
Unit 2
STRING, ARRAY, FUNCTIONS, SESSION COOKIE

Strings in PHP
Strings are sequences of characters that can be treated as a unit —
assigned to variables, given as input to functions, returned from
functions, or sent as output to appear on your user’s web page.

The simplest way to specify a string in PHP code is to enclose it in
quotation marks, whether single quotation marks (‘) or double
quotation marks (“), like this:

◦ $my_string = ‘a literal string’;

◦ $another_string = “another string”;

If you enclose a string in single quotation marks, almost no interpolation will be
performed; if you enclose it in double quotation marks, PHP will splice in the
values of any variables you include, as well as make substitutions for certain
special character sequences that begin with the backslash (\) character.

$statement = ‘everything I say’;

$question_1 = “Do you have to take $statement so literally?\n
”;

$question_2 = ‘Do you have to take $statement so literally?\n
’;

echo $question_1;

echo $question_2;

Interpolation with curly braces
◦ $plan1 = “I will play $sport1ball in the summertime”; //wrong

◦ $plan1 = “I will play {$sport1}ball in the summertime”; //right

Characters and string indexes
You can retrieve the individual characters of a string by including the
number of the character, starting at 0, enclosed in curly braces
immediately following a string variable.

These characters will actually be one-character strings.
$my_string = “Doubled”;

for ($index = 0; $index < 7; $index++) {

$string_to_print = $my_string{$index};

print(“$string_to_print$string_to_print”);

}

String operators
PHP offers two string operators: the dot (.) or concatenation operator
and the .= concatenating assignment operator.

The concatenation operator, when placed between two string
arguments, produces a new string that is the result of putting the two
strings together in sequence. For example:

◦ $my_two_cents = “I want to give you a piece of my mind “;

◦ $third_cent = “ and another thing”;

◦ print($my_two_cents . “...” . $third_cent);
◦ How many string are there?

Concatenation and
assignment
PHP has a shorthand operator (.=) that combines concatenation with
assignment. The following statement:

◦ $my_string_var .= $new_addition;

is exactly equivalent to:
◦ $my_string_var = $my_string_var . $new_addition;

The heredoc syntax
PHP offers another way to specify a string, called the heredoc syntax.

This syntax turns out to be extremely useful for specifying large chunks
of variable-interpolated text, because it spares you from the need to
escape internal quotation marks.

It is especially useful in creating pages that contain HTML forms.

The operator in the heredoc syntax is <<<. What is expected
immediately after this is a label (unquoted) that indicates the beginning
of a multiline string.

PHP will continue including subsequent lines in this string until it sees
the same label again, beginning a line.

The ending label may optionally be followed by a semicolon but by
nothing else.

$my_string_var = <<<EOT

Everything in this rather unnecessarily wordy

ramble of prose will be incorporated into the

string that we are building up inevitably, inexorably,

character by character, line by line, until we reach that

blessed final line which is this one.

EOT;

Interpolation of variables happens exactly the same way as with
double-quoted strings. The nice thing about heredoc, though, is that
quote signs can be included without any escaping and without
prematurely terminating the string. Here’s another example:

echo <<<ENDOFFORM

<FORM METHOD=POST aCTION=”{$_ENV[‘PHP_SELF’]}“>

<INPUT TYPE=TEXT NaME=FIRSTNaME VaLUE=$firstname>

<INPUT TYPE=SUBMIT NaME=SUBMIT VaLUE=SUBMIT>

</FORM>

ENDOFFORM;

String Functions
Inspecting strings:

strlen(): Using the strlen() function (the name is short for string length).
$short_string = “This string has 29 characters”;

print(“It does have “ . strlen($short_string) . “ characters”);

for ($index = 0; $index < strlen($short_string); $index++)

print($short_string{$index});

Finding characters and
substrings
strpos(): the strpos() function finds the numerical position of a
particular character in a string, if it exists.

◦ $twister = “Peter Piper picked a peck of pickled peppers”;

◦ print(“Location of ‘p’ is “ . strpos($twister, ‘p’) .’
’);

◦ print(“Location of ‘q’ is “ . strpos($twister, ‘q’) .’
’);

the strpos() function is case sensitive.

The strpos() function can also be used to search for a substring rather
than a single character, simply by giving it a multicharacter string rather
than a single-character string.

You can also supply an extra integer argument specifying the position
to begin searching forward from.

Searching in reverse is also possible, using the strrpos() function. Unlike
with strpos(), the string searched for must have only one character.

◦ $twister = “Peter Piper picked a peck of pickled peppers”;

◦ printf(“Location of ‘p’ is “ . strrpos($twister, ‘p’) .’
’);

◦ Location of ‘p’ is 40

Comparison and searching
The simplest method to find an answer of comparision is to use the
basic comparison operator (==), which does equality testing on strings
as well as numbers.

The most basic workhorse string-comparison function is strcmp(). It
takes two strings as arguments and compares them byte by byte until it
finds a difference.

It returns a negative number if the first string is less than the second
and a positive number if the second string is less. It returns 0 if they are
identical.

The strcasecmp() function works the same way, except that the
equality comparison is case insensitive. The function call
strcasecmp(“hey!”, “HEY!”) should return 0.

Searching
The strstr() function takes a string to search in and a string to look for
(in that order).

If it succeeds, it returns the portion of the string that starts with (and
includes) the first instance of the string it is looking for.

If the string is not found, a false value is returned
◦ $string_to_search = “showsuponceshowsuptwice”;

◦ $string_to_find = “up”;

◦ print(“Result of looking for $string_to_find” .

◦ strstr($string_to_search, $string_to_find) . “
”);

The strstr() function also has an alias by the name of strchr().

Other than the name, the two functions are identical. Just as with
strcmp(), strstr() has a case insensitive version, by the name of stristr().

Substring selection
Many of PHP’s string functions have to do with slicing and dicing your
strings.

By slicing, we mean choosing a portion of a string;

By dicing, we mean selectively modifying a string.

Keep in mind that (most of the time) even dicing functions do not
change the string you started out with. Usually, such functions return a
modified copy, leaving the original argument intact.

The most basic way to choose a portion of a string is the substr()
function, which returns a new string that is a subsequence of the old
one.

as arguments, it takes a string (that the substring will be selected
from), an integer (the position at which the desired substring starts),
and an optional third integer argument that is the length of the desired
substring.

If no third argument is given, the substring is assumed to continue until
the end.

For example, the statement:

echo(substr(“Take what you need, and leave the rest behind”, 23));
◦ prints the string leave the rest behind, whereas the statement:

echo(substr(“Take what you need, and leave the rest behind”, 5, 13));
◦ prints what you need — a 13-character string starting at (0-based) position 5.

Both the start-position argument and the length argument can be negative, and
in each case the negativity has a different meaning.

If the start position is negative, it means that the starting character is
determined by counting backward from the end of the string, rather than
forward from the beginning.

a negative-length argument means that the final character is determined by
counting backward from the end rather than forward from the start position.

Here are some examples, with positive and negative arguments:

$alphabet_test = “abcdefghijklmnop”;
◦ print(“3: “ . substr($alphabet_test, 3) . “
”);
◦ print(“-3: “ . substr($alphabet_test, -3) . “
”);
◦ print(“3, 5: “ . substr($alphabet_test, 3, 5) . “
”);
◦ print(“3, -5: “ . substr($alphabet_test, 3, -5) . “
”);
◦ print(“-3, -5: “ . substr($alphabet_test, -3, -5) . “
”);
◦ print(“-3, 5: “ . substr($alphabet_test, -3, 5) . “
”);

This gives us the output:
◦ 3: defghijklmnop
◦ -3: nop
◦ 3, 5: defgh
◦ 3, -5: defghijk
◦ -3, -5:
◦ -3, 5: nop

String cleanup functions
The functions chop(), ltrim(), and trim() are really used for cleaning up untidy
strings. They trim whitespace off the end, the beginning, and the beginning and
end, respectively, of their single string argument.

◦ $original = “ More than meets the eye “;

◦ $chopped = chop($original);

◦ $ltrimmed = ltrim($original);

◦ $trimmed = trim($original);

◦ print(“The original is ‘$original’
”);

◦ print(“Its length is “ . strlen($original) . “
”);

◦ print(“The chopped version is ‘$chopped’
”);

◦ print(“Its length is “ . strlen($chopped) . “
”);

◦ print(“The ltrimmed version is ‘$ltrimmed’
”);

◦ print(“Its length is “ . strlen($ltrimmed) . “
”);

◦ print(“The trimmed version is ‘$ltrimmed’
”);

◦ print(“Its length is “ . strlen($trimmed) . “
”);

In addition to spaces, these functions remove whitespace like that
denoted by the escape sequences \n, \r, \t, and \0

String replacement
The str_replace() function enables you to replace all instances of a particular
substring with an alternate string.

It takes three arguments: the string to be searched for, the string to replace it with
when it is found, and the string to perform the replacement on.

$first_edition = “Burma is similar to Rhodesia in at least one way.”;

$second_edition = str_replace(“Rhodesia”, “Zimbabwe”, $first_edition);

$third_edition = str_replace(“Burma”, “Myanmar”, $second_edition);

print($third_edition);

This replacement will happen for all instances found of the search string.

str_replace() picks out portions to replace by matching to a target string; by
contrast, substr_replace() chooses a portion to replace by its absolute position.

The function takes up to four arguments: the string to perform the replacement
on, the string to replace it with, the starting position for the replacement, and
(optionally) the length of the section to be replaced

print(substr_replace(“aBCDEFG”, “-“, 2, 3));

you are allowed to replace a substring with a string of a different length.

If the length argument is omitted, it is assumed that you want to replace the
entire portion of the string after the start position.

The substr_replace() function also takes negative arguments for
starting position and length, which are treated exactly the same way as
in the substr() function.

It is important to remember with both str_replace and substr_replace
that the original string remains unchanged by these operations

The strrev() function simply returns a new string with the characters of
its input in reverse order.

The str_repeat() function takes a string argument and an integer
argument and returns a string that is the appropriate number of copies
of the string argument tacked together.

Case functions
strtolower() The strtolower() function returns an all-lowercase string. It doesn’t
matter if the original is all uppercase or mixed.

<?php

$original = “They DON’T KnoW they’re SHOUTING”;

$lower = strtolower($original);

echo $lower;

?>

strtoupper() The strtoupper() function returns an all-
uppercase string, regardless of whether the original was
all lowercase or mixed:

<?php

$original = “make this link stand out”;

echo(“strtoupper($original)”);

?>

ucfirst() The ucfirst() function capitalizes only the first letter of a string:
<?php

$original = “polish is a word for which pronunciation depends on

capitalization”;

echo(ucfirst($original));

?>

ucwords() The ucwords() function capitalizes the first letter of each word in a
string:

<?php

$original = “truth or consequences”;

$capitalized = ucwords($original);

echo “While $original is a parlor game, $capitalized is a town in New

Mexico.”;

?>

Printing and output
PHP also offers printf() and sprintf(), which are modeled on C functions
of the same name.

<pre>

<?php
$value = 3.14159;

printf(“%f,%10f,%-010f,%2.2f\n”,

$value, $value, $value, $value);

?>

</pre>

gives us:

3.141590, 3.141590,3.141590000000000, 3.14

Learning arrays
PHP arrays can store data of varied types and automatically organize it
for you in a large variety of ways.

an array is a collection of variables indexed and bundled into a single,
easily referenced super variable that offers an easy way to pass
multiple values between lines of code, functions, and even pages.

What are PHP arrays?
PHP arrays are associative arrays. The associative part means that
arrays store element values in association with key values rather than in
a strict linear index order.

For example, storage is as simple as this:
◦ $state_location[‘San Mateo’] = ‘California’;

which stores the element ‘California’ in the array variable
$state_location, in association with the lookup key ‘San Mateo’. after
this has been stored, you can look up the stored value by using the key,
like so:

◦ $state = $state_location[‘San Mateo’];

Similarly, if you want to associate a numerical ordering with a bunch of
values, all you have to do is use integers as your key values, as in:

◦ $my_array[1] = “The first thing”;

◦ $my_array[2] = “The second thing”; // and so on ...

Creating arrays
There are three main ways to create an array in a PHP script:
◦ by assigning a value into one (and thereby implicitly creating it),

◦ by using the array() construct, and

◦ by calling a function that happens to return an array as its value.

Direct assignment: The simplest way to create an array is to act as
though a variable is already an array and assign a value into it, like this:

$my_array[1] = “The first thing in my array that I just made”;

The array() construct: It creates a new array from the specification of
its elements and associated keys.

In its simplest version, array() is called with no arguments, which
creates a new empty array.

In its next simplest version, array() takes a comma separated list of
elements to be stored, without any specification of keys.

The result is that the elements are stored in the array in the order
specified and are assigned integer keys beginning with zero.

◦ $fruit_basket = array(‘apple’, ‘orange’, ‘banana’, ‘pear’);

causes the variable $fruit_basket to be assigned to an array with four string
elements, with the indices 0, 1, 2, and 3, respectively.

The same effect could also have been accomplished by omitting the indices in
the assignment, like so:

◦ $fruit_basket[] = ‘apple’;

◦ $fruit_basket[] = ‘orange’;

Specifying indices using array(): array() offers us a special syntax for specifying
what the indices should be. Instead of element values separated by commas, you
supply key/value pairs separated by commas, where the key and value are
separated by the special symbol =>.

Consider the following statement:
◦ $fruit_basket = array(0 => ‘apple’, 1 => ‘orange’, 2 => ‘banana’, 3 => ‘pear’);

Or it can be
◦ $fruit_basket = array(‘red’ => ‘apple’, ‘orange’ => ‘orange’, ‘yellow’ =>

‘banana’, ‘green’ => ‘pear’);

To recover the name of the yellow fruit, for example, we just evaluate
the expression:

◦ $fruit_basket[‘yellow’] // will be equal to ‘banana’

you can create an empty array by calling the array function with no
arguments. For example:

◦ $my_empty_array = array();

creates an array with no elements.

Functions returning arrays: This may be a user defined function, or it
may be a built-in function that makes an array via methods internal to
PHP.

Many database-interaction functions, for example, return their results
in arrays that the functions create on the fly.

Other functions exist simply to create arrays that are handy to have as
grist for later array-manipulating functions.

One such is range(), which takes two integers as arguments and returns
an array filled with all the integers (inclusive) between the arguments.
In other words:

◦ $my_array = range(1,5);

◦ is equivalent to:

◦ $my_array = array(1, 2, 3, 4, 5);

Retrieving Values
Retrieving by index: The most direct way to retrieve a value is to use its
index. If we have stored a value in $my_array at index 5, $my_array[5]
should evaluate to the stored value.

The list() construct: It used to assign several array elements to
variables in succession. Suppose that the following two statements are
executed:

◦ $fruit_basket = array(‘apple’, ‘orange’, ‘banana’);

◦ list($red_fruit, $orange_fruit) = $fruit_basket;

This will assign the string ‘apple’ to the variable $red_fruit and the
string ‘orange’ to the variable $orange_fruit.

The variables in list() will be assigned to elements of the array in the
order they were originally stored in the array.

Multidimensional arrays
Facilitates storing arrays of arrays!

Extends beyond the associative array to store multiple sets of
associative arrays

<?php

$person = array(

array(“name” => “John”, “age” => 19),

array(“name” => “Mary”, “age” => 30),

array(“name” => “aine”, “age” => 23)

);

?>

each of the array elements store starting at an index value of 0

for instance:
◦ echo $person[0];

◦ echo $person[1];

◦ and so on and on and on!

• foreach ($person as $p) {
while (list($n, $a) = each ($p)) {

echo “Name: “.$n.”\n age: ”.$a.”
”;

}

}

•Output:
Name: John

age: 19

Name: Mary

age: 30

Name: aine

age: 23

Inspecting arrays

Deleting from arrays
Deleting an element from an array is simple, exactly analogous to
getting rid of an assigned variable.

Just call unset(), as in the following:
◦ $my_array[0] = ‘wanted’;

◦ $my_array[1] = ‘unwanted’;

◦ $my_array[2] = ‘wanted again’;

◦ unset($my_array[1]);

Note that this is not the same as setting the contents to an empty value.
If, instead of calling unset(), we had the following statement:

◦ $my_array[1] = ‘ ’;

at the end we would have three stored values (‘wanted’, ‘’, ‘wanted
again’) in association with three keys (0, 1, and 2, respectively).

Iteration
Iteration constructs help us do this by letting us step or
loop through arrays, element by element or key by key.

In addition to storing values in association with their keys,
PHP arrays silently build an ordered list of the key/value
pairs that are stored, in the order that they are stored.

The reason for this is to support operations that iterate
over the entire contents of an array.

Each stored key/value pair points to the next one, and one
side effect of adding the first element to an array is that a
current pointer points to the very first element, where it
will stay unless disturbed by one of the iteration functions

foreach method
foreach ($array_variable as $value_variable) {

// .. do something with the value in $value_variable

}

foreach ($array_variable as $key_var => $value_var) {
// .. do something with $key_var and/or $value_var

}

Iterating with current() and
next()

foreach, is really only good for situations where you want to simply
loop through an array’s values.

For more control, let’s look at current() and next().

The current() function returns the stored value that the current
pointer points to.

When an array is newly created with elements, the element pointed
to will always be the first element.

The next() function first advances that pointer and then returns the
current value pointed to.

If the next() function is called when the current pointer is already
pointing to the last stored value and, therefore, runs off the end of
the array, the function returns a false value.

Starting over with reset()
◦ The reset() function gives us a way to “rewind” that pointer to the beginning

— it sets the pointer to the first key/value pair and then returns the stored
value.

◦ We can use it to make our printing function more robust by replacing the
call to current() with a call to reset().

Reverse order with end() and prev():
◦ There are also the functions prev(), which moves the pointer back by one,

and end(), which jumps the pointer to the last entry in the list.

Extracting keys with key():
◦ The keys are also retrievable from the internal linked list of an array by

using the key() function.

◦ $current_key = key($city_array);

Walking with array_walk():
◦ It lets you pass an arbitrary function of your own design over an array, doing

whatever your function pleases with each key/value pair.

◦ The array_walk() function takes two arguments: an array to be traversed and
the name of a function to apply to each key/value pair.

function print_value_length($array_value, array_key_ignored)

{
$the_length = strlen($array_value);

print(“The length of $array_value is $the_length
”);

}

array_walk($major_city_info, ‘print_value_length’);

Some important array
functions
array_diff(): Compares array values, and returns the differences

array_fill(): Fills an array with values

array_flip(): Exchanges all keys with their associated values in an array

array_intersect():Compares array values, and returns the matches

arry_merge(): Merges one or more arrays into one array

array_pop():Deletes the last element of an array

array_push(): Inserts one or more elements to the end of an array

array_shift(): Removes the first element from an array, and returns the value of the removed element

array_unshift(): Adds one or more elements to the beginning of an array

array_reverse(): Returns an array in the reverse order

array_search(): Searches an array for a given value and returns the key

array_sum(): Returns the sum of the values in an array

arry_unique(): Removes duplicate values from an array

asort(), arsort(), ksort, krsort(),sort(),rsort(),

Each(): Returns the current key and value pair from an array

Learning PHP Number
Handling
Numerical Types: PHP has only two numerical types: integer (also
known as long), and double (aka float).

PHP does automatic conversion of numerical types.

In situations where you want a value to be interpreted as a particular
numerical type, you can force a typecast by prepending the type in
parentheses, such as:

◦ (double) $my_var

◦ (integer) $my_var

Or you can use the functions intval() and doubleval(), which convert
their arguments to integers and doubles, respectively.

arithmetic operators

Incrementing or decrementing operators:
$count = 0;

$result = $count++;

print(“Post ++: count is $count, result is $result
”);

$count = 0;

$result = ++$count;

print(“Pre ++: count is $count, result is $result
”);

$count = 0;

$result = $count--;

print(“Post --: count is $count, result is $result
”);

$count = 0;

$result = --$count;

print(“Pre --: count is $count, result is $result
”);

assignment operators:
◦ =, +=, -=,*=,/=

Precedence and parentheses:
◦ arithmetic operators have higher precedence (that is, bind more tightly)

than comparison operators.

◦ Comparison operators have higher precedence than assignment operators.

◦ The *, /, and % arithmetic operators have the same precedence.

◦ The + and – arithmetic operators have the same precedence.

◦ The *, /, and % operators have higher precedence than + and –.

◦ When arithmetic operators are of the same precedence, associativity is from
left to right (that is, a number will associate with an operator to its left in
preference to the operator on its right).

Comparison operators

Simple Mathematical
Functions

Randomness
There are two random number generators (invoked with rand() and
mt_rand(), respectively)

$length = strlen($string);

$position = mt_rand(0, $length - 1);

return($string[$position]);

Randomness

Date Functions
Date and time are some of the most frequently used operations in PHP while executing
SQL queries or designing a website etc. PHP serves us with predefined functions for
these tasks.

The PHP date() function converts a timestamp to a more readable date and time format.

The computer stores dates and times in a format called UNIX Timestamp, which
measures time as number of seconds since the beginning of the Unix epoch (midnight
Greenwich Mean Time on January 1, 1970 i.e. January 1, 1970 00:00:00 GMT).
Since this is an impractical format for humans to read, PHP converts a timestamp to a
format that is readable and more understandable to humans.

date(format, timestamp)

The format parameter in the date() function specifies the format of returned date and
time.

Timestamp is an optional parameter, if it is not included then current date and time will
be used.

$today = date("d/m/Y");

echo $today;

Formatting options available in date() function: The format parameter of the date()
function is a string that can contain multiple characters allowing to generate dates in
various formats.
Date-related formatting characters that are commonly used in format string:

d – Represents day of the month; two digits with leading zeros (01 or 31).

D – Represents day of the week in text as an abbreviation (Mon to Sun).

m – Represents month in numbers with leading zeros (01 or 12).

M – Represents month in text, abbreviated (Jan to Dec).

y – Represents year in two digits (08 or 14).

Y – Represents year in four digits (2008 or 2014).

The parts of the date can be separated by inserting other characters, like hyphens (-), dots
(.), slashes (/), or spaces to add additional visual formatting.

PHP time() Function: The time() function is used to get the current time as a Unix
timestamp

The following characters can be used along with date() function to format the time string:

h – Represents hour in 12-hour format with leading zeros (01 to 12).

H – Represents hour in in 24-hour format with leading zeros (00 to 23).

i – Represents minutes with leading zeros (00 to 59).

s – Represents seconds with leading zeros (00 to 59).

a – Represents lowercase ante meridian and post meridian (am or pm).

A – Represents uppercase ante meridian and post meridian (AM or PM).

echo date("h:i:s") . "\n";

echo date("M,d,Y h:i:s A") . "\n";

echo date("h:i a");

echo date("d/m/Y") . "\n";

echo date("d-m-Y") . "\n";

echo date("d.m.Y") . "\n";

echo date("d.M.Y/D");

$timestamp = time();

echo($timestamp);

echo "\n";

echo(date("F d, Y h:i:s A", $timestamp));

PHP mktime() Function

The mktime() function is used to create the timestamp for a specific date and time.
If no date and time is provided, the timestamp for the current date and time is returned.

mktime(hour, minute, second, month, day, year)

echo mktime(23, 21, 50, 11, 25, 2017);

PHP getdate() function

The getdate() function return the date and time.

$today = getdate();

print_r ($today)."
";

$my_t=getdate (date("U"));

print ("$my_t [weekday], $my_t [month] $my_t [mday], $my_t [year]");

PHP - Function checkdate()

This function checks the validity of the date formed by the arguments. A date is
considered valid if each parameter is properly defined.

It returns TRUE if the date given is valid; otherwise returns FALSE.

checkdate ($month, $day, $year);

echo checkdate(12, 1, 1990)

echo checkdate(23, 29, 2011)

PHP File Handling
File handling is needed for any application. For some tasks to be done file needs to
be processed. File handling in PHP is similar as file handling is done by using any
programming language like C. PHP has many functions to work with normal files.
Those functions are:

1) fopen() – PHP fopen() function is used to open a file. First parameter of fopen()
contains name of the file which is to be opened and second parameter tells about
mode in which file needs to be opened

$file = fopen(“demo.txt”,'w');

Files can be opened in any of the following modes :

“w” – Opens a file for write only. If file not exist then new file is created and if file
already exists then contents of file is erased.

“r” – File is opened for read only.

“a” – File is opened for write only. File pointer points to end of file. Existing data in
file is preserved.

“w+” – Opens file for read and write. If file not exist then new file is created and if
file already exists then contents of file is erased.

“r+” – File is opened for read/write.

“a+” – File is opened for write/read. File pointer points to end of file. Existing data
in file is preserved. If file is not there then new file is created.

“x” – New file is created for write only.

“x+” - New file is created for read-write.

<?php

$file = "data.txt";

// Check the existence of file

if(file_exists($file)){

// Attempt to open the file

$handle = fopen($file, "r");

} else{

echo "ERROR: File does not exist.";

}

?>

Closing a File with PHP fclose() Function:

Once you've finished working with a file, it needs to be closed. The fclose() function
is used to close the file, as shown in the following example:

$handle = fopen($file, "r") or die("ERROR: Cannot open the file.");

fclose($handle);

Although PHP automatically closes all open files when script terminates, but it's a
good practice to close a file after performing all the operations.

Reading from Files with PHP fread() Function:

PHP has several functions for reading data from a file. You can read from just one
character to the entire file with a single operation.

Reading Fixed Number of Characters

The fread() function can be used to read a specified number of characters from a
file. The basic syntax of this function can be given with.

fread(file handle, length in bytes)

This function takes two parameter — A file handle and the number of bytes to read.
The following example reads 20 bytes from the "data.txt" file including spaces.

$file = "data.txt";

// Check the existence of file

if(file_exists($file)){

// Open the file for reading

$handle = fopen($file, "r") or die("ERROR: Cannot open the file.");

// Read fixed number of bytes from the file

$content = fread($handle, "20");

// Closing the file handle

fclose($handle);

// Display the file content

echo $content;

} else{

echo "ERROR: File does not exist.";

}

Reading the Entire Contents of a File

The fread() function can be used in conjugation with the filesize() function to read the
entire file at once. The filesize() function returns the size of the file in bytes.

$content = fread($handle, filesize($file));

The easiest way to read the entire contents of a file in PHP is with the readfile() function.
This function allows you to read the contents of a file without needing to open it.

if(file_exists($file)){

// Reads and outputs the entire file

readfile($file) or die("ERROR: Cannot open the file.");

} else{

echo "ERROR: File does not exist.";

}

Another way to read the whole contents of a file without needing to open it is with the
file_get_contents() function. This function accepts the name and path to a file, and reads
the entire file into a string variable.

if(file_exists($file)){

// Reading the entire file into a string

$content = file_get_contents($file) or die("ERROR: Cannot open the file.");

}

One more method of reading the whole data from a file is the PHP's file() function. It does
a similar job to file_get_contents() function, but it returns the file contents as an array of
lines, rather than a single string. Each element of the returned array corresponds to a line
in the file.

To process the file data, you need to iterate over the array using a foreach loop. Here's an
example, which reads a file into an array and then displays it using the loop:

if(file_exists($file)){

// Reading the entire file into an array

$arr = file($file) or die("ERROR: Cannot open the file.");

foreach($arr as $line){

echo $line;

}

}

Writing the Files Using PHP fwrite() Function

You can write data to a file or append to an existing file using the PHP fwrite()
function.

fwrite(file handle, string)

The fwrite() function takes two parameter — A file handle and the string of data
that is to be written, as demonstrated in the following example:

$data = “Name of subject is open source programming with PHP.";

// Open the file for writing

$handle = fopen($file, "w") or die("ERROR: Cannot open the file.");

// Write data to the file

fwrite($handle, $data) or die ("ERROR: Cannot write the file.");

In the above example, if the "note.txt" file doesn't exist PHP will automatically create it and
write the data. But, if the "note.txt" file already exist, PHP will erase the contents of this
file, if it has any, before writing the new data, however if you just want to append the file
and preserve existing contents just use the mode a instead of w in the above example.

An alternative way is using the file_put_contents() function. It is counterpart of
file_get_contents() function and provides an easy method of writing the data to a file
without needing to open it. This function accepts the name and path to a file together with
the data to be written to the file.

file_put_contents($file, $data) or die("ERROR: Cannot write the file.");

If the file specified in the file_put_contents() function already exists, PHP will overwrite it
by default. If you would like to preserve the file's contents you can pass the special
FILE_APPEND flag as a third parameter to the file_put_contents() function. It will simply
append the new data to the file instead of overwitting it.

file_put_contents($file, $data, FILE_APPEND)

Renaming Files with PHP rename() Function

if(rename($file, "newfile.txt")){

echo "File renamed successfully.";

}

Removing Files with PHP unlink()

You can delete files or directories using the PHP's unlink() function,

unlink($file)

PHP Filesystem Functions
unction Description

fgetc() Reads a single character at a time.

fgets() Reads a single line at a time.

fgetcsv() Reads a line of comma-separated values.

filetype() Returns the type of the file.

feof() Checks whether the end of the file has been reached.

is_file() Checks whether the file is a regular file.

is_dir() Checks whether the file is a directory.

is_executable() Checks whether the file is executable.

realpath() Returns canonicalized absolute pathname.

rmdir() Removes an empty directory.

http://zetcode.com/php/filesysfuns/

http://zetcode.com/php/filesysfuns/

ftell() Function

The ftell() function in PHP is an inbuilt function which is used to return the current position in an
open file.

echo ftell($myfile);

fseek() Function

The fseek() function in PHP is an inbuilt function which is used to seek in an open file. It moves the
file pointer from its current position to a new position, forward or backward specified by the
number of bytes.

$myfile = fopen("gfg1.txt", "w");

// reading first line

fgets($myfile);

// moving back to the beginning of the file

echo fseek($myfile, 0);

rewind() Function

The rewind() function in PHP is an inbuilt function which is used to set the position
of the file pointer to the beginning of the file.
$myfile = fopen("gfg.txt", "r");

// Changing the position of the file pointer

fseek($myfile, "10");

// Setting the file pointer to 0th

// position using rewind() function

rewind($myfile);

copy() Function

The copy() function in PHP is an inbuilt function which is used to make a copy of a
specified file. It makes a copy of the source file to the destination file and if the
destination file already exists, it gets overwritten. The copy() function returns true
on success and false on failure.

<?php

// Copying gfg1.txt to gfg2.txt

echo copy("gfg1.txt", “gfg2.txt");

?>

Session Management using
PHP

Why Session Management?

HTTP is state less protocol, and when you refresh the page, it lost everything, which
your project should not !

What is stateless?

Stateleass means there's no way a server can remember a specific user between
multiple requests.

For example, when you access a web page, the server is just responsible for
providing the contents of the requested page. So when you access other pages of
the same website, the web server interprets each and every request separately, as if
they were unrelated to one another.

There's no way for the server to know that each request originated from the same
user.

In this model, if you wanted to display user-specific information, you'd have
to authenticate a user in each request. Imagine if you had to type your
username and password on every page that displayed your profile
information! Yes, it would be cumbersome and not practical at all, and
that's where sessions come into the picture.

A session allows you to share information across the different pages of a
single site or app—thus it helps maintain state. This lets the server know
that all requests originate from the same user, thus allowing the site to
display user-specific information and preferences.

There are four techniques used in Session tracking:

1. Cookies

2. Hidden Form Field

3. URL Rewriting

4. HttpSession

Login Flow With Sessions
1. A user opens the login page of a website.

2. After submitting the login form, a server on the other end authenticates the request by
validating the credentials that were entered.

3. If the credentials entered by the user are valid, the server creates a new session. The server
generates a unique random number, which is called a session id. It also creates a new file on the
server which is used to store the session-specific information.

4. Next, a session id is passed back to the user, along with whatever resource was requested.
Behind the scenes, this session id is sent in the PHPSESSID cookie in the response header.

5. When the browser receives the response from the server, it comes across the PHPSESSID cookie
header. If cookies are allowed by the browser, it will save this PHPSESSID cookie, which stores the
session id passed by the server.

6. For subsequent requests, the PHPSESSID cookie is passed back to the server. When the server
comes across the PHPSESSID cookie, it will try to initialize a session with that session id. It does so
by loading the session file which was created earlier during session initialization. It will then
initialize the super-global array variable $_SESSION with the data stored in the session file.

Now that you've seen a brief introduction to how sessions work, we'll create a few
practical examples to demonstrate how to create and manipulate session variables.

How to Start a Session?

Whenever you want to deal with session variables, you need to make sure that a
session is already started. There are a couple of ways you can start a session in PHP.

1. Use the session_start Function

This is the method that you'll see most often, where a session is started by the
session_start(); function.

The important thing is that the session_start function must be called at the
beginning of the script, before any output is sent to the browser. Otherwise, you’ll
encounter the infamous “Headers are already sent” error.

2. Automatically Start a Session
If there’s a need to use sessions throughout your application, you can also
opt in to starting a session automatically without using the session_start
function.
There’s a configuration option in the php.ini file which allows you to start a
session automatically for every request—session.auto_start. By default, it’s
set to 0, and you can set it to 1 to enable the auto startup functionality.
session.auto_start = 1

On the other hand, if you don’t have access to the php.ini file, and you're
using the Apache web server, you could also set this variable using the
.htaccess file.
php_value session.auto_start 1

How to Get a Session Id: the server creates a unique number for every new session. If you
want to get a session id, you can use the session_id function, as shown in the following
snippet.

session_start();

echo session_id();

How to Create Session Variables

Once a session is started, the $_SESSION super-global array is initialized with the
corresponding session information. By default, it’s initialized with a blank array, and you ca

session_start();

// initialize session variables

$_SESSION['logged_in_user_id'] = '1';

$_SESSION['logged_in_user_name'] = 'Tutsplus';

// access session variables

echo $_SESSION['logged_in_user_id'];

echo $_SESSION['logged_in_user_name'];n store more information by using a key-value
pair.

Cookie

Cookies are text files stored on the client computer and they are kept
of use tracking purpose. PHP transparently supports HTTP cookies.
Each time the browser requests a page to the server, all the data in
the cookie is automatically sent to the server within the request.
Setting a Cookie in PHP
The setcookie() function is used to set a cookie in PHP. Make sure
you call the setcookie() function before any output generated by
your script otherwise cookie will not set.

setcookie(name, value, expire, path, domain, secure);

If the expiration time of the cookie is set to 0, or omitted, the cookie
will expire at the end of the session i.e. when the browser closes.
All the arguments except the name are optional.

Parameter Description

name The name of the cookie.

value The value of the cookie. Do not store sensitive information

since this value is stored on the user's computer.

expires The expiry date in UNIX timestamp format. After this time

cookie will become inaccessible. The default value is 0.

path Specify the path on the server for which the cookie will be

available. If set to /, the cookie will be available within the

entire domain.

domain Specify the domain for which the cookie is available to e.g

www.example.com.

secure This field, if present, indicates that the cookie should be sent

only if a secure HTTPS connection exists.

<?php // Setting a cookie
setcookie("username", "John Carter", time()+30*24*60*60);

?>
Accessing Cookies Values
The PHP $_COOKIE superglobal variable is used to retrieve a cookie value. It
typically an associative array that contains a list of all the cookies values
sent by the browser in the current request, keyed by cookie name.
The individual cookie value can be accessed using standard array notation.
<?php // Accessing an individual cookie value echo

$_COOKIE["username"];
?>

It's a good practice to check whether a cookie is set or not before
accessing its value. To do this you can use the PHP isset() function,
like this:

<?php // Verifying whether a cookie is set or not
if(isset($_COOKIE["username"])){

echo "Hi " . $_COOKIE["username"];
} else{

echo "Welcome Guest!";
}
?>
Removing Cookies
<?php // Deleting a cookie

setcookie("username", "", time()-3600);
?>

Miscellaneous Functions
define function: We can create our own constants using the define() function. The
code:

define(MY_ANSWER, 42);

Constants do not have a $ before their names, and by convention the names of
constants usually are in uppercase letters.

There is no way to change this assignment after it has been made, and like
variables, user-defined constants that are not part of PHP itself do not persist
across pages unless they are explicitly passed to a new page.

When created constants are used, they are generally most usefully defined in an
external include file

and might be used for such information as a sales-tax rate or perhaps an exchange
rate.

Include and require
It’s very common to want to use the same set of functions across a set of
web site pages, and the usual way to handle this is with either include or
require, both of which import the contents of some other file into the file
being executed.

Using either one of these forms is vastly preferable to cloning your
function definitions (that is, repeating them at the beginning of each page
that uses them); when you want to modify your functions, you will have to
do it only once.

For example:

include “basic-functions.inc”;

include “advanced-function.inc”;

(Note that parentheses are optional with both include() and require().)

Both include and require have the effect of splicing in the contents of their
file into the PHP code at the point that they are called.

The only difference between them is how they fail if the file cannot be
found.

◦ The include construct will cause a warning to be printed, but processing of the
script will continue;

◦ require, on the other hand, will cause a fatal error if the file cannot be
found.

header() function
The header() function is an inbuilt function in PHP which is used to send a
raw HTTP header.

The HTTP functions are those functions which manipulate information sent
to the client or browser by the Web server, before any other output has
been sent.

The PHP header() function send a HTTP header to a client or browser in
raw form. Before HTML, XML, JSON or other output has been sent to a
browser or client, a raw data is sent with request (especially HTTP Request)
made by the server as header information.

HTTP header provide required information about the object sent in the
message body more precisely about the request and response.

The header() functions is used multiple time in the example as one header
is allowed to send at a time (since PHP 4.4) to prevent header injection
attacks.

Uses:
◦ Redirect page.

◦ Set Content-Type in header response

◦ Set HTTP Status in the header response

◦ Sent the response to a browser with no cache

// Redirect the browser

header("Location: http://www.google.com");

<?php

header("Expires: Sun, 25 Jul 1997 06:02:34 GMT");

header("Cache-Control: no-cache");

header("Pragma: no-cache");

?>

<html>

<body>

<p>Hello World!</p>

<!-- PHP program to display

header list -->

<?php

print_r(headers_list());

?>

</body>

</html>

<?php
// We'll be outputting a PDF

header('Content-Type: application/pdf');

// It will be called downloaded.pdf

header('Content-Disposition: attachment; filename="downloaded.pdf"');

// The PDF source is in original.pdf

readfile('original.pdf');

?>

die() and exit() function
The exit() construct takes either a string or a number as argument, prints
out the argument, and then terminates execution of the script.

Everything that PHP produces up to the point of invoking exit() is sent to
the client browser as usual, and nothing in your script after that point will
even be parsed — execution of the script stops immediately.

If the argument given to exit is a number rather than a string, the number
will be the return value for the script’s execution. Because exit is a
construct, not a function, it’s also legal to give no argument and omit the
parentheses.

The die() construct is an alias for exit() and so behaves exactly the same
way. (We’ll usually use the die() version because we find the name more
evocative.) So what’s the point of exit() and die()?

One possible use is to cut off production of a web page when your script
has determined that there is no more interesting information to send,
without bothering to wrap up the different branches in a conditional
construct.

A better use for die() is to make your crashes informative. It’s good to get
into the habit of testing for unexpected conditions that would crash your
script if they were true, and throw in a die() statement with an informative
message.

If you’re correct in your expectations, the die() will never be invoked; if
you’re wrong, you will have an error message of your own rather than a
possibly obscure PHP error.

$connection = make_database_connection();

if (!$connection)

die(“No database connection!”);

use_database_connection($connection);

OR

$connection = make_database_connection()

or die(“No database connection!”);

use_database_connection($connection);

User-defined functions

What is a function?

A function is a way of wrapping up a chunk of code and giving that chunk a
name, so that you can use that chunk later in just one line of code.

Functions are most useful when you will be using the code in more than
one place, but they can be helpful even in one-use situations, because they
can make your code much more readable.

Function definition syntax
function function-name ($argument-1, $argument-2, ..)

{

statement-1;

statement-2;

...

}

That is, function definitions have four parts:
◦ The special word function
◦ The name that you want to give your function
◦ The function’s parameter list — dollar-sign variables separated by commas
◦ The function body — a brace-enclosed set of statements

Just as with variable names, the name of the function must be made up of letters, numbers, and
underscores, and it must not start with a number.

Unlike variable names, function names are converted to lowercase before they are stored
internally by PHP, so a function is the same regardless of capitalization

Function naming rules

There are a few rules about which characters are allowed in function names.

Uppercase/lowercase letters

Numbers

Underscores

No spaces

The short version of what happens when a user-defined function is called is:

1. PHP looks up the function by its name (you will get an error if the function has
not yet been defined).

2. PHP substitutes the values of the calling arguments into the variables in the
definition’s parameter list. (Parameters- argument-formal-actual)

3. The statements in the body of the function are executed. If any of the executed
statements are return statements, the function stops and returns the given value.
Otherwise, the function completes after the last statement is executed, without
returning a value.

Argument number mismatches

What happens if you call a function with fewer arguments than appear in the
definition, or with more?

PHP handles this without anything crashing, but it may print a warning depending
on your settings for error reporting.

Too many arguments

If you hand too many arguments to a function, the excess arguments will simply be
ignored

(Global, Local and static variable)

File Upload
PHP allows you to upload single and multiple files through few lines of code only.

PHP file upload features allows you to upload binary and text files both. Moreover, you can have

the full control over the file to be uploaded through PHP authentication and file operation

functions.

PHP $_FILES

The PHP global $_FILES contains all the information of file. By the help of $_FILES global, we can

get file name, file type, file size, temp file name and errors associated with file.

Here, we are assuming that file name is filename.

$_FILES['filename']['name'] returns file name.

$_FILES['filename']['type'] returns MIME type of the file.

$_FILES['filename']['size'] returns size of the file (in bytes).

$_FILES['filename']['tmp_name'] returns temporary file name of the file which was stored on the

server.

$_FILES['filename']['error'] returns error code associated with this file.

move_uploaded_file() function

The move_uploaded_file() function moves the uploaded file to a new location. The
move_uploaded_file() function checks internally if the file is uploaded thorough
the POST request. It moves the file if it is uploaded through the POST request.

bool move_uploaded_file (string $filename , string $destination)

