

INDUS INSTITUTE OF ENGINEERING & TECHNOLOGY

Semester: IV

Subject: COMPLEX ANALYSIS(MA0411)

UNIT-III COMPLEX INTEGRATION

8 hours

- 1. Complex line integral: Properties and evaluation
- 2. Simply and multiply connected domains
- 3. Cauchys integral theorem, Cauchys integral theorem for multiply connected domains
- 4. Cauchys integral formula (without proof)

1 Complex line integral: Properties and evaluation

- Concept of integration as an inverse process of differentiation is also applicable in case of complex functions provided, the function is analytic.
 i.e. If F'(z) = f(z), then ∫ f(z) dz = F(z) + c, where c is a complex constant.
 This is called indefinite integral
- The definite integral of a complex variable $\int_{z_1}^{z_2} f(z) dz$ depends upon the path from z_1 to z_2 in the complex plane.
- Complex definite integral can also be written as $\int_{C} f(z) dz$, where C is the path of integration.
- Complex definite integral is also called Complex Line Integral or simply line integral.
- When C is a closed path, i.e. when z_1 and z_2 co-incides, the integral denoted by $\oint f(z) dz$.
- Properties of Line Integral:

 z_1

 z_2

1. Let
$$f(z) = u + iv$$
 and $dz = dx + idy$, then $\int_{C} f(z) dz = \int_{C} (u + iv)(dx + idy)$
 $= \int_{C} (udx - vdy) + i \int_{C} (vdx + udy)$
2. Linearity Property: Let k_1, k_2 be complex constants and $f(z)$ and $g(z)$ be complex functions, then $\int_{C} [k_1 f(z) + k_2 g(z)] dz = k_1 \int_{C} f(z) dz + k_2 \int_{C} g(z) dz$
3. $\int_{C}^{z_2} f(z) dz = -\int_{C}^{z_1} f(z) dz$

- 4. Given that C is an arc with end points A and B, $\int_{C} |dz| = \int_{C} ds = L$, where L is the
 - length of the arc C from A to B.
- 5. $\int_{C} f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$, where C is the curve consisting of two curves C_1 and C_2 .
- If f(z) is not analytic, value of $\int f(z) dz$ is different for different paths from z_1 to z_2 . i.e. the value of the integral depends upon the path, when the function is not an analytic function.
- When f(z) is an analytic function, $\int_{z_1}^{z_2} f(z) dz$ is independent of the path from z_1 to z_2 .

$\mathbf{2}$ Simply and Multiply connected domains

- A path with coincident end points, not intersecting or touching itself is called a **simple closed** path or contour. Integral the simple closed path is called contour integral.
- A domain D is called a **simply connected domain**, if every simple closed paths lying inside D can be contracted to a point in D without leaving D.
 - A domain D which is not simply connected is called **multiply connected domian**.

Simply-connected domain

Multiply-connected domains

- Fundamental Theorem of Complex Integration: If f(z) is analytic function in a simply connected domain D, then for every simple closed path C in D, $\oint f(z) dz = 0$.
- Evaluation of line integral: If f(z) be an analytic function in a simply connected domain D, then there exists an analytic function F(z) with F'(z) = f(z) in D then along any path

joining z_1 and z_2 in D, $\int_{z_1}^{z_2} f(z) dz = F(z_2) - F(z_1)$.

Cauchy's Integral Theorem for Multiply Connected Domain: Let f(z) be analytic between two simple closed paths C_1 and C_2 , where C_2 lies entirely inside the curve C_1 , then

$$\oint_{C_1} f(z) \, dz = \oint_{C_2} f(z) \, dz$$

• Let C_1, C_2, \ldots, C_n be finite simple closed paths inside a simple closed path C and f(z) is analytic within the domain between the paths C_1, C_2, \ldots, C_n then

$$\oint_C f(z) dz = \oint_{C_1} f(z) dz + \oint_{C_2} f(z) dz + \dots + \oint_{C_n} f(z) dz$$

3 Cauchy's Integral Formula

- Let f(z) be an analytic function within and on a simple closed path C. If z_0 is any point in C where $\frac{f(z)}{z-z_0}$ is not analytic, then $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$
- Generalized Cauchy's integral formula: Let f(z) be an analytic function within and on a simple closed path C. If z_0 is any point in C where $\frac{f(z)}{z-z_0}$ is not analytic, then

$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} \, dz = \frac{2\pi i}{n!} f^n(z_0)$$

• If f(z) is analytic on C_1 and C_2 and in the ring-shaped domain bounded by C_1 and C_2 and z_0 is any point in that domain where $\frac{f(z)}{z-z_0}$ is not analytic, then

$$\oint_{C_1} \frac{f(z)}{z - z_0} dz + \oint_{C_2} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0)$$

where the outer integral over C_1 is taken counter clockwise and the inner integral over C_2 is taken clockwise.