
PHP with Framework
(CMS & E-Commerce)

Unit 1: Introduction to PHP

1Prepared By: Bhavana Hotchandani, DCS, INDUS University

What is PHP? Why PHP?

◼ PHP is an open source, server-side, HTML-embedded
web-scripting language that is compatible with all the
major web servers (most notably Apache).

◼ PHP enables you to embed code fragments in normal
HTML pages — code that is interpreted as your pages
are served up to users.

◼ PHP also serves as a “glue” language, making it easy to
connect your web pages to server-side databases.

◼ It’s free, it’s open source, it’s full featured, it’s cross-
platform, it’s stable, it’s fast, it’s clearly designed, it’s
easy to learn, and it plays well with others.

7/29/2019 2Prepared By: Bhavana Hotchandani, DCS, INDUS University

◼ PHP is the web development language written by and
for web developers.

◼ PHP stands for PHP: Hypertext Preprocessor. The
product was originally named Personal Home Page
Tools.

◼ PHP is a server-side scripting language, usually used to
create web applications in combination with a web
server, such as Apache.

◼ PHP can also be used to create command-line scripts
akin to Perl or shell scripts, but such use is much less
common than PHP’s use as a web language.

7/29/2019 Prepared By: Bhavana Hotchandani, DCS, INDUS University 3

What Is MySQL?

◼ MySQL is an open source, SQL relational database
management system (RDBMS) that is free for many
uses (more detail on that later).

◼ MySQL found a broad, enthusiastic user base for its
liberal licensing terms, perky performance, and ease of
use.

◼ Its acceptance was aided in part by the wide variety of
other technologies such as PHP, Perl, Python, and the
like that have encouraged its use through stable, well-
documented modules and extensions.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 4

Deciding on a Web Application
Platform

◼ There are many platforms upon which web applications
can be built. Comparison can be done on following
factors:

◼ Cost
◼ Ease of Use
◼ HTML-embeddedness
◼ Cross-platform compatibility
◼ Many extensions
◼ Fast feature development
◼ Not proprietary
◼ Strong user communities

Prepared By: Bhavana Hotchandani, DCS, INDUS University 5

Server- Side Scripting Overview

◼ Static HTML
◼ Client-Side Technologies: Cascading Style Sheets (CSS)

and Dynamic HTML; client-side scripting languages, such
as JavaScript; VBScript; Java applets; and Flash

◼ The best thing about client-side technologies is also the
worst thing about them: They depend entirely on the
browser.

◼ Wide variations exist in the capabilities of each browser
and even among versions of the same brand of browser.

◼ Individuals can also choose to configure their own
browsers in awkward ways: Some people disable
JavaScript for security reasons

Prepared By: Bhavana Hotchandani, DCS, INDUS University 6

◼ Server-Side Scripting: server-side scripting is invisible
to the user.

◼ Server-side web scripting is mostly about connecting
web sites to backend servers, processing data and
controlling the behavior of higher layers such as HTML
and CSS. This enables the following types of two-way
communication:

▪ Server to client: Web pages can be assembled from
backend-server output.

▪ Client to server: Customer-entered information can be
acted upon.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 7

◼ Common examples of client-to-server interaction are
online forms with some drop-down lists (that the script
assembles dynamically on the server.

◼ Server-side scripting products consist of two main parts:
the scripting language and the scripting engine. The
engine parses and interprets pages written in the
language.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 8

What Is Server-Side Scripting Good
For?

◼ Server-side scripting languages such as PHP
perfectly serve most of the truly useful aspects of
the web, such as the items in this list:
▪ Content sites (both production and display)
▪ Community features (forums, bulletin boards, and so

on)
▪ E-mail (web mail, mail forwarding, and sending mail

from a web application)
▪ Customer-support and technical-support systems
▪ Advertising networks
▪ Web-delivered business applications

Prepared By: Bhavana Hotchandani, DCS, INDUS University 9

▪ Surveys, polls, and tests

▪ Filling out and submitting forms online

▪ Personalization technologies

▪ Groupware

▪ Catalog, brochure, and informational sites

▪ Games (for example, chess) with lots of logic but
simple/static graphics

▪ Any other application that needs to connect a
backend server

Prepared By: Bhavana Hotchandani, DCS, INDUS University 10

Getting started with PHP

◼ Escaping from HTML: How does the PHP parser
recognize PHP code inside your HTML document?
▪ You tell the program when to spring into action by using

special PHP tags at the beginning and end of each PHP
section. This process is called escaping from HTML or
escaping into PHP.

▪ Everything within these tags is understood by the PHP
parser to be PHP code. The tags are known as Canonical
PHP tags

▪ <?php ?>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 11

Hello World

<HTML>
<HEAD>

<TITLE>My first PHP program</TITLE>
</HEAD>
<BODY>

<?php
print(“Hello, World
\n”);
phpinfo();

?>
</BODY>

</HTML>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 12

Jumping in and out of PHP mode

◼At any given moment in a PHP script, you are
either in PHP mode or you’re out of it in
HTML.

<?php $id = 1; ?>
<FORM METHOD=”POST” ACTION=”registration.php”>
<INPUT TYPE=”HIDDEN” NAME=”serial number”

VALUE=”<?php echo $id; ?>”>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 13

Including files

◼ Another way you can add PHP to your HTML is by
putting it in a separate file and calling it by using

◼ PHP’s include functions. There are four include
functions:
▪ include(‘/filepath/filename’)

▪ require(‘/filepath/filename’)

▪ include_once(‘/filepath/filename’)

▪ require_once(‘/filepath/filename’)

Prepared By: Bhavana Hotchandani, DCS, INDUS University 14

◼ Include() and include_once() will merely generate a
warning on failure, while require() and require_once()
will cause a fatal error and termination of the script.

◼ As suggested by the names of the functions,
include_once() and require_once() differ from simple
include() and require() in that they will allow a file to be
included only once per PHP script.

◼ The most common use of PHP’s include capability is
to add common headers and footers to all the web
pages on a site.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 15

Example

◼Header File
<HTML>

<HEAD>

<TITLE>A site title</TITLE>

</HEAD>

<BODY>
◼ Footer File

<P>Copyright 1995 - 2002</P>

</BODY>

</HTML>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 16

◼They are called from a PHP page this way:
<?php
require_once($_SERVER[‘DOCUMENT_ROOT’].’/header.php’)

;
?>
<P>This is some body text for this particular page.</P>
<?php
require_once($_SERVER[‘DOCUMENT_ROOT’].’/footer.php’);
?>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 17

Learning PHP Syntax
and Variables

◼Some points to remember

▪ PHP is whitespace insensitive

▪ In PHP all variables are case sensitive

▪ Statements are expressions terminated by
semicolons

▪ Precedence, associativity, and evaluation order is
same as C

▪ C-style multiline comments /* */

▪ Single-line comments: # and //

Prepared By: Bhavana Hotchandani, DCS, INDUS University 18

Variables

◼ Here are the most important things to know about
variables in PHP:
▪ All variables in PHP are denoted with a leading dollar sign ($)
▪ The value of a variable is the value of its most recent assignment
▪ Variables are assigned with the = operator, with the variable on

the left-hand side and the expression to be evaluated on the
right

▪ Variables can, but do not need, to be declared before
assignment.

▪ Variables have no intrinsic type other than the type of their
current value

▪ Variables used before they are assigned have default values

Prepared By: Bhavana Hotchandani, DCS, INDUS University 19

◼ Assigning Variable

▪ $pi = 3 + 0.14159; // approximately

▪ $pi = “3 + 0.14159”;
◼ Reassigning

▪ $my_num_var = “This should be a number”;

▪ $my_num_var = 5;
◼ Unassigned variables : Default Values

▪ In a situation where a number is expected, a number will be
produced, and this works similarly with character strings.

▪ In any context that treats a variable as a number, an unassigned
variable will be evaluated as 0; in any context that expects a string
value, an unassigned variable will be the empty string

Prepared By: Bhavana Hotchandani, DCS, INDUS University 20

◼ Checking assignment with isset

if (isset($set_var))
print(“set_var is set.
”);

else

print(“set_var is not set.
”);
◼ The function unset() will restore a variable to an

unassigned state

Prepared By: Bhavana Hotchandani, DCS, INDUS University 21

Variable scope

◼ Global variables can be used anywhere
◼ Local variables restricted to a function or class
◼ Example for Global and locally-scoped variables:

<html>
<body>

<?php
$x=24; // global scope
// Function definition
function myFunction() {

$y=59; // local scope
echo "Variable x is: $x
";

echo "Variable y is: $y";
}
myFunction();// Function call
echo "Variable x is: $x";
echo "
";
echo "Variable y is: $y";

?>
</body>

</html>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 22

Constants

◼ Constants, which have a single value throughout their lifetime.
Constants do not have a $ before their names, and by
convention the names of constants usually are in uppercase
letters.

◼ Constants can contain only scalar values (numbers and string).
◼ Constants have global scope, so they are accessible everywhere

in your scripts after they have been defined — even inside
functions.

◼ define() function is used to set a constant
◼ It takes three parameters they are:

▪ Name of the constant

▪ Value of the constant

▪ Third parameter is case-insensitive
◼ There is no way to change this assignment after it has been

made.
Prepared By: Bhavana Hotchandani, DCS, INDUS University 23

<html>
<body>

<?php

define("Hai","Hello Friend",true);

echo hai;

?>
</body>

</html>
<html>

<body>

<?php

// defining constant value PI = 3.14

define("PI","3.14");

$radius=15;

$area=PI*$radius*$radius;

echo "Area=".$area;

?>

</body>
</html>

Prepared By: Bhavana Hotchandani, DCS, INDUS University 24

Types in PHP

◼ PHP makes it easy not to worry too much about typing
of variables and values, both because it does not require
variables to be typed and because it handles a lot of
type conversions for you.

◼ No variable type declarations: the type of a variable
does not need to be declared in advance.

◼ Instead, the programmer can jump right ahead to
assignment and let PHP take care of figuring out the
type of the expression assigned:

◼ $first_number = 55.5;
◼ $second_number = “Not a number at all”;

Prepared By: Bhavana Hotchandani, DCS, INDUS University 25

◼ PHP will do the right thing when, for example, doing
math with mixed numerical types. The result of the
expression

◼ $pi = 3 + 0.14159;
◼ is a floating-point (double) number, with the integer 3

implicitly converted into floating point before the
addition is performed

Prepared By: Bhavana Hotchandani, DCS, INDUS University 26

◼ The Simple Types:
▪ integers,
▪ doubles,
▪ Booleans,
▪ NULL, and
▪ strings

◼ Examples of Boolean
▪ $true_num = 3 + 0.14159;
▪ $true_str = “Tried and true”;
▪ $true_array[49] = “An array element”; // see next section
▪ $false_array = array();
▪ $false_null = NULL;
▪ $false_num = 999 – 999;
▪ $false_str = “”; // a string zero characters long

Prepared By: Bhavana Hotchandani, DCS, INDUS University 27

Printing Output

◼ Echo and print: The two most basic constructs for
printing to output are echo and print.

◼ Their language status is somewhat confusing,
because they are basic constructs of the PHP
language, rather than being functions. As a result,
they can be used either with parentheses or without
them.

◼ Echo: The simplest use of echo is to print a string as
argument
▪ echo “This is statement”;

▪ echo(“This is statement”);

Prepared By: Bhavana Hotchandani, DCS, INDUS University 28

◼Print:
◼The command print is very similar to echo,

with two important differences:

▪ Unlike echo, print can accept only one argument.

▪ Unlike echo, print returns a value, which
represents whether or not the print statement
succeeded.

◼The value returned by print is always 1.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 29

Variables and strings:
$animal = “antelope”;

$animal_heads = 1;

$animal_legs = 4;

print(“The $animal has $animal_heads head(s).
”);

print(“The $animal has $animal_legs leg(s).
”);

print(‘The $animal has $animal_legs leg(s).
’);

HTML and linebreaks:
\n will not work in PHP. We need to use HTML

tag for new line

Prepared By: Bhavana Hotchandani, DCS, INDUS University 30

PHP Control
Structures and Functions

◼ The two broad types of control structures we will
talk about are branches and loops.

◼ A branch is a fork in the road for a program’s
execution — depending on some test or other,
the program goes either left or right, possibly
following a different path for the rest of the
program’s execution.

◼ A loop is a special kind of branch, where one of
the execution paths jumps back to the beginning
of the branch, repeating the test and possibly the
body of the loop.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 31

◼ Boolean Expressions: Every control structure in this
chapter has two distinct parts: the test (which determines
which part of the rest of the structure executes), and the
dependent code itself (whether separate branches or the
body of a loop).

◼ Tests work by evaluating a Boolean expression, an
expression with a result treated as either true or false.

◼ Boolean Constant: The simplest kind of expression is a
simple value, and the simplest Boolean values are the
constants TRUE and FALSE.

◼ We can use these constants anywhere we would use a
more complicated Boolean expression, and vice versa

Prepared By: Bhavana Hotchandani, DCS, INDUS University 32

if (TRUE)
print(“This will always print
”);

else
print(“This will never print
”);

Or equivalently:
if (FALSE)

print(“This will never print
”);
else

print(“This will always print
”);

Prepared By: Bhavana Hotchandani, DCS, INDUS University 33

◼ Logical operators: Logical operators combine
other logical (aka Boolean) values to produce
new Boolean values.

◼ The standard logical operations (and, or, not, and
exclusive-or) are supported by PHP.
▪ and
▪ Or
▪ !
▪ xor
▪ &&
▪ ||

Prepared By: Bhavana Hotchandani, DCS, INDUS University 34

◼ Comparison operators: ==, !=, <, >,<=,>=, ===
◼ String comparison: The comparison operators may be

used to compare strings as well as numbers
◼ The ternary operator:

testExpression ? yesExpression : noExpression
$max_num = $first_num > $second_num ? $first_num :
$second_num;

Prepared By: Bhavana Hotchandani, DCS, INDUS University 35

Branching

◼ The two main structures for branching are if and switch.
◼ Switch is a useful alternative for certain situations where you

want multiple possible branches based on a single value and
where a series of if statements would be cumbersome.

if ($day == 5)
print(“Five golden rings
”);

elseif ($day == 4)
print(“Four calling birds
”);

elseif ($day == 3)
print(“Three French hens
”);

elseif ($day == 2)
print(“Two turtledoves
”);

elseif ($day == 1)
print(“A partridge in a pear tree
”);

Prepared By: Bhavana Hotchandani, DCS, INDUS University 36

◼ Switch: For a specific kind of multiway branching, the switch
construct can be useful.

◼ Rather than branch on arbitrary logical expressions, switch takes
different paths according to the value of a single expression.

◼ The expression can be a variable or any other kind of expression,
as long as it evaluates to a simple value (that is, an integer, a
double, or a string).

◼ The construct executes by evaluating the expression and then
testing the result for equality against each case value

◼ As soon as a matching value is found, subsequent statements are
executed in sequence until the special statement (break;) or until
the end of the switch construct.

◼ A special default tag can be used at the end, which will match the
expression if no other case has matched it so far.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 37

switch(expression)
{

case value-1:
statement-1;
statement-2;
...
[break;]
case value-2:
statement-3;
statement-4;
...
[break;]
...
[default:
default-statement;]

}

Prepared By: Bhavana Hotchandani, DCS, INDUS University 38

Looping

◼ Bounded loops versus unbounded loops: A bounded
loop executes a fixed number of times — you can tell by
looking at the code how many times the loop will iterate,
and the language guarantees that it won’t loop more
times than that.

◼ An unbounded loop repeats until some condition becomes
true (or false), and that condition is dependent on the
action of the code within the loop.

◼ Bounded loops are predictable, whereas unbounded
loops can be as tricky as you like.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 39

◼ While: The simplest PHP looping construct is while, which
has the following syntax:
while (condition)

statement
◼ The while loop evaluates the condition expression as a

Boolean — if it is true, it executes statement and then starts
again by evaluating condition.

◼ If the condition is false, the while loop terminates.
$count = 1;
while ($count <= 10)
{

print(“count is $count
”);
$count = $count + 1;

}

Prepared By: Bhavana Hotchandani, DCS, INDUS University 40

◼ Do-while: The do-while construct is similar to while,
except that the test happens at the end of the loop.

do statement
while (expression);

◼ The statement is executed once, and then the
expression is evaluated. If the expression is true, the
statement is repeated until the expression becomes
false.
$count = 45;
do
{

print(“count is $count
”);
$count = $count + 1;

} while ($count <= 10);

Prepared By: Bhavana Hotchandani, DCS, INDUS University 41

◼ For: The most complicated looping construct is for, which
has the following syntax:
for (initial-expression; termination-check; loop-end-expression)

statement
◼ In executing a for statement, first the initial-expression is

evaluated just once, usually to initialize variables.
◼ Then termination-check is evaluated — if it is false, the for

statement concludes, and if it is true, the statement executes.
◼ Finally, the loop-end-expression is executed and the cycle

begins again with termination-check.
◼ As always, by statement we mean a single (semicolon-

terminated) statement, a brace-enclosed block, or a
conditional construct.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 42

for ($x = 0; $x <= 10; $x++) {
echo "The number is: $x
";

}
◼ The foreach loop works only on arrays, and is used to loop

through each key/value pair in an array.
◼ foreach ($array as $value) {

code to be executed;
}

◼ For every loop iteration, the value of the current array element
is assigned to $value and the array pointer is moved by one,
until it reaches the last array element.

◼ $colors = array("red", "green", "blue", "yellow");
foreach ($colors as $value) {

echo "$value
";
}

7/29/2019 Prepared By: Bhavana Hotchandani, DCS, INDUS University 43

◼ Break and continue: The standard way to get out of
a looping structure is for the main test condition to
become false.

◼ The special commands break and continue offer an
optional side exit from all the looping constructs,
including while, do-while, and for:
▪ The break command exits the innermost loop construct

that contains it.

▪ The continue command skips to the end of the current
iteration of the innermost loop that contains it.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 44

Passing Information
with PHP

◼ HTTP Is Stateless: that is why form-handling
technology like PHP comes in

◼ HTML forms are mostly useful for passing a few values
from a given page to one single other page of a web
site.

◼ There are more persistent ways to maintain state over
many pageviews, such as cookies and sessions.

◼ The most basic techniques of information-passing
between web pages, which utilize the GET and POST
methods in HTTP to create dynamically generated
pages and to handle form data.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 45

GET Arguments

◼ The GET method passes arguments from one page to the
next as part of the Uniform Resource

◼ Indicator (you may be more familiar with the term Uniform
Resource Locator, or URL) query string.

◼ When used for form handling, GET appends the indicated
variable name(s) and value(s) to the URL designated in the
ACTION attribute with a question mark separator and
submits the whole thing to the processing agent.

◼ Example
◼ When the user makes a selection and clicks the Submit

button
◼ The browser thus constructs the URL string:
http://<your-server-name>/sports.php?Sport=Ice+Hockey&Submit=Select

Prepared By: Bhavana Hotchandani, DCS, INDUS University 46

http://sports.php

◼The PHP script to which the preceding form is
submitted (sports.php) will grab the GET
variables from the end of the request string,
stuff them into the $_GET superglobal array
(explained in a moment), and do something
useful with them — in this case, plug one of
two values into a text string.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 47

◼ There are the two main methods for passing values: GET and
POST (there are others).

◼ Each method has an associated superglobal array, which can be
distinguished from other arrays by the underscore that begins its
name.

◼ Each item submitted via the GET method is accessed in the
handler via the $_GET array;

◼ each item submitted via the POST method is accessed in the
handler via the $_POST array.

◼ The syntax for referencing an item in a superglobal array is simple
and 100 percent consistent:

◼ $_ARRAY_NAME[‘index_name’]
◼ where the index_name is the name part of a name-value pair (for

the GET method), or the name of an
◼ HTML form field (for the POST method).

Prepared By: Bhavana Hotchandani, DCS, INDUS University 48

◼The GET method of form handling offers one
big advantage over the POST method: It
constructs an actual new and differentiable
URL query string. Users can now bookmark
this page. The result of forms using the POST
method is not bookmarkable.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 49

◼ The disadvantages of GET for most types of form handling are so
substantial that the original HTML 4.0 draft specification
deprecated its use in 1997. These flaws include:

◼ The GET method is not suitable for logins because the username
and password are fully visible onscreen as well as potentially
stored in the client browser’s memory as a visited page.

◼ Every GET submission is recorded in the web server log, data set
included.

◼ Because the GET method assigns data to a server environment
variable, the length of the URL is limited. You may have seen
what seem like very long URLs using GET — but you really
wouldn’t want to try passing a 300-word chunk of HTML-
formatted prose using this method.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 50

POST Arguments

◼ POST is the preferred method of form submission
today, particularly where there will be result in
permanent changes, such as adding information to a
database.

◼ The form data set is included in the body of the form
when it is forwarded to the processing agent (in this
case, PHP).

◼ No visible change to the URL will result according to
the different data submitted.

◼ The POST method has one primary advantage:
▪ There is a much larger limit on the amount of data that can

be passed (a couple of megabytes rather than a couple of
hundred characters).

Prepared By: Bhavana Hotchandani, DCS, INDUS University 51

◼POST has these disadvantages:

▪ The results at a given moment cannot be
bookmarked.

▪ Browsers exhibit different behavior when the
visitor uses their Back and Forward navigation
buttons within the browser.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 52

Formatting Form Variables

Prepared By: Bhavana Hotchandani, DCS, INDUS University 53

◼ Terminating Execution:
◼ Sometimes you just have to give up, and PHP offers a

construct that helps you do just that. The exit() construct takes
either a string or a number as argument, prints out the
argument, and then terminates execution of the script.

◼ Everything that PHP produces up to the point of invoking exit()
is sent to the client browser as usual, and nothing in your script
after that point will even be parsed — execution of the script
stops immediately.

◼ If the argument given to exit is a number rather than a string,
the number will be the return value for the script’s execution.
Because exit is a construct, not a function, it’s also legal to give
no argument and omit the parentheses.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 54

◼ The die() construct is an alias for exit() and so behaves
exactly the same way.

◼ A better use for die() is to make your crashes
informative. It’s good to get into the habit of testing for
unexpected conditions that would crash your script if
they were true, and throw in a die() statement with an
informative message.

◼ If you’re correct in your expectations, the die() will never
be invoked; if you’re wrong, you will have an error
message of your own rather than a possibly obscure
PHP error.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 55

$connection = make_database_connection();
if (!$connection)

die(“No database connection!”);
use_database_connection($connection);

Prepared By: Bhavana Hotchandani, DCS, INDUS University 56

Using Functions

◼ The basic syntax for using (or calling) a function is:
function_name(expression_1, expression_2, ...,
expression_n)

◼ This includes the name of the function followed by a
parenthesized and comma-separated list of input
expressions (which are called the arguments to the function).

◼ Functions can be called with zero or more arguments,
depending on their definitions.

◼ When PHP encounters a function call, it first evaluates each
argument expression and then uses these values as inputs to
the function.

◼ After the function executes, the returned value (if any) is the
result of the entire function expression.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 57

◼ All the following are valid calls to built-in PHP
functions:
▪ sqrt(9); // square root function, evaluates to 3

▪ rand(10, 10 + 10); // random number between 10 and 20

▪ strlen(“This has 22 characters”); // returns the number 22

▪ pi(); // returns the approximate value of pi

◼ These functions are called with 1, 2, 1, and 0
arguments, respectively

Prepared By: Bhavana Hotchandani, DCS, INDUS University 58

Defining Your Own Functions

◼ What is a function?
▪ A function is a way of wrapping up a chunk of code and giving that

chunk a name, so that you can use that chunk later in just one line
of code.

▪ Functions are most useful when you will be using the code in more
than one place, but they can be helpful even in one-use situations,
because they can make your code much more readable.

◼ Function definition syntax
function function-name ($argument-1, $argument-2, ..)

{

statement-1;

statement-2;

...

}

Prepared By: Bhavana Hotchandani, DCS, INDUS University 59

◼ That is, function definitions have four parts:
▪ The special word function

▪ The name that you want to give your function

▪ The function’s parameter list — dollar-sign variables
separated by commas

▪ The function body — a brace-enclosed set of statements
◼ Just as with variable names, the name of the function must

be made up of letters, numbers, and underscores, and it
must not start with a number.

◼ Unlike variable names, function names are converted to
lowercase before they are stored internally by PHP, so a
function is the same regardless of capitalization.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 60

1. PHP looks up the function by its name (you will get an
error if the function has not yet been defined).

2. PHP substitutes the values of the calling arguments (or
the actual parameters) into the variables in the
definition’s parameter list (or the formal parameters).

3. The statements in the body of the function are
executed. If any of the executed statements are return
statements, the function stops and returns the given
value. Otherwise, the function completes after the last
statement is executed, without returning a value.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 61

◼ Formal parameters versus actual parameters
◼ Argument number mismatches

▪ Too few arguments

▪ Too many arguments

◼ Functions and Variable Scope: Each function is its own little world.

▪ That is, barring some special declarations, the meaning of a variable name

inside a function has nothing to do with the meaning of that name elsewhere.
◼ Global versus local: The scope of a variable defined inside a function is

local by default.

▪ Using the global declaration, you can inform PHP that you want a variable
name to mean the same thing as it does in the context outside the function.

▪ The syntax of this declaration is simply the word global, followed by a comma-
delimited list of the variables that should be treated that way, with a

terminating semicolon.

Prepared By: Bhavana Hotchandani, DCS, INDUS University 62

function SayMyABC ()
{

global $count;

while ($count < 10)

{

print(chr(ord(‘A’) + $count));

$count = $count + 1;

}
print(“
Now I know $count letters
”);

}

Prepared By: Bhavana Hotchandani, DCS, INDUS University 63

◼Static variables: The static declaration causing
variables to retain their values in between calls
to the same function.

◼Recursion

Prepared By: Bhavana Hotchandani, DCS, INDUS University 64

