
Unit 3
C Programming

Lecture notes

Tokens & Syntax
• The compiler collects the

characters of a program into
tokens.
– Tokens make up the basic

vocabulary of a computer language.
• The compiler then checks the

tokens to see if they can be
formed into legal strings
according to the syntax (the
grammar rules) of the language.

Characters Used in C
Programs

• Lowercase letters
– a b c . . . z

• Uppercase letters
– A B C . . . Z

• Digits
– 0 1 2 3 4 5 6 7 8 9

• Other characters
– + - * / = () { } [] < > ‘ “
– ! @ # $ % & _ ^ ~ \ . , ; : ?

• White space characters
– blank, newline, tab, etc.

The Six Kinds of Tokens in
ANSI C

• Keywords
• Identifiers
• Constants
• String Constants
• Operators
• Punctuators

Keywords
• Keywords are C tokens that have

a strict meaning.
– They are explicitly reserved and

cannot be redefined.
• ANSII C has 32 key words.

– Some implementations such as
Borland’s C or Microsoft’s C have
additional key words.

ANSII C Keywords
auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch
continue float return typedef
default for short union

Identifiers
• An identifier is a token:

– Composed of a sequence of letters,
digits, and the underscore
character _
•Note: Variable names are identifiers

• Lower- and uppercase letters are
treated as distinct.

• Identifiers should be chosen so
that they contribute to the
readability and documentation of
the program.

Special Identifiers
• main

– C programs always begin execution
at the function main.

• Identifiers that begin with an
underscore should be used only
by systems programmers
– Because they can conflict with

system names.

The Length of Discriminated
Identifiers

• On older systems only the first
eight characters of an identifier
are discriminated.
– identifier_one and identifier_two

would be the same identifier.
• In ANSI C, at least the first 31

characters of an identifier are
discriminated.

Constants
• Integer Constants

– 25 and 0
• Floating Constants

– 3.14159 and 0.1
• Character Constants

– ‘a’ and ‘B’ and ‘+’ and ‘;’ but not “a”
or “B”

Special Character Constants
• The backslash is called the

escape character.
– The newline character ‘\n’

represents a single character called
newline.

– Think of \n as “escaping” the usual
meaning of n.

• Enumeration constants will be
discussed later in the course.

String Constants
• A sequence of characters enclosed in

a pair of double quote marks, such as
“abc” is a string constant, or a string
literal.

• Character sequences that would have
meaning if outside a string constant
are just a sequence of characters
when surrounded by double quotes.

• String constants are treated by the
compiler as tokens and the compiler
provides the space in memory to
store them.

Is it a String or Not a
String?

• “this is a string constant”
• “” /* the null string */
• “ “ /* a string of blanks */
• “ a = b + c; “ /* is not executed */
• “ /* this is not a comment */ “
• /* “ this is not a string “ */
• “ and

neither is this “
• ‘a’ /* a character, not a string */

The Mathematical
Operators

• We looked at the mathematical
operators briefly in the 3rd class:
+ - * / %

• In a C program we typically put
white space around binary
operators to improve readability.
a + b rather than a+b

The sizeof Operator
•The C sizeof unary operator if

used to find the number of
bytes needed to store an
object.
– sizeof(object) returns an

integer that represents the
number of bytes needed to
store the object in memory.

printf()
printf(control string, other arguments);

• The expressions in other_arguments are
evaluated and converted according to the
formats in the control string and are then
placed in the output stream.

printf(“%-14sPayRate: $%-4.2f\n”, “James Smith”,
8.95);
James Smith Pay Rate: $8.95

• Characters in the control string that are not
part of a format are placed directly in the
output stream.

The Formats in the Control
String

printf(“Get set: %d %s %f %c%c\n”,
 1, “two”, 3.33, ‘G’, ‘O’);
• %d Print 1 as a decimal number
• %s Print “two” as a string

– “string” means a sequence of characters.
• %f Print 3.33 as a float

– decimal or floating-point number
• %c Print ‘G’ & ‘0’ as characters.

printf() Conversion
Characters

Conversion
character How the corresponding argument is

printed
c as a character
d,i as a decimal integer
u as an unsigned decimal integer
o as an unsigned octal integer
x,X as an unsigned hexadecimal integer
e as a floating-point number: 7.123000e+00
E as a floating-point number: 7.123000E+00
g in the shorter of the e-format or f-format
G in the shorter of the E-format or f-format
s as a string
p the corresponding argument is a pointer to

void; it prints as a hexadecimal number.
n argument is a pointer to an integer into

which the number of characters written so
far is printed; the argument is not
converted.

% with the format %% a single % is written;
there

is no corresponding argument to be
converted.

printf() Conversion
Specifications

• field width (optional)
– An optional positive integer
– If the converted argument has fewer

characters than the specified width, it
will be padded with spaces on the left or
right depending on the left or right
justification.

– If the converted argument has more
characters, the field width will be
extended to whatever is required.

• precision (optional)
– Specified by a period followed by a

nonnegative integer.
– Minimum number of digits to be printed

for d, i, o, u, x, and X conversions.
– Minimum number of digits to the right of

the decimal point for e, E, and f
conversions.

– Maximum number of significant digits for
G and g conversions.

– Maximum number of characters to be
printed for an s conversion.

printf () Example
printf(“Get set: %d %s %f %c%c\n”,
 1, “two”, 3.33, ‘G’, ‘O’);

The first argument is the control
string
“Get set: %d %s %f %c%c\n”

The formats in the control string
are matched (in order of
occurrence) with the other
arguments.

Use of printf ()
• printf() is used for printing

output. When printf() is called
it is passed a list of arguments of
the form:

 control string & other arguments
• The arguments to printf() are

separated by commas.

Errors in printf () Formats
• A floating point format in a printf

() statement is of the form %m.nf
– The value of m specifies the field

width, not the number of digits to the
left of the decimal point.

– The value of n specifies the number of
digits to the right of the decimal point.

• To specify two decimal digits to the left
of the decimal point and three to the
right, use %6.3f.

Use of scanf()
•scanf() is analogous to

printf(), but is used for input
rather than output.
– scanf()in a program stops the

execution of the program while
you type something in from the
keyboard.

scanf () Arguments
• The first argument is a control

string with formats similar to
those used with printf().
– The formats determine how

characters in the input stream
(what you are typing) will be
interpreted so they can be properly
stored in memory.

Scanf ()’s Other
Arguments

• After the control string, the
other arguments are addresses.

• Example: assume x is declared
as an integer variable.
scanf(“%d”, &x);
The & is the address operator. It

says “store the value entered at
the address of the memory location
named x”.

scanf () Conversion
Conversion How characters in the
Character input stream are converted.

c

d

f

lf

Lf

s

Character

decimal integer

floating-pint number (float)

floating-point number (double)

floating-point number (long double)

string

A Peculiarity of scanf
()

• With printf() the %f format is
used to print either a float or a
double.

• With scanf() the format %f is
used to read in a float, and %lf is
used to read in a double.

Another scanf() Peculiarity
• When reading in numbers,

scanf() will skip white space
characters (blanks, newlines,
and tabs).

• When reading characters, white
space is not skipped.

The Return Value of scanf()
• When the scanf() function reads in data

typed by a user, it returns the number of
successful conversions.
– scanf(“%d%d%d”, &first, &second, &third);

• Should return a value 3 if the user correctly
types three integers.

• Suppose the user enters 2 integers followed by
a string -- what happens?

– What does our system do?

Common Programming
Errors

• Failure to correctly terminate a
comment.

• Leaving off a closing double
quote character at the end of a
string.

• Misspelling or not declaring a
variable.

• Misspelling a function name.
• Omitting the ampersand (&) with

scanf().

Interrupting Program
Execution

• An executing program on a UNIX
system can often be interrupted
by entering a ^c from the
keyboard.

• The kill command is another way
of ending program execution.

• If your program is in an infinite
loop you will have to use one of
these methods to interrupt its
execution.

How the Compiler
Handles Comments

 /* This is a comment */
The compiler first replaces each
comment with a single blank.
Thereafter, the compiler either
disregards white space or uses it
to separate tokens.

System Considerations
• Syntax (Compile -Time) Errors

– Syntax errors are caught by the
compiler.

– The compiler attempts to identify
the error and display a helpful error
message.

• Run-Time Errors
– Errors that occur during program

execution.
– Memory errors caused by not using

the address operator & with a scanf
() argument.

Style
• Use white space and comments

to make your code easier to read
and understand.
– Indent logical subgroups of code by

3 spaces.
• Choose variable names that

convey their use in the program.
• Place all #includes, #defines,

main()s, and braces { } -- that
begin and end the body of a
function -- in column 1.

