INDUS INSTITUTE OF ENGINEERING \& TECHNOLOGY

Semester: IV
Subject: COMPLEX ANALYSIS(MA0411)
UNIT-III
COMPLEX INTEGRATION
8 hours

1. Complex line integral: Properties and evaluation
2. Simply and multiply connected domains
3. Cauchys integral theorem, Cauchys integral theorem for multiply connected domains
4. Cauchys integral formula (without proof)

1 Complex line integral: Properties and evaluation

- Concept of integration as an inverse process of differentiation is also applicable in case of complex functions provided, the function is analytic.
i.e. If $F^{\prime}(z)=f(z)$, then $\int f(z) d z=F(z)+c$, where c is a complex constant.

This is called indefinite integral

- The definite integral of a complex variable $\int_{z_{1}}^{z_{2}} f(z) d z$ depends upon the path from z_{1} to z_{2} in the complex plane.
- Complex definite integral can also be written as $\int_{C} f(z) d z$, where C is the path of integration.
- Complex definite integral is also called Complex Line Integral or simply line integral.
- When C is a closed path, i.e. when z_{1} and z_{2} co-incides, the integral denoted by $\oint_{C} f(z) d z$.
- Properties of Line Integral:

1. Let $f(z)=u+i v$ and $d z=d x+i d y$, then $\int_{C} f(z) d z=\int_{C}(u+i v)(d x+i d y)$

$$
=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y)
$$

2. Linearity Property: Let k_{1}, k_{2} be complex constants and $f(z)$ and $g(z)$ be complex functions, then $\int_{C}\left[k_{1} f(z)+k_{2} g(z)\right] d z=k_{1} \int_{C} f(z) d z+k_{2} \int_{C} g(z) d z$
3. $\int_{z_{1}}^{z_{2}} f(z) d z=-\int_{z_{2}}^{z_{1}} f(z) d z$
4. Given that C is an arc with end points A and $B, \int_{C}|d z|=\int_{C} d s=L$, where L is the length of the $\operatorname{arc} C$ from A to B.
5. $\int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z$, where C is the curve consisting of two curves C_{1} and C_{2}.

- If $f(z)$ is not analytic, value of $\int_{z_{1}}^{z_{2}} f(z) d z$ is different for different paths from z_{1} to z_{2}. i.e. the value of the integral depends upon the path, when the function is not an analytic function.
- When $f(z)$ is an analytic function, $\int_{z_{1}}^{z_{2}} f(z) d z$ is independent of the path from z_{1} to z_{2}.

2 Simply and Multiply connected domains

- A path with coincident end points, not intersecting or touching itself is called a simple closed path or contour. Integral the simple closed path is called contour integral.
- A domain D is called a simply connected domain, if every simple closed paths lying inside D can be contracted to a point in D without leaving D.
A domain D which is not simply connected is called multiply connected domian.

Simply-connected domain

Multiply-connected domains

- Fundamental Theorem of Complex Integration: If $f(z)$ is analytic function in a simply connected domain D, then for every simple closed path C in $D, \oint_{C} f(z) d z=0$.
- Evaluation of line integral: If $f(z)$ be an analytic function in a simply connected domain D, then there exists an analytic function $F(z)$ with $F^{\prime}(z)=f(z)$ in D then along any path joining z_{1} and z_{2} in $D, \int_{z_{1}}^{z_{2}} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)$.
- Cauchy's Integral Theorem for Multiply Connected Domain: Let $f(z)$ be analytic between two simple closed paths C_{1} and C_{2}, where C_{2} lies entirely inside the curve C_{1}, then

$$
\oint_{C_{1}} f(z) d z=\oint_{C_{2}} f(z) d z
$$

- Let $C_{1}, C_{2}, \ldots, C_{n}$ be finite simple closed paths inside a simple closed path C and $f(z)$ is analytic within the domain between the paths $C_{1}, C_{2}, \ldots, C_{n}$ then

$$
\oint_{C} f(z) d z=\oint_{C_{1}} f(z) d z+\oint_{C_{2}} f(z) d z+\cdots+\oint_{C_{n}} f(z) d z
$$

3 Cauchy's Integral Formula

- Let $f(z)$ be an analytic function within and on a simple closed path C. If z_{0} is any point in C where $\frac{f(z)}{z-z_{0}}$ is not analytic, then $\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)$
- Generalized Cauchy's integral formula: Let $f(z)$ be an analytic function within and on a simple closed path C. If z_{0} is any point in C where $\frac{f(z)}{z-z_{0}}$ is not analytic, then

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{n}\left(z_{0}\right)
$$

- If $f(z)$ is analytic on C_{1} and C_{2} and in the ring-shaped domain bounded by C_{1} and C_{2} and z_{0} is any point in that domain where $\frac{f(z)}{z-z_{0}}$ is not analytic, then

$$
\oint_{C_{1}} \frac{f(z)}{z-z_{0}} d z+\oint_{C_{2}} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

where the outer integral over C_{1} is taken counter clockwise and the inner integral over C_{2} is taken clockwise.

