1. Complex line integral: Properties and evaluation

- Concept of integration as an inverse process of differentiation is also applicable in case of complex functions provided, the function is analytic.
 i.e. If \(F'(z) = f(z) \), then \(\int f(z) \, dz = F(z) + c \), where \(c \) is a complex constant.
 This is called indefinite integral

- The definite integral of a complex variable \(\int_{z_1}^{z_2} f(z) \, dz \) depends upon the path from \(z_1 \) to \(z_2 \) in the complex plane.

- Complex definite integral can also be written as \(\int_C f(z) \, dz \), where \(C \) is the path of integration.

- Complex definite integral is also called Complex Line Integral or simply line integral.

- When \(C \) is a closed path, i.e. when \(z_1 \) and \(z_2 \) co-incides, the integral denoted by \(\oint_C f(z) \, dz \).

- Properties of Line Integral:
 1. Let \(f(z) = u + iv \) and \(dz = dx + idy \), then \(\int_C f(z) \, dz = \int_C (u + iv)(dx + idy) \)
 \[= \int_C (udx - vdy) + i \int_C (vdx + udy) \]
 2. Linearity Property: Let \(k_1, k_2 \) be complex constants and \(f(z) \) and \(g(z) \) be complex functions, then \(\int_C [k_1 f(z) + k_2 g(z)] \, dz = k_1 \int_C f(z) \, dz + k_2 \int_C g(z) \, dz \)
 3. \(\int_{z_1}^{z_2} f(z) \, dz = -\int_{z_2}^{z_1} f(z) \, dz \)
4. Given that C is an arc with end points A and B, $$\int_C |dz| = \int_C ds = L,$$ where L is the length of the arc C from A to B.

5. $$\int_C f(z) \, dz = \int_{C_1} f(z) \, dz + \int_{C_2} f(z) \, dz,$$ where C is the curve consisting of two curves C_1 and C_2.

- If $f(z)$ is not analytic, value of $\int_{z_1}^{z_2} f(z) \, dz$ is different for different paths from z_1 to z_2. i.e. the value of the integral depends upon the path, when the function is not an analytic function.

- When $f(z)$ is an analytic function, $\int_{z_1}^{z_2} f(z) \, dz$ is independent of the path from z_1 to z_2.

2 Simply and Multiply connected domains

- A path with coincident end points, not intersecting or touching itself is called a simple closed path or contour. Integral the simple closed path is called contour integral.

- A domain D is called a simply connected domain, if every simple closed paths lying inside D can be contracted to a point in D without leaving D. A domain D which is not simply connected is called multiply connected domain.

![Simply-connected domain](image1) ![Multiply-connected domains](image2)

- **Fundamental Theorem of Complex Integration:** If $f(z)$ is analytic function in a simply connected domain D, then for every simple closed path C in D, $$\oint_C f(z) \, dz = 0.$$

- **Evaluation of line integral:** If $f(z)$ be an analytic function in a simply connected domain D, then there exists an analytic function $F(z)$ with $F'(z) = f(z)$ in D then along any path joining z_1 and z_2 in D, $$\int_{z_1}^{z_2} f(z) \, dz = F(z_2) - F(z_1).$$

- **Cauchy’s Integral Theorem for Multiply Connected Domain:** Let $f(z)$ be analytic between two simple closed paths C_1 and C_2, where C_2 lies entirely inside the curve C_1, then $$\oint_{C_1} f(z) \, dz = \oint_{C_2} f(z) \, dz.$$

- Let C_1, C_2, \ldots, C_n be finite simple closed paths inside a simple closed path C and $f(z)$ is analytic within the domain between the paths C_1, C_2, \ldots, C_n then $$\oint_C f(z) \, dz = \oint_{C_1} f(z) \, dz + \oint_{C_2} f(z) \, dz + \cdots + \oint_{C_n} f(z) \, dz$$
3 Cauchy’s Integral Formula

- Let \(f(z) \) be an analytic function \textbf{within and on a simple closed path} \(C \). If \(z_0 \) is any point in \(C \) where \(\frac{f(z)}{z-z_0} \) is not analytic, then
 \[
 \oint_C \frac{f(z)}{z-z_0} \, dz = 2\pi if(z_0)
 \]

- \textbf{Generalized Cauchy’s integral formula:} Let \(f(z) \) be an analytic function \textbf{within and on a simple closed path} \(C \). If \(z_0 \) is any point in \(C \) where \(\frac{f(z)}{z-z_0} \) is not analytic, then
 \[
 \oint_C f(z) \left(\frac{1}{z-z_0} \right)^{n+1} \, dz = \frac{2\pi i}{n!} f^{(n)}(z_0)
 \]

- If \(f(z) \) is analytic on \(C_1 \) and \(C_2 \) and in the ring-shaped domain bounded by \(C_1 \) and \(C_2 \) and \(z_0 \) is any point in that domain where \(\frac{f(z)}{z-z_0} \) is not analytic, then
 \[
 \oint_{C_1} \frac{f(z)}{z-z_0} \, dz + \oint_{C_2} \frac{f(z)}{z-z_0} \, dz = 2\pi if(z_0)
 \]

where the outer integral over \(C_1 \) is taken counter clockwise and the inner integral over \(C_2 \) is taken clockwise.