INDUS INSTITUTE OF ENGINEERING \& TECHNOLOGY

Semester: IV
Subject: COMPLEX ANALYSIS(MA0411)

UNIT-IV
 COMPLEX SEQUENCE \& SERIES AND RESIDUES

7 hours

1. Power series
2. Taylor series
3. Laurent series
4. Singularities, poles and zeros
5. Theory of residues
6. Definite real integrals

1 Complex Sequence and Series

- A sequence of complex numbers $\left\{z_{1}, z_{2}, \ldots, z_{n}, \ldots\right\}$ or $\left\{z_{n}\right\}$ is obtained by an assignment to each positive integer n, a complex number z_{n}.
- A sequence $\left\{z_{n}\right\}$ is said to be convergent if $\lim _{n \rightarrow \infty} z_{n}$ is finite and unique.
- A sequence $\left\{z_{n}\right\}$ is said to be divergnet, if $\lim _{n \rightarrow \infty} z_{n}$ is infinite.
- An infinite complex series is defined as the sum of terms of a given sequence $\left\{z_{n}\right\}$ of complex numbers. It is written as $\sum_{n=1}^{n=\infty} z_{n}=z_{1}+z_{2}+\cdots+z_{n}+\cdots$
- The $n^{\text {th }}$ partial sum of the series given above is denoted by S_{n} and is defined by $S_{k}=\sum_{k=1}^{k=n} z_{k}$
- A complex series is said to be convergent to a sum S, if $\lim _{n \rightarrow \infty} S_{n}=S$ otherwise it is divergent.
- Power Series is of the form

$$
\sum_{n=0}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots+a_{n}\left(z-z_{0}\right)^{n}+\cdots
$$

where $a_{0}, a_{1}, a_{2}, \ldots$ are real or complex co-effecients and z_{0} is a fixed (complex) point called the center. It is called a power series in powers of $z-z_{0}$ or about z_{0} or a power series centered at z_{0}.

- Whe $z_{0}=0$, the power series reduces to $\sum_{n=0}^{n=\infty} a_{n} z^{n}=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots$ which is a power series centered at origin.
- Region of convergence is a set of all points z for which the series converges.
- Regarding the convergence of the power series, there are three possibilites:
(a) The series converges on at the point z_{0}.
(b) The series converges for all z, i.e. in entire complex plane or z - plane.
(c) The series converges everywhere inside a circular disk $\left|z-z_{0}\right|<R$ and diverges every where in $\left|z-z_{0}\right|>R$.
Here R is called the radius of convergence and the circle $\left|z-z_{0}\right|=R$ is called the circle of convergence.
- The case when $\left|z-z_{0}\right|=R$ needs to be investigated seperately and the series may converge or diverge on it.
- If the disk is centered at infinity, the power series takes the form

$$
\sum_{n=0}^{n=\infty} a_{n} z^{-n}=a_{0}+\frac{a_{1}}{z}+\frac{a_{2}}{z^{2}}+\cdots+\frac{a_{n}}{z^{n}}+\cdots
$$

- Taylor Series If $f(z)$ is a complex function, analytic inside and on a simple closed curve C in the z - plane, then higher derivatives of $f(z)$ exists inside C. Thus, for fixed points z_{0} and $z_{0}+h$,

$$
f\left(z_{0}+h\right)=f\left(z_{0}\right)+h f^{\prime}\left(z_{0}\right)+\frac{h^{2}}{2!} f^{\prime \prime}\left(z_{0}\right)+\frac{h^{3}}{3!} f^{\prime \prime \prime}\left(z_{0}\right)+\cdots
$$

Substituting $z_{0}+h=z$,

$$
f(z)=f\left(z_{0}\right)+\left(z-z_{0}\right) f^{\prime}\left(z_{0}\right)+\frac{\left(z-z_{0}\right)^{2}}{2!} f^{\prime \prime}\left(z_{0}\right)+\frac{\left(z-z_{0}\right)^{3}}{3!} f^{\prime \prime \prime}\left(z_{0}\right)+\cdots
$$

This series is known as Taylor's series expansion of $f(z)$ about $z=z_{0}$.
The region of convergence of this series is $\left|z-z_{0}\right|<R$, a disk centered at z_{0} with radius R.

- Taylor's series reduces to Maclaurin's series when $z_{0}=0$. It is given by:

$$
f(z)=f(0)+z f^{\prime}(0)+\frac{z^{2}}{2!} f^{\prime \prime}(0)+\frac{z^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots
$$

- Laurent Series If $f(z)$ is a complex function analytic on two concentric circles C_{1} and C_{2} with center z_{0} and radii R_{1} and R_{2} and in the annulus region $R_{1}<\left|z-z_{0}\right|<R_{2}$, then for each point within the annulus, $f(z)$ can be represented uniquely by the series of the form:

$$
f(z)=\sum_{n=-\infty}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{n=\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

where the co-effecients are given by: $a_{n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z$ and $b_{n}=a_{-n}=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z$ taken counterclockwise around any simple closed path $C:\left|z-z_{0}\right|=\rho$ which lies in between the annulus $R_{1}<\left|z-z_{0}\right|<R_{2}$.

- In Laurent series $\sum_{n=1}^{n=\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ is called the Principal part and $\sum_{n=0}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}$ is called the regular part of the series.
- If $f(z)$ is analytic at all points inside C_{1}, then by Cauchy's theorem $b_{n}=0$ for each $n \geq 1$
- The region of convergence of Laurent's series is the annulus $R_{1}<\left|z-z_{0}\right|<R_{2}$.
- If z_{0} is the only singular point inside C_{1}, then the series is convergent in the deleted neighbourhood $0<\left|z-z_{0}\right|<R$

2 Singularities, Zeros and Poles

- A point z_{0} is said to be a singular point or singularity of a function $f(z)$, if $f(z)$ is not analytic (or not defined) at z_{0} but analytic at some points of each neighbourhood of z_{0}.
- A singular point z_{0} of $f(z)$ is said to be isolated, if there is a neighbourhood of z_{0} which contains no other singular points of $f(z)$ excpet z_{0}.
i.e. z_{0} is said to be an isolated singular point if it is analytic in some deleted neighbourhood of $z_{0}, 0<\left|z-z_{0}\right|<\rho$.
- Let z_{0} be an isolated singular point of $f(z)$, then the Laurent series exists of the form $f(z)=\sum_{n=0}^{n=\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{n=\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ which is valid in some annulus $0<\left|z-z_{0}\right|<R$
- If $f(z)$ has only Taylor series expansion about $z=z_{0}$, i.e. the Laurent series expansion has sero principal part, then z_{0} is called the regular point of $f(z)$.
- If the principal part of Laurent series contains only finite number of terms, say m, then the singularity $z=z_{0}$ is said to be a pole of order m.
- In the principal part of the Laurent series, if $b_{1} \neq 0$ and b_{2}, b_{3}, \ldots are all zeros, then the singularity $z=z_{0}$ is said to be a simple pole or pole of order 1 .
- Let $f(z)$ be analytic function in a domain D and $z=z_{0}$ in D. If $f\left(z_{0}\right)=0$, then z_{0} is said to be a zero of $f(z)$.
- If $z=z_{0}$ is a zero of $f(z)$ then $a_{0}=0$.
- If $z=z_{0}$ is a zero of $f(z)$ with $a_{0}=0$ and $a_{1} \neq 0$, then z_{0} is called a simple zero.
- If $z=z_{0}$ is a zero of $f(z)$ with $a_{0}=a_{1}=\cdots=a_{m-1}=0$ and $a_{m} \neq 0$, then z_{0} is called a zero of order m.
- The zeros of an analytic function $f(z)$ are isolated.
- If $f(z)$ is an analytic function at $z=z_{0}$ and have $n^{\text {th }}$ order zero at z_{0}, then $\frac{1}{f(z)}$ has a pole of $n^{\text {th }}$ order at z_{0}.

3 Theory of Residues

- If a complex function $f(z)$ has a pole at the point $z=z_{0}$, then the co-effecient b_{1} of $\frac{1}{z-z_{0}}$ in Laurent series expansion of $f(z)$ about z_{0} is called the residue of $f(z)$ at the point $z=z_{0}$.
- Thus, we have: $\begin{gathered}\text { Res } \\ z=z_{0}\end{gathered} f(z)=b_{1}=\oint_{C} f(z) d z$
- Calculation of Residues:
(a) Let $z=z_{0}$ be a simple pole of $f(z)$, then

$$
\operatorname{Res}_{z=z_{0}} f(z)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

(b) Let $z=z_{0}$ be a pole of order $m>1$ for $f(z)$, then

$$
\begin{gathered}
\text { Res } \\
z=z_{0}
\end{gathered} f(z)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}}\left[\frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z)\right]
$$

- Cauchy's Residue Theorem: If $f(z)$ is an analytic funcion inside and on a simple closed path C except at a finite number of singularities inside C. Then
$\oint_{C} f(z) d z=2 \pi i \times$ Sum of residues of $f(z)$ at all finite number of singularities inside C
where the integral is taken counter clockwise around C.

4 Definite Real Integrals

In this section definite real integral of the form $\int_{0}^{2 \pi} f(\sin \theta, \cos \theta) d \theta$ is evaluated using complex integration.

Steps to solve the integral:
(i) Substitute $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{z+z^{-1}}{2}=\frac{z^{2}+1}{2 z}$ and $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{z-z^{-1}}{2 i}=\frac{z^{2}-1}{2 z i}$
(ii) $d z=i z d \theta$
(iii) Evaluate the integral so obtained over $|z|=1$ using Residue theorem.

