. . B WARTE AT
INDUS |
UNIVERSITY

MICROPROCESSORS
(SUBJECT CODE-CE0506/CS0506)

UNIT-2&3
B.TECH (CE/CSE)
SEMESTER-V

Shikha Singh

Academic Year 207190-2020

S
Features of 8086 Microprocessor

1. Intel 8086 was launched in 1978.

2. It was the first 16-bit microprocessor, 40-pin Dual-
Inline-Package (DIP).

3. This microprocessor had major improvement over
the execution speed of 8085.

4. It is available in three versions:

a. 8086 (5 MHz)

b. 8086 (8 MHz)

c. 8086 (10 MHz)
5. It consists of 29,000 transistors &
had Multiply and Divide instructions.

L
Data Structure

- Most Significant byte at lowest address ("Big Endian"), OR
- Least Significant byte at lowest address ("Little Endian")
- 8086 has a little Endian data structure

hite [high hife 3
hife 1 hite 2
hie 2 hifte 1
e 3 I hivte [
"Big Enian’ "Litle Endian’

Block Diagram of Intel
3086

The 8086 CPU is divided into two functional
units:

1. Bus Interface Unit (BIU)
2. Execution Unit (EU)

Internal (Block Diagram) Architecture of

8086 CPU

6
a \ : INSTRUCTION
STREAM
' A BYTE
3 QUEUE
_— = :
1

—_—————y———————_— — ——_— - — ——— —

|

|

|

|

|

|

|

|

I

| |

ES I

e [e - s 2 A e e e e e e e]

S I |

DS ' '

v | |

| CONTROL |

L : ' SYSTEM i

—————————— — I

F |

EU [} A-BUS I

i

. |

' |

= T I

i BH BL I

| CH [ARITHMETIC |

| OH oL LOGIC UNIT |

| 5P . |

: HP i { B :
|

| :‘I i y |

: OPERANDS I

| FLAGS Led |

L e A S L B = ————— i . S5 S e s . o . _J

F|g 1: Block Diagram of Intel

Bus Interface Unit (BIU)

The BIU provides hardware functions. Including
generation of the memory and I/0 addresses for the
transfer of data between itself and the outside
world.It also Fetches the instruction or data from

memory and Writes the data to memory.

Instruction Queue

To increase the execution speed, BIU fetches as
many as six instruction bytes ahead to time from
memory and stored in a register called instruction
queue.Then all bytes have to be given to EU one by
one.

This pre fetching operation of BIU may be in parallel
with execution operation of EU, which improves the
speed execution of the instruction.

Execution Unit (EU)

The functions of execution unit are:
To decode the instructions.
To execute the instructions.

EU receives the program instruction codes and
data from the BIU, executes these instructions
and store the result in general purpose registers.
By passing the data back to the BIU data can be
stored in a memory location or written to an

output device

It receives and outnuts all its data throuuah Bll)

Fetch and Execute cycle

The BIU outputs the contents of the instruction pointer
register (IP) onto the Address bus, causing the selected
byte or word in memory to be read into the BIU.

Register IP is incremented by one to prepare for the
next instruction fetch.

Once inside the BlIU, the instruction is passed to the
queue: a first-in/first-out storage register sometimes
likened to a pipeline.

Assuming that the queue is initially empty, the EU
iImmediately draws this instruction from the queue and
begins execution.

Fetch and Execute cycle
While the EU is executing this instruction, the BIU

proceeds to fetch a new instruction. Depending on the
execution time of the first instruction, the BIU may fill
the queue with several new instructions before the EU

IS ready to draw its next instruction.

The cycle continues, with the BIU filling the queue
with instructions and the EU fetching and executing

these instructions.

S
Fetch and Execute cycle

Feich [Execute [Feich [Execute [Fetch |Execute [Fetch

—
Time

(a)

BIU |Fetch IFetch Fetch Fech |Feich (Fetch md Feich* [Fech? [Feich* [Fech [Fech | <

NN =a NN

EU |Wat |Execute |Execute |Execute Execute® | Wait |Execute (Execute Execute® | Wait |Execute e

b)

Figure 3.2 (a) The nonpipelined microprocessor follows 2 sequential fetch and execute cycle.
(b) The 8086's pipelined architecture allows the EU to execute instructions without the delays

associated with instruction fetching,

Programming model of 8086

The programming model for a microprocessor shows

the various internal registers that are accessible to the

programmer. The Following Figure is a model for the

8086.lIngeneral, each register has a special function.

DATA REGISTERS

SEGMENT REGISTERS

D15 D8 D7 DO D15 Do
AX AH AL cs CODE SEGMENT
BX BH BL DS DATA SEGMENT
CX CH cL ES EXTRA SEGMENT
DX DH DL ss STACK SEGMENT
POINTER AND INDEX REGISTERS
D15 DO
BF BABE FQINTER INSTRUCTION POINTER AND FLAGS
sl SOURCE INDEX D15 DO
i R e IP | INSTRUCTION POINTER
ap e — FLAGS | CPU STATUS FLAGS
G \
X|X|X|X|oF|oF|IF|TF|sF|zF| X |AF| X |PE| X |CF
D15 DO

X =RESERVED

Registers

General Purpose Registers:
These registers can be used as 8-bit registers individually or
can be used as 16-bit in pair to have AX,BX, CX, and DX.
Pointer Group Registers:

The pointer and index group are all 16 bit registers. These

registers are used as memory pointers.
MOV AH,[SI]
Register IP is included into memory pointer but this register

has only one function to point the next instruction to be
fetched to the BIU.

Reqgisters

Segment Register
Additional registers

called segment
registers generate
memory address when
combined with other in
the microprocessor. In
8086 Microprocessor,
memory is divided into

4 segments as follow:

CODE
DATA
STACK

EXTRA

Segment Registers

DATASZ

STACK

MEMORY

CONT...

1. Code Segment (CS): The CS register is used for
addressing a memory location in the Code Segment of the

memory, where the executable program is stored.

2. Data Segment (DS): The DS contains most data used
by program. Data are accessed in the Data Segment by
an offset address or the content of other register that

holds the offset address.

3. Stack Segment (SS): SS defined the area of
memory used for the stack.

4. Extra Segment (ES): ES is additional data
segment that is used by some of the string to hold
the destination data.

Segment registers

- Calculate the beginning and ending address for the
data segment assuming that reqister

-DS = E0O0OH

- Solution

- Base address can be found by appending four 0's :
- Base address E0000H

- Ending address can be found by adding 64K ..

- EO000H + FFFFH = EFFFFH

Flag Registers of 8086

Flag register in EU is of 16-bit and is shown In
fig. :

OF|DF| IF |TF|SF|ZF| |AF| |PF| |CF

15 0
Flags Register determines the current state of the
processor. They are modified automatically by CPU
after mathematical operations, this allows to
determine the type of the result, and to determine
conditions to transfer control to other parts of the

program.

R A
CONT...

8086 has 9 flags and they are divided into two
categories:

- 1. Conditional Flags
- 2. Control Flags

Conditional Flags

Conditional flags represent result of last arithmetic or
logical instruction executed. Conditional flags are as

follows:

Carry Flag (CF)
Auxiliary Flag (AF)
Parity Flag (PF)
Zero Flag (ZF)
Sign Flag (SF)
Overflow Flag (OF)

Conditional flag

Carry Flag (CF) - this flag is set to 1 when there is an carry
out from MSB.

Parity Flag (PF) - this flag is set to 1 when there is even
number of one bits in result, and to 0 when there is odd

number of one bits.

Auxiliary Flag (AF) - set to 1 when there is a carry from low

nibble to upper nibble(4 bits).

Zero Flag (ZF) - set to 1 when result is zero. For non-zero

result this flag is set to 0.

Sign Flag (SF) - set to 1 when result is negative. When
result is positive it is set to 0. (This flag takes the value of

the most significant bit.)

Control Flags

~ Control flags are set or reset deliberately to
control the operations of the execution unit.
Control flags are as follows:
1. Trap Flag (TP):
2. Interrupt Flag (IF):
3. Direction Flag (DF):

Control Flags

Trap Flag (TF) - Used for on-chip debugging.

Interrupt enable Flag (IF) - when this flag issetto 1

CPU reacts to interrupts from external devices.

Direction Flag (DF) -Causing the string instruction to
auto decrement the index register when set and Clearing

DF causes the Auto increment.

B
Physical And Logical Address

20 bits (A[,-A1g]> Address Bus

Data Bus

> Control Bus

IP Register

The Instruction Pointer
register(IP) contains the offset
address of the next sequential
Instruction to be executed. Thus,
the IP register can not be
directly modified.

- These register descriptions have
slowly been introducing us to a
new way of addressing memory,
called:

- segment-offset addressing.

- The segment register is used to

nAatnt A Fhaea hkanainninAsa AF ~nvs

Physical Address

00000H

7000H
Segment address

0000H

FFFFH

L
Physical Address

-Each segment register is 16 bit wide while the
address bus is 20 bits wide. The BIU takes care of

this by appending four 0 s to the lower order bits of

the segment regqi: 16 bits A it
< »><—>
segment 0000
< 20 bits
+ offset
e

Physical Address
20 bit

address

—1 1 2 A 4Segmntﬂasaﬁ

15 g T , Logical
Offset Address
2 0 2 2 5€
1 i5 3 Address ’

h—h

1 2 A 4] 0] Lettsnit4bits
19 0

+ .00 0 2 2| Addoffset
15 0

1 2 &8 2JFW3h£daddress
19

lTn mamnry

Segment Register and Default offset
registers in 8086

Segment Default offset Register
Registers

CS IP

DS BX,SI,DlI

SS SP or BP

ES DI for String Instruction

Ex1

Let us Assume that the CS register has the
value 3000H and IP register has value 2000h.
To fetch an instruction from the next memory
location.

CS x 10H = 30000H Base address of the code Segment
+IP = 02000H Offset Address

32000H Memory Address from where the next
Instruction to be taken

Ex:2

Consider the Execution of the instruction
MQV AX,[BX]

Let us assume that DS and BX have the
values 1000H and 3000H respectively.

To calculate the address from where the data
has to be taken

DS X 10 H = 10000H Base Address of Data
Segment
+ BX = 03000H Offset Address

13000H Memory address from
where data is to be taken

If the segment registers CS,DS and SS have values
1000H , 2000H, 3000H respectively. What will be the
20 bit start and end address of the code , data and
Stack Segments?

Code Segment: 20-bit start address =S x10h +0000H
= 10000k
20-bit end address =(CS x10H +FFFFH
= |FFFFH
Data Segment : 20-bit start address =DS x10h +0000H
=20000H
20-bit end address =DS x10H +FFFFH
= JFFFFH
Stack Segment : 20-bit start address =SS x10h +0000H
=30000H
20-bit end address =SS x10H +FFFFH

= 3FFFEH

B
8086 Pin Diagram

WLAD([M!H
MODE | MODE
GND [1 P 40 [vcCC
AD14 [] 2 a0 [AD15
AD13 [] 3 38 [Ales3
AD12 [4 a7 A17/54
AD11 [5 36] A1ess
AD10 [] & 3a5[] A19/S8
AD9 17 34 [] BHES7
ape Ce 9% a3y mnmx
AD7 [o CPU 229 mD
Ape [10 31 [RO/GTO (HOLD)
ADs [11 30 1 RQ/GT1 (HLDA).
ADs [12 28] LOCK (WR)
AD3 [13 281 52 (MAC)
ADz [14 27 S (DT/R)
AD1 [15 26] S0 (DEN)
Apo [16 25 Q@so (ALE)
NME O 17 241 QS1 (INTA)
INTR [18 23] TEST
CiLK L[] 19 221 READY
ano O 20 21 [meser

Pin Description

Data Bus (ADO - AD15): D0O-D15

These 16 pins are used as Address and data bus.
During T1 state this lines provides address and data

lines are valid only during T2 to T4.

Whenever the ALE pin is high these pins works as a
address bus and when ALE is low these pins carry the
data.

Pin Description

Address bus (ADO - AD 15, A16/S3 -
Al19/56):

This 20 lines are correspond to the CPU’s 20-bit

address. These lines are valid only during T1
state.

S6 : always remains at logic O

S5 : indicate condition of IF flag bit
S4 and S3 indicate the canmant addraccad hyv

8086 during the cu s« S3 Function
O o Exira segment
0 1 Stack segment
1 O Code or no segment
1 1 Data segment

NMI : Non- Maskable interrupt is a hardware interrupt.
similar to INTR except that no check IF flag bit

RESET :

This input causes the 8086 to reset, if it is held at
logic 1 for at least 4 clock cycle. Whenever the 8086
Is RESET, CS and IP are initialized to FFFFh and
OOOOH, respectively and all other registers are
initialized to 0000h.

VCC(power supply) : +5.0V, =10%

INTR-Interrupt Request :

This is a level triggered input. This is sampled during
the last clock cycles of each instruction to determine
the availability of the request. If any interrupt request

Is pending, the processor enters the interrupt

acknowledge cycle.

When IF = 1 and if INTR is held high the 8086 gets
interrupted . When IF = 0, INTR is disabled.

Ready:

This input signal is used to insert wait state in to the timing
cycle of 8086. if the READY pin is at logic 1, it has no effect
on operation of the microprocessor. If it is at logic O, the
8086 enters the wait state and remains idle. This signal is

used to interface the slowly interfacing device with the
8086."

MN/MX:

This pin is used to select either the minimum mode or
maximum mode operation for the 8086. this is achieved by

conhectina this nin to either +5V (Minimum mode) or to the

TEST :

This pin is an input pin that is tested by wait instruction. If
this pin is at logic 0, the wait instruction function as NOP.

This pin is often connected to the BUSY pin of the 8087 to
perform the floating point operations.

Read (RD):

This active low output signal indicates that the direction of
data flow from memory or 10 to CPU. It can be combined

with M/IO to generate MEMR and IOR signals.

Pin Description

Clock (CLK):

All events in the microprocessor are synchronizes to the
system clock applied to CLK pin. The clock signal must
have duty cycle for 33%.

BHE / S7/:

This signal is multiplexed with the S7 status indicator. It
IS output only during the Tl state. BHE and AOQ are

typically used to select even or odd memory banks.

BHE| AO | Action
0 0 Access 16-bit word
0 1 Access odd byte to D8- D15
1 0 Access even byte to DO-D7
1 1 No action

Function of Pins used in Minimum
mode

INTA -Interrupt Acknowledge :
This signal is used as a read strobe for interrupt
acknowledge cycles. i.e. when it goes low, the processor

has accepted the interrupt.

DT/R -Data Transmit/Recelive:

This output is used to decide the direction of data flow
through the transreceivers (bidirectional buffers). When
the processor sends out data, this signal is high and when
the processor is receiving data, this signal is low.

Pin Description

ALE (Address Latch Enable):
Signal output on this pin can be used to Demultiplex
the address , data bus and status lines. ALE pulse is

high during T1 state.

M/IO :

The 8086 does not output separate memory and
/0 signals. Instead , the M/IO signal output during
early in Tl state. So if M/IO = 1 then it is memory

operation or M/IO = 0 then |10 operation.

L
Pin Description

© Write(WR):

- This active low output signal indicates that the direction
of data flow from CPU to memory or 10. It can be
combined with M/IO to generate MEMW and IOW signals.

DEN -Data Enable :

This signal indicates the availability of valid data
over the address/data lines. It is used to enable the
transreceivers (bidirectional buffers) to separate the
data from the multiplexed address/data signal. It is
active from the middle of T2 until the middle ofT4.

This is tristated during ‘ hold acknowledge’ cycle.

HOLD, HLDA-Acknowledge :
When the HOLD line goes high, it indicates to the

processor that another master is requesting the bus
access. The processor, after receiving the HOLD
request, issues the hold acknowledge signal on HLDA
pin, in the middle of the next clock cycle after

completing the current bus cycle.

-GND(Ground) : GND

-Minimum mode Pins

-M/IO

-WR

-INTA

-HOLD

-HLDA

-DEN

-ALE

Maximum Mode Pins

-MN/MX = 0(ground)

-52',51’,50":indicate function of current bus cycle
-these signal : normally decoded by 8288 bus

controller
52 S1 S0 Function
0 0 0 Interrupt acknowledge
|0 0 1 /0 read
{0 1 0 /0 write
0 1 1 Halt
. 0 0 Opcode fetch
il 0 1 Memory read
- 1 0 Memory write
1 1 i Passive

_ Request / Grant (RQO/GTO , RQ1/GT1) :
o0 These two pins are bidirectional, allowing a coprocessor
to request control of the system buses . The 8086 respond
by disconnecting itself from the system buses and
pulsating the RQ/GT line in acknowledgement. These lines

are bidirectional and are used to request and grant DMA

operation.

LOCK(lock output):

lock is an output signal intended for use in a bus
arbitration scheme with another processor. Arbitration
refers to the process of determining which processor
should have the control of the system buses at any given
time. The LOCK signal is output low during the execution of
any instruction with LOCK prefix. This signal is meant to
be output whenever processor wants to lock out

other processor from using the bus.

QS1, QSO(queue status) :

show status of internal instruction queue

provided for access by the numeric
coprocessor(8087)

They allow the coprocessor to track the progress of

an inctriictinn thrniinh thao niilailia

QS, Qs, Queue Status

0 (low) | 0 No Operation. During the last clock cycle, nothing was
taken from the queue.

0 1 | First Byte. The byte taken from the queue was the first
byte of the instruction.

1 (high) | ¢ | Queue Empty. The queue has been reinitialized as a result
of the execution of a transfer instruction.

Subsequent Byte. The byte taken from the queue was a
subseaquent bvte of the instruction.

8284A

clock generation, RESET synchronization, READY
synchronization, and TTL-level peripheral clock

Slgnal CSYNC[]1 186 [Vee
PCLK[] 2 17] X1
AENiI[] 3 18 | | x2
RDOYi1[] a 15 _1ASYNC
READY [s | EFI
RDY2[|6 13]FIC
AENZ |7 12[Josc
cLk[]s 11 |_|RES
GND[]9 10] RESET

Pin Diagram of 8284A Clock
generator

3

s

—— -

E.ﬂ. EDP

E <" ¥ SEEEEE

8284A

8284A connection with 8086

15 MH:%

‘ +5V - l:
10K ks
&

"

== 10pF

-

X4

FiC

CSYNC

|

)
m
wl

8284A

B2B4A

CLK

RESET

SMHz

'
System
reset

-]

+ CLK

8086/8088

RESET

Bus Buffering and Latch
F_

8086

BHE/ST
Ay osse
Ay RrsS
Al?.rS-l
Apersa

AT,

AD, S

MASTO

AN X R

OE

*373

G
ET3 OE B3T3 OE

i

M "FT

T

o + Address bus

D- ¢+ Dacta bus

RI> } Control bus

CONTROL
INPUT

g 2 g

CLK
AEN
CEN

OB

STATUS
DECODER

COMMAND
SIGNAL
GENERATOR

CONTROL
LOGIC

CONTROL

SIGNAL

GENERATOR

GND

— [VIRDC
— V\WWTC
— AMWC
— [ORC
— [QWC
— AIOWC

= INTA
— DT/R
— DEN

— VICE/PDEN
— ALE

MULTIBUSTM

y» COMMAND

SIGNALS

ADDRESS LATCH,
DATA TRANSCEIVER,
AND INTERRUPT
CONTROL SIGNALS

L
Minimum mode Interface

Power

supply
v GND

INTR Address/data bus

Interrupt T — @ ADB-AD'IE' A'lﬁjSE-A"lQISE

interface TEST ——p

] 1% | . —» ALE
RESET—— 3 8086 - » BHE/S,
MPU —————— MilO Memory/IO

DTR controls

DMA HOLD —————p » RD
interface

HLDA 44— —
— » WR

Mode = L » DEN
select N | «—— READY

CLK

Maximum mode Interface

CLK o # AEN

V., GND lm{ l
Interrupt = o — MRDC
v o
interface CLK o - MWTC
ity | AMWC
INTR ———— T —| 52 gogg | TORC
TEST— Bus | IOWE
= Controller —
: | AIOWE
Y| P - DEN —
5, DR _-' o
RESET— b | MCE/PDEN

8086 » DEN

MPU
< ADG-AD 5, AqglSy-Ayg/Se >

— LOCK
NN i

Qs,,QS, >

8288 Commands

Status Inputs

— — — CPU Cycles 8288

S, S, S, Command

0 0 0 Interrupt Acknowledge INTA

0 0 1 Read I/0 Port IORC

0 1 0 Write 1/0 Port IOWC, AIOWC
0 1 1 Halt None

1 0 0 Instruction Fetch MRDC

1 0 1 Read Memory MRDC

1 0 Write Memory MWTC, AMWC
1 1 Passive None

L
Memory Read cycle Minimum
mode

_——1

m..__-fr \ / ‘t: (a)

L
Memory write cycle Minimum

mode

sy (o mon X o o r—
e D e SETTTTRD € oo —
w [T\ /
w_ |

N \ [/

-

3
I
i
!
L“\
/

L
Minimum-mode |/O read cycle

ONE BUS CYCLE

L
Minimum-mode |I/O write cycle

Ond BUS CYCLE
T T T

gy oo o e
AD1§-ADy '—{ ADORESS OUT I OATA OUT

L
Maximum mode memory read

cycle

[I s " I = s O T <

CLK '
-«— One bus cycle ———»

ALE /7 \ /
5-5 Active {inactive { Active
ADD/STATUS)(BHE, As-Ais X S1-Ss)

ADD [DATA __ ... Ags - Ay m

AD;; - AD,

MRDC —\ /
N

DT/R

DEN : L

Memory Read Timina in Maximum Mode

L
Maximum mode Memory Write

Cycle
ﬂf_r—_?:{j]_‘__?'—k_

0w \ .88 acTve I B3-55 MACTIVE ‘Il___-

ADDAESS/STATUS T e B

e —y BHE LOW FOR DATA TRANSFER OW HIGH ORDER SYTE (015-D8

- Y e B | oara our ove-0n p—

Memory Bank

1M BYTES Transfer X

- D,-D
Ag- A 7= Y Ry il ;=B

1Mx 8 Memory bank of Byte transfer by 8088
8088

Memory Bank

First bus cycle Second bus cycle

A - Ag D, - Dy A A, D, - Dy

Word transfer by the 8088

Memory Bank

512K BYTES 512K BYTES

A - A, D,s—Dg; BHE D,-D, Ao

High and low memory banks of the 8086

B
Memory Bank

Access 16-bit word
Access odd byte to D8- D15
Access even byte to D0-D7

No action

= P O O
R O r O

A — A,y D,s —Dg BHE (HIGH) D,—-D, Ap(LOW)

Even address byte transfer by the 8086

B
Memory Bank

Access 16-bit word
Access odd byte to D8- D15
Access even byte to D0-D7

No action

= P O O
R O r O

Transfer X+1

Aqg — Ay D,s —Dg BHE (LOW) D; — Dy A, (HIGH)

Odd address byte transfer by the 8086

L
Memory Bank

Access 16-bit word
Access odd byte to D8- D15
Access even byte to D0-D7
No action

= P O O
R O r O

el X, X1

A — D,s—D; BHE (LOW) D;,-D, Ay(LOW)

Even address word transfer by the 8086

L
Memory bank

Access 16-bit word
Access odd byte to D8- D15
Access even byte to D0-D7

= P O O
R O r O

No action Second bus cycle

Mo-A; Dys-Dy pgue (LOW) D,-D; A (HIGH) A,-A, Dys-D3 gHE (HIGH) D;-D, Ay(LOW)

Odd-address word transfer by the 8086

Addressing Modes

Method of Accessing data from memory or
Registers.

Types of Addressing Modes
Register Addressing mode
Immediate Addressing mode
Direct Addressing Mode
Register Indirect Addressing Mode
Based-Relative Addressing mode
Indexed Relative Addressing mode
Based-indexed relative addressing mode

Register Addressing mode

Transfers a copy of a byte or word from the source
register or memory location to the destination
register or memory location.

MOV BX, DX ; copy the contents of DX into BX
MOV ES,AX ; copy the contents of AX into ES
ADD AL,BH ; add the contents of BH to contents of AL

Source and destination registers must have the
same size

B
Register Addressing mode

Assembly Language Size Operation
MOV AL,BL 8-bits Copies BL into AL
MOV CH,CL 8-bits Copies CL into CH
MOV AX,CX 16-bits Copies CX into AX
MOV SP,BP 16-bits Copies BP into SP
MOV DS,AX 16-bits Copies AX into DS
MOV SI,DI 16-bits Copies Dl into SI
MOV BX,ES 16-bits Copies ES into BX
MO ES,DS — Not allowed (segment-to-segment)
MOV BL,DX — Not allowed (mixed sizes)
MOV CS,AX — Not allowed (the code segment register

may not be the destination register)

Immediate Addressing mode

Transfers the source, an immediate byte or word of

data, into the destination register or memory
location.

The source operand is a constant

Immediate addressing mode can be used to load
Information into any of the registers except the
segment registers and flag registers.

MOV AX,2500H » move 2500H into AX

MOV CX,600 ; load the decimal value 600 into CX
MOV BL, S80OH : load 80H into BL

MOV AX,2500H

MOV DS, AX

MOV DS, 0133H ; illegal instruction!

Immediate Addressing mode

Assembly Language Size Operation

MOV BL,44 8-hits Copies a 44 decimal (2CH) into BL
MOV AX,44H 16-bits Copies a 0044H into AX

MOV 31,0 16-bits Copies a 0000H into Sl

MOV CH,100 8-hits Copies a 100 decimal (64H) into CH
MOV AL,'A 8-hits Copies an ASCI! A into AL

MOV AX;AB’ 16-bits Copies an ASCII BA* into AX

MOV CL,110011108 8-hits Copies a 11001110 binary into CL

Direct Addressing mode

Moves a byte or word between a memory location
and a reqister.

This address is the offset address.

MOV AX, [2500] : move contents of
DS:2500H into AX

The physical address is calculated by combining
the contents of offset location 2500 with DS.

Example::
Find the ph]}/sical address off the memory location and its
L

contents after the execution off the following, assuming that
DS = 1412H.
MOV AL, 3BH

MOV [2518], AL

Solution:
First 3BH is copied into AL,

Then in line two, the contents off AL are moved to logical
address DS:3518 which is 1412:2518.

Shifting DS left and adding it to the offset gives the physical
address off 18638H (14120H + 2518H = 16638H).

After the execution off the second instruction, the memory
location with address 18638H will contain tithe value 3BH..

-Example for the instruction MOV AL,[1234H] and

DS = 1000H
Memory
— 11235H
AX BAH 8AH b A b
BX
e | [1123%H
X
L | L[
‘_\-

Examples of Direct Addressing modes

MOV Copy the content of data segment memory location
AL,[2C00N] 2C00h in to AL register (8 Bit)

MOV Copies the word content of data segment memory
AX,[3400h] location 3400h in to AX (16 bit)

MOV [100H], Copies BL in to Data Segment Memory Location 100h (8
AL bit)

MQV [72C2h],
CX

Copies CX in to data segment memory location 72C2H
(16 bit)

MOV
ES:[2000H],AL

Copies Al in to extra segment memory location 2000H (8
Bit)

MOV SP,[4E2h]

Copies the word contents of data segment memory
location 4E2h in SP (16 bit)

Register Indirect Addressing mode

Instruction specifies an address where data is located.

This addressing mode works with SI,DI,BX,BP registers.

Examplel : Write value 0065h at the address pointed
by DS:BX

MOV BX,1200h
MOV [BX],65H

Examplel : transfer the byte from AL to the address
pointed by DS: 1202H

MOV [1202h],AL

H!e opera!lon o1 ‘!‘55 l!,‘ !Q‘ ms!ruc!lon w”en

BX=1000H and DS =0100H.

02002

3 4 12 *-_‘_\ 34 02001
BX ——
10 00 1000 2000 - 02000

CX
P —— s
01002
cs 01001
DS 0100 kL - o—-
_—H'_H—‘u_

Base Plus index addressing mode

This mode is similar to indirect addressing mode
because it indirectly addresses the memory data.
This type of addressing uses one base register and
one index register to indirectly address the memory

MOV DX,[BX+DI]

Suppose BX=1000h , DI =0010h ,and DS =0100h,
which translate in to memory location 2010H. This
Instruction transfers a copy of the word from location
2010H in to DX regqister.

D
Base Plus Index Mode

MOV DX,[BX+DI]

Hamury
Ry,
02015H
AX
02014H
CX 020124
ox | a8 |03 WA e il il
'\l 03 |02010H =—
0200FH
5P T
BP
1000H
8l
= 0010H ;5‘ 2010H
il "5’101014'?
1000H

DS x 10H

L
Examples

Assembly Language Size Operation

MOV CX, [BX+Dl] 16-bits Copies the word contents of the data segment
memory location address by BX plus DI into CX

MOV CH,[BP+SI] 8-hits Copies the byte contents of the stack segment
memory location addressed by BP plus Slinto CH

MOV [BX+SI] SP 16-bits Copies SP into the data segment memory location
addresses by BX plus I

MOV [BP+DI] AH 8-bits Copies AH into the stack segment memory
location addressed by BP plus Dl

Base Plus index Plus offset

addressing mode

- Examples:
- MOV AL,DISP[BX][SI]
- MOV AL, DISP[BX+DI]
- MOV AL,[BP+SI+DISP]

MOV AX,[BX+DI+15]

L
Interrupts

- Interrupt Types
- Hardware Interrupts: External event
- Software Interrupts: Internal event (Software generated)
- Maskable and non-maskable interrupts

- Interrupt priority

- Interrupt Vectors and Interrupt Handlers

Purpose of Interrupts

Interrupts are useful when interfacing 1I/O devices with
low data-transfer rates, like a keyboard or a mouse, in
which case polling the device wastes valuable

processing time

The peripheral interrupts the normal application

execution, requesting to send or receive data.

The processor jumps to a special program called
Interrupt Service Routine to service the peripheral

After the processor services the peripheral, the

avoriitinn nf tho intorriintad nrn

cnnti

Modem Interrupt

Prlnter Interrupt

Modem Interrupt

BASIC INTERRUPT
TERMINOLOGY

Interrupt Service Routine (ISR) or Interrupt
handler: code used for handling a specific
Interrupt

Interrupt priority: |In systems with more than
one interrupt inputs, some interrupts have a higher
priority than other

They are serviced first if multiple interrupts are triggered
simultaneously

Interrupt vector: Code loaded on the bus by the
interrupting device that contains the Address

(segment and offset) of specific interrupt service
routine

Interrupt Masking: Ignoring (disabling) an

intfarriint

‘Interrupt V/S Polling

R A
Types of Interrupts

Software Interrupts

Hardware Interrupts (INT n)

Maskable Interrupts Non-Maskable 256 Types of Software
Interrupts Interrupts

8086 CPU
N

GND L[] 1 40 [1 VCC

AD14 [2 39 [AD15

AD13 [] 3 38 [A16/S3

AD12] 4 37 [1 A17/S4

AD11 [] 5 36 [] A18/S5

AD10 [6 35 [A19/S6

AD9 [] 7 34 [] BHEIST

AD8 [] 8 33 [MN/MX

AD7 [9 32 1 RD

AD6 [] 10 8086 31 [] RQIGTO(HOLD)

ADS] 11 CPU 30 [RQ/GTI (HLDA)

AD4 [12 29[TOCK (WR)

AD3 [13 81 82 (MiD)
Non-Maskable aD2 [14 27 51 (DTfﬁ)

Interrupts — —

AD1 [15 26 1 SO (DEN)

ADD L[] 18 25 1 Qso (ALE)

NMiE O 17 24 [QS1 (INTA)

INTR [] 18 23 [TEST

cLk [19 22 [| READY

GND [20 21 1 RESET

Mashkable Interrupts

Non-Maskable
Interrupts

8086 CPU

b
GND [1 40 [J VCC
AD14 [] 2 39 [] AD15
AD13 [] 3 38 [A16/S3
AD12 [4 37 [A17IS4
AD11 [] 5 36 [A18/S5
AD10 [6 35 1 A19/S6
AD9 []7 34 [] BHE/S7
AD8 [8 33 [MN/MX
AD?7 [] 9 32 [RD
AD6 [] 10 8086 31 [] RQ/GTO(HOLD)
AD5] 11 CPU 30 [RQIGTT (HLDA)
AD4 [] 12 29 [] TOCK (WR)
AD3 [] 13 28| 1 S2 (M/i0)
apz [14 27§71 (DTIR)
AD1 [15 26 [1 S0 (DEN)
ADO L[] 16 25 1 Qso (ALE)
NMI O 47 2471 QS1 (INTA)
23 [1 TEST
22 [] READY
21 [RESET

8086 CPU
GND Cl1 a0 f vee
AD14 [2 39 [] AD15
AD13 [] 3 38 [A16/S3
AD12] 4 37 [A17/S4
AD11 [] 56 36 [A18/S5
AD10 [] & 35 [A19/S6
AD9 [] 7 34 [] BHE/ST7
ADB [] 8 33 [0 MN/MX
AD?7] 9 32 [1 RD
AD6 [|10 8086 31 [1 RQIGTO(HOLD)
ADs] 11 CPU 30 [RQ/GTT (HLDA)
AD4 [12 20 [1 TOCK (WR)
AD3 [13 28 [1 S2 (M/iO)
Maskable Interrupts Non-Maskable] 14 271 §1 (DTIR)
Interrupts — E—
T 26 [1 SO (DEN)
] 16 25 1 Qso (ALE)
NMI O 17 241 as1_ (NTA)
»INTR [18 23 1 TEST
cLk [19 22 [1 READY
GND [20 21 1 RESET

MasRkable Versus Non-Maskable Interrupts

Hardware Interrupts

Non-Mashkable

MasRable Interrupts
Interrupts

The programmer
cannot control when
a Non-Maskable
Interrupt is serviced.

The processor has to
stop the main program
to execute the NM|
Service Routine.

MasRable Versus Non-Maskable Interrupts

Hardware Interrupts

Non-Maskable

Maskable Interrupts
Interrupts

The programmer can The programmer
choose to mask specific cannot control when
Interrupts and re-enable a Non-MasRkable
them later. Interrupt is serviced.

The processor has to
stop the main program
to execute the NMI

Service Routine.

INT stands for Interrupt.

Software Interrupts

(INT n)

256 Types of Software
Interrupts

INT OOh - INT OFFh comprises
256 Rinds of Interrupts.

Software Interrupts

(INT n)

256 Types of Software
Interrupts

07F H

Type 5 to Type 31

Reserved for future
use by the processor

Ol4H

Type 4 Pointer

Overflow Software Interruplts

(INT n)

OIOH

Type 3 Pointer
I-Byte INT Instruction
OOCH

Type 2 Pointer
Non-Maskable

256 Types of Sofiware

Interrupts

=,
O0O8H

Type | Pointer

Single Step

004 H

Type O Pointer CS Base Pointer
000 H Divide Error IP Offset

3FF H

Type 32 to Type 255

Software Interrupts

INT
Free for User N

256 Types of Software

Interrupts

O80H

Procedure when interrupt arrives

1. It decremented SP by 2 and pushes Flag register
on the stack.

2. It disables 8086 INTR input by clearing IF flag
In Flag register

3. It resets the TF (trap) flag in Flag register

4. It decremented SP again by 2 and pushes current
CS contents on the stack.

5. It decremented SP again by 2 and pushes current
IP contents on the stack.

6. It does an indirect far jJump to the start of the

main

Program

1. Push FLAGS
/|2.Clear IF
3. Clear TF
4. Push CS
9. Push IP
6. Fetch ISR

address

Interrupt

Service Routine

(ISR)

POP IP
POP CS
POP FLAGS

PUSH registers

POP registers

IRET

How does 8086 get the address of a
particular ISR?

In an 8086 system, each “interrupter” has an
id#

-8086 treat this id# as interruption type#
-after receiving INTR signal, 8086 sends an
INTA signal

-after receiving INTA signal, interrupter
releases it's I1d#, i.e., type# of the

interruntion .

8086 multiplies this id# or type# by 4 to
produced the desired address in the vector
table

8086 reads 4 bytes of memory starting from
this address to get the starting address of
ISR
 lower 2 byte is loaded in to IP
* higher 2 bytes to CS

AVAILABLE | 3FFH TYPE 255
FOR USER »
(224) _ | osoH TYPE 32
(- TYPE 31
RESERVED (27) —
| 014H TYPE5
" TYPE 4
010H| INTO OVERFLOW
TYPE 3
Predefined/ 00CH| INT
Dedicated/Internal < - TYPE 2
Interrupts Pointers 008H NON-MASKABLE
(5) TYPE 1
004H| SINGLE STEP
| csBase Address TYPEO
| 1POffset _| 000H| DIVIDE ERROR

