_name
LOOP
 process_record_statements;
END LOOP;

Here, The record is the name of the index that the cursor FOR LOOP statement
declares implicitly as a %ROWTYPE record variable of the type of the cursor. he
cursor_name is the name of an explicit cursor that is not opened when the loop
starts.
cursor_name contain select statement.

DECLARE
CURSOR c_product IS SELECT product_name, list_price
FROM products ORDER BY list_price DESC;

BEGIN
FOR r_product IN c_product
LOOP

dbms_output.put_line(r_product.product_name || ': Rs.' || r_product.list_price);
END LOOP;

END;
in this example c_product is cursor and r_product is loop variable, so all the values of
c_product will be display using r_product variable inside the loop.

BEGIN
FOR r_product IN (SELECT product_name, list_price

 FROM products ORDER BY list_price DESC)
LOOP

dbms_output.put_line(r_product.product_name || ': Rs.' || r_product.list_price);
END LOOP;

END;

in this example there is no cursor and r_product is loop variable, so all the values select
statment will be display using r_product variable inside the loop.

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

Example of Cursor For Loop

SQL> DECLARE

 2

 3 CURSOR C1 IS SELECT STNAME

 4

 5 FROM TBL_STUD;

 6

 7 BEGIN

 8

 9 FOR I IN C1 LOOP

 10

 11 DBMS_OUTPUT.PUT_LINE(I.STNAME);

 12

 13 END LOOP;

 14

 15 END;

 16

 17 /

riya

kkkk

yash

raj shah

mahesh parekh

PL/SQL procedure successfully completed.

Commit complete.

In this example, C1 is cursor which will select all record of student name from tbl_stud.

Here, I is for loop variable which will implicitly fetch record from cursor and display using

column name with variable I like I.STNAME I dbms_output.put_line().

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

Example of Cursor For Loop

--

SQL> DECLARE

 2

 3 BEGIN

 4

 5 FOR I IN (SELECT STCITY FROM TBL_STUD) LOOP

 6

 7 DBMS_OUTPUT.PUT_LINE(I.STCITY);

 8

 9 END LOOP;

 10

 11 END;

 12

 13 /

delhi

ahmedabad

surat

Delhi

Ahmedabad

PL/SQL procedure successfully completed.

Commit complete.

SQL>

In this example, without cursor declared, directly select statement is used in the for loop, so it

will become for loop cursor. Here, using I variable value of city column will be display in output.

Prof. Kirtankumar Rathod
ADBMS PRACTICAL [IMCA0207 / IMSC0207]

Dept. of Computer Science
Indus University

• In the PL/SQL language, errors of any kind are treated as exceptions—
situations that should not occur—in your program.

• An error generated by the system (such as “out of memory” or “duplicate value in
index”).

• An error caused by a user action.
• A warning issued by the application to the user.

• The exception handler mechanism allows you to cleanly separate your error-
processing code from your executable statements.

• When an error occurs in PL/SQL, whether it’s a system error or an application
error, an exception is raised.

• The processing in the current PL/SQL block’s execution section halts, and
control is transferred to the separate exception section of the current block,

• if one exists, to handle the exception. You cannot return to that block after you
finish handling the exception. Instead, control is passed to the enclosing block,
if any.

DECLARE

BEGIN

EXCEPTION

WHEN EXCEPTION_NAME THEN
ERROR-PROCESSING STATEMENTS;

END;

• The exception-handling section is placed after the executable
section of the block.

• An exception-handling section allows a program to execute to
completion, instead of terminating prematurely.

• All error-processing code for a specific block is located in a single
section.

SET SERVEROUTPUT ON;
DECLARE
v_num NUMBER := &v_num;
BEGIN
DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||' is '||SQRT(v_num));
EXCEPTION

WHEN VALUE_ERROR THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

SET SERVEROUTPUT ON;
DECLARE
v_num NUMBER := &v_num;
BEGIN
DBMS_OUTPUT.PUT_LINE ('Square root of '||v_num||' is '||SQRT(v_num));
EXCEPTION -- exception keyword to define its section

WHEN THEN -- VALUE_ERROR is in-built exception
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

VALUE_ERROR

1. NO_DATA_FOUND: This exception is raised when a SELECT INTO statement
that makes no calls to group functions, such as SUM or COUNT, does not
return any rows.

2. TOO_MANY_ROWS: This exception is raised when a SELECT INTO
statement returns more than one row.

3. ZERO_DIVIDE: This exception is raised when a division operation is
performed in the program and a divisor is equal to 0.

4. VALUE_ERROR: This exception is raised when a conversion or size
mismatch error occurs.

DECLARE
v_student_id NUMBER := &sv_student_id;
v_enrolled VARCHAR2(3) := 'NO';

BEGIN
DBMS_OUTPUT.PUT_LINE ('Check if the student is enrolled');
SELECT 'YES' INTO v_enrolled FROM enrollment WHERE student_id = v_student_id;
DBMS_OUTPUT.PUT_LINE ('The student is enrolled into one course');

EXCEPTION
WHEN NO_DATA_FOUND THEN

DBMS_OUTPUT.PUT_LINE ('The student is not enrolled');
WHEN TOO_MANY_ROWS THEN

DBMS_OUTPUT.PUT_LINE ('The student is enrolled in too many courses');
END;

• This example contain two exception:
• NO_DATA_FOUND exception will raise if no record

exist for the particular student id.

• TOO_MANY_ROWS exception will raise if more than
one record exist for the particular student id.

• OTHERS exception will raise for all pre-defined ORACLE errors.

DECLARE
v_instructor_id NUMBER := &sv_instructor_id;
v_instructor_name VARCHAR2(50);

BEGIN
SELECT first_name||' '||last_name INTO v_instructor_name FROM instructor
WHERE instructor_id = v_instructor_id;

DBMS_OUTPUT.PUT_LINE ('Instructor name is '||v_instructor_name);
EXCEPTION

WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE ('An error has occurred');

END;

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

Example of Exception: 1 [TOO_MANY_ROWS]

SQL> DECLARE

 2

 3 V_NAME TBL_STUD.STNAME%TYPE;

 4 V_CITY TBL_STUD.STCITY%TYPE;

 5

 6 BEGIN

 7

 8 SELECT STNAME,STCITY INTO V_NAME,V_CITY FROM TBL_STUD;

 9

 10 DBMS_OUTPUT.PUT_LINE(V_NAME||' '||V_CITY);

 11

 12 EXCEPTION

 13

 14 WHEN TOO_MANY_ROWS THEN

 15

 16 DBMS_OUTPUT.PUT_LINE('CURSOR C1 IS HAVING MORE THAN 1 RECORDS...');

 17

 18 END;

 19

 20 /

CURSOR C1 IS HAVING MORE THAN 1 RECORDS...

PL/SQL procedure successfully completed.

Commit complete.

In this example, select statement will have more than 1 record so all records cannot be stored in

two variables v_name and v_city, so, exception will be raise and user defined error message will

be display on the screen...

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

Example of Exception: 2 [USER DEFINED EXCEPTION]

--

SQL> DECLARE

 2

 3 V_NUM1 NUMBER;

 4 V_NUM2 NUMBER;

 5 V_NUM3 NUMBER;

 6

 7 MY_EXCEPTION EXCEPTION;

 8

 9 BEGIN

 10

 11 V_NUM1:=&V_NUM1;

 12

 13 V_NUM2:=&V_NUM2;

 14

 15 V_NUM3:=V_NUM1*V_NUM2;

 16

 17 IF V_NUM3 = 0 THEN

 18

 19 RAISE MY_EXCEPTION;

 20

 21 ELSE

 22

 23 DBMS_OUTPUT.PUT_LINE('ANSWER IS '||V_NUM3);

 24

 25 END IF;

 26

 27 EXCEPTION

 28

 29 WHEN MY_EXCEPTION THEN

 30

 31 DBMS_OUTPUT.PUT_LINE('PLEASE ENTER VALUE GREATER THAN 0');

 32

 33 END;

 34

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

 35 /

Enter value for v_num1: 5

old 11: V_NUM1:=&V_NUM1;

new 11: V_NUM1:=5;

Enter value for v_num2: 5

old 13: V_NUM2:=&V_NUM2;

new 13: V_NUM2:=5;

ANSWER IS 25

PL/SQL procedure successfully completed.

Commit complete.

SQL> /

Enter value for v_num1: 7

old 11: V_NUM1:=&V_NUM1;

new 11: V_NUM1:=7;

Enter value for v_num2: 0

old 13: V_NUM2:=&V_NUM2;

new 13: V_NUM2:=0;

PLEASE ENTER VALUE GREATER THAN 0

PL/SQL procedure successfully completed.

Commit complete.

In this example, my_exception is user defined exception, so whenever user enter value equal to 0

than answer of multiplication will be 0 and exception will be raised and error message will be

display accordingly.

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

Example of Exception: 3 [ZERO_DIVIDE EXCEPTION]

SQL> DECLARE

 2 V_NUM1 NUMBER;

 3 V_NUM2 NUMBER;

 4 V_NUM3 NUMBER;

 5

 6 BEGIN

 7

 8 V_NUM1:=&V_NUM1;

 9 V_NUM2:=&V_NUM2;

 10 V_NUM3:=V_NUM1/V_NUM2;

 11

 12 DBMS_OUTPUT.PUT_LINE('ANSWER IS '||V_NUM3);

 13

 14 EXCEPTION

 15

 16 WHEN ZERO_DIVIDE THEN

 17 DBMS_OUTPUT.PUT_LINE('SORRRYYYYY.....DIVISION IS NOT POSSIBLE....');

 18 END;

 19

 20 /

Enter value for v_num1: 5

old 8: V_NUM1:=&V_NUM1;

new 8: V_NUM1:=5;

Enter value for v_num2: 5

old 9: V_NUM2:=&V_NUM2;

new 9: V_NUM2:=5;

ANSWER IS 1

PL/SQL procedure successfully completed.

Commit complete.

SQL> /

Enter value for v_num1: 8

old 8: V_NUM1:=&V_NUM1;

new 8: V_NUM1:=8;

Enter value for v_num2: 0

old 9: V_NUM2:=&V_NUM2;

new 9: V_NUM2:=0;

SORRRYYYYY.....DIVISION IS NOT POSSIBLE....

Subject: ADBMS Practical [IMCA0207 / IMSC0207]
Prof. Kirtan Rathod

Department of Computer Science, ISHLS, Indus University

PL/SQL procedure successfully completed.

Commit complete.

SQL> /

Enter value for v_num1: 25

old 8: V_NUM1:=&V_NUM1;

new 8: V_NUM1:=25;

Enter value for v_num2: 5

old 9: V_NUM2:=&V_NUM2;

new 9: V_NUM2:=5;

ANSWER IS 5

PL/SQL procedure successfully completed.

Commit complete.

SQL>

In this example, built-in exception is called whenever user input 0 in the second variable, so

division will not be possible and zero-divide will be raised and error message will be display on

the screen.
