
Unit 3

Object Oriented PHP

Class & Object

• Class:

– In object-oriented programming, a class is a construct or prototype from which objects are

created.

– A class defines constituent members which enable class instances to have state and behavior.

– Data field members enable a class object to maintain state and methods enable a class object's

behavior.

• Object:

– The fundamental idea behind an object-oriented language is to enclose a bundle of variables

and functions into a single unit and keep both variables and functions safe from outside

interference and misuse.

– Such a unit is called object which acts on data. The mechanism that binds together data and

functions are called encapsulation.

– This feature makes it easy to reuse code in various projects. The functions declared in an object

provides the way to access the data.

– The functions of an object are called methods and all the methods of an object have access to

variables called properties.

PHP: Creating classes and Instantiation

• The class definition starts with the keyword class followed by a class name, then

followed by a set of curly braces ({}) which enclose constants, variables (called

"properties"), and functions (called "methods") belonging to the class.

• A valid class name (excluding the reserved words) starts with a letter or underscore,

followed by any number of letters, numbers, or underscores.

• Class names usually begin with an uppercase letter to distinguish them from other

identifiers.

• An instance is an object that has been created from an existing class. Creating an

object from an existing class is called instantiating the object.

• To create an object out of a class, the new keyword must be used.

• Classes should be defined prior to instantiation.

• Class member variables are called properties. Sometimes they are referred as attributes

or fields.

• The properties hold specific data and related with the class in which it has been defined.

• Declaring a property in a class is an easy task, use one of the keyword public, protected,

or private followed by a normal variable declaration.

– public : The property can be accessed from outside the class, either by the script or from another

class

– private : No access is granted from outside the class, either by the script or from another class.

– protected : No access is granted from outside the class except a class that’s a child of the class

with the protected property or method.

• After an object is instantiated, you can access the property of a class using the object and

-> operator. Any member declared with keyword "private" or "protected" cannot be

accessed outside the method of the class.

<?php

class Myclass

{

// Add property statements here

// Add the methods here

}

$myobj = new MyClass;

?>

<?php

class Myclass

{

public $font_size =10;

}

$f = new MyClass;

echo $f->font_size;

?>
There is a common mistake to use more

than one dollar sign when accessing

variables. In the above example there

will be no $ sign before font_size (echo

$f->font_size)

• Setting Methods:
– The functions which are declared in a class are called methods.

– A class method is exactly similar to PHP functions.

– Declaring a method in a class is an easy task, use one of the keyword public, protected, or private

followed by a method name.

– public : The method can be accessed from outside the class.

– private : No access is granted from outside the class.

– protected : No access is granted from outside the class except a class that’s a child of the class with

the protected property or method.

– A valid method name starts with a letter or underscore, followed by any number of letters, numbers,

or underscores.

– The method body enclosed within a pair of braces which contains codes. The opening curly brace ({

) indicates the beginning of the method code and the closing curly (}) brace indicates the

termination of the method.

– If the method is not defined by public, protected, or private then default is public.

– Can access properties and methods of the current instance using $this (Format $this->property) for

non static property.

<?php

class Myclass

{

public $font_size ="18px";

public $font_color = "blue";

public $string_name = "PHP OOPs Concepts";

public function customize_print()

{

echo "<p style=font-size:".$this->font_size.";color:".$this->font_color.";>".

$this->string_name."</p>";

}

}

$f = new MyClass;

echo $f->customize_print();

?>

class Myclass

{

public $font_size ="18px";

public $font_color = "blue";

public $string_name = "w3resource";

public function customize_print()

{

echo "<p style=font-size:".$this->font_size.";color:".$this->font_color.";>".$this->string_name."</p>";

}

}

$f = new MyClass;

$f->font_size = "20px";

$f->font_color = "red";

$f->string_name = "Object Oriented Programming";

echo $f->customize_print();

PHP Constructor methods

• The constructor is a special built-in method, added with PHP 5, allows developers to

declare for classes.

• Constructors allow to initializing object properties (i.e. the values of properties) when an

object is created.

• Classes which have a constructor method execute automatically when an object is

created.

• The 'construct' method starts with two underscores (__).

• The constructor is not required if you don't want to pass any property values or perform

any actions when the object is created.

• PHP only ever calls one constructor.

function __construct([argument1, argument2, ..., argumentN])

{

/* Class initialization code */

}

class Myclass

{

private $font_size;

private $font_color;

private $string_value;

function __construct($font_size,$font_color,$string_value)

{

$this->font_size = $font_size;

$this->font_color = $font_color;

$this->string_value = $string_value;

}

function customize_print()

{

echo "<p style=font-size:".$this->font_size.";color:".$this->font_color.";>".$this->string_value."</p>";

}

}

$f = new MyClass('20px','red','Object Oriented Programming');

echo $f->customize_print();

PHP Destructors methods

• The destructor is the counterpart of constructor.

• A destructor function is called when the object is destroyed

• A destructor function cleans up any resources allocated to an object after the object is

destroyed.

• A destructor function is commonly called in two ways: When a script ends or manually

delete an object with

the unset() function

• The 'destructor' method starts with two underscores (__).

function __destruct

{

//code here

}

PHP: Scope Resolution Operator (::)

• The double colon (::), is a token which allows access to static,

constant, and overridden properties or methods of a class.

PHP: Class Constants

• A special entity that remains fixed on an

individual class basis.

• Constant names are not preceded by a

dollar sign ($) like a normal variable

declaration.

• Interfaces may also include constants.

• When calling a class constant using the

$classname :: constant syntax, the

classname can actually be a variable.

• As of PHP 5.3, you can access a static

class constant using a variable

reference (Example: className ::

$varConstant).

<?php

class MyClass

{

const constant1 = 'PHP Class Constant';

function PrintConstant()

{

echo self::constant1 . "
";

}

}

echo MyClass::constant1 . "
";

$classname = "MyClass";

echo $classname::constant1 . "
"; // As of PHP

5.3.0

$class = new MyClass();

$class->PrintConstant();

echo $class::constant1."
"; // As of PHP 5.3.0

?>

Understanding Access Specifiers

• Properties can be public, private or protected.

– Public means that properties can be accessed everywhere,

– private means properties can be accessed by the class that defines the member

and

– protected means properties can be accessed only within the class itself and by

inherited and parent classes.

• Methods can be public, private or protected.

– Public means that methods can be accessed everywhere,

– private means methods can be accessed by the class that defines the member

and

– protected means methods can be accessed only within the class itself and by

inherited and parent classes.

class Myclass

{

public $font_size ="18px";

private $font_color = "blue";

protected $string_name = "w3resource";

function property_print()

{

echo $this->font_size;

echo $this->font_color;

echo $this->string_name;

}

}

$obj = new MyClass;

echo $obj->font_size; //Display 18px

echo $obj->font_color; //Fatal error: Cannot access private property Myclass::$font_color in F:\wamp\..

echo $obj->string_name; //Fatal error: Cannot access protected property Myclass::$string_name in F:\wamp\..

$obj->property_print(); //Display 18pxbluew3resource

PHP: Inheritance

• Inheritance is a well-established programming

principle.

• Inheritance enables classes to form a

hierarchy like a family tree.

• Allows subclasses to share the methods and

properties (which are public or protected) of its

superclass.

• Superclass is the parent class.

• A subclass can add properties and methods.

• Inheritance allows reusing code.

PHP: Interfaces

• Provides methods to implement.

• Derived classes may implement more

than one interface.

• Interfaces may inherit from other

interfaces using the extends keyword.

• All methods are assumed to be public

in the interface definition can be

defined explicitly as public or implicitly.

• When a class implements multiple

interfaces there cannot be any naming

collision between methods defined in

the different interfaces.

interface MyInterface

{

function method1();

function method2();

}

class MyClass implements MyInterface

{

function method1()

{

// definition of method1

}

function method2()

{

// definition of method2

}

}

PHP: Object Cloning

• Cloning is used to create a copy of an object.

• An object copy is created by using the clone keyword.

• When an object is cloned, PHP 5 will perform a shallow copy of all of the object's

properties.

• Any properties that are references to other variables, will remain references.

• PHP provides a special method __clone to copy an object.

• Once the cloning is complete, if a __clone() method is defined, then the newly

created object's __clone() method will be called, to allow any necessary properties

that need to be changed.

Final keyword

• PHP 5 introduces the final keyword, which prevents child classes from overriding a

method by prefixing the definition with final. If the class itself is being defined final

then it cannot be extended.
• <?php

class BaseClass {

public function test() {

echo "BaseClass::test() called\n";

}

final public function moreTesting() {

echo "BaseClass::moreTesting() called\n";

}

}

class ChildClass extends BaseClass {

public function moreTesting() {

echo "ChildClass::moreTesting() called\n";

}

}

// Results in Fatal error: Cannot override final method BaseClass::moreTesting()

?>

• <?php

final class BaseClass {

public function test() {

echo "BaseClass::test() called\n";

}

// Here it doesn't matter if you specify the function as final or not

final public function moreTesting() {

echo "BaseClass::moreTesting() called\n";

}

}

class ChildClass extends BaseClass {

}

// Results in Fatal error: Class ChildClass may not inherit from final class (BaseClass)

?>

• Note: Unlike Java final keyword in PHP can only be used for methods and classes

not for variables.We use the keyword 'const'.

Why do I have to use final?

1.Preventing massive inheritance chain of doom

2.Encouraging composition

3.Force the developer to think about user public API

4.Force the developer to shrink an object's public API

5.A final class can always be made extensible

6.extends breaks encapsulation

7.You don't need that flexibility

8.You are free to change the code

When to avoid final: Final classes only work effectively under following assumptions:

1.There is an abstraction (interface) that the final class implements

2.All of the public API of the final class is part of that interface

Serialization

• Most often we need to store a complex array in the database or in a file from

PHP. Some of us might have surely searched for some built-in function to

accomplish this task. Complex arrays are arrays with elements of more than one

data-types or array.There are two popular methods of serializing variables.

– serialize()

– unserialize()

• We can serialize any data in PHP using the serialize() function. The serialize()

function accepts a single parameter which is the data we want to serialize and

returns a serialized string. Below program illustrate this:
<?php

$myvar = array('hello', 42, array(1, 'two'), 'apple'); // a complex array

$string = serialize($myvar); // convert to a string

echo $string;

$newvar = unserialize($string); // unserializing the data in $string

?>

• Serialization is used to convert an object to a byte-stream representation

and vice-versa.

• This is useful when we need to pass object data in the form of string of text

between scripts and applications.

• There are various situations in which we need to pass objects in the form of

string such as:

– Converting object to string and storing it in a text file or a database table.

– Converting and passing objects in URL query string.

– Carrying objects between webpages in the session, etc.

• When the object is serialized, the content is placed with some type of a

specifier followed by a colon, then followed with the actual data followed by

a semi-colon.

• When we serialize an object it stores the class name and all its properties. It

doesn’t store methods of the class. Hence to unserialize the serialized object the

class should be present in the script before unserializing it.

• Note that static properties of class is not serialized.

