
 (SUBJECT CODE-CE0506/CS0506)
UNIT-2&3

 B.TECH (CE/CSE)
SEMESTER-V

Features of 8086 Microprocessor
1. Intel 8086 was launched in 1978.
2. It was the first 16-bit microprocessor, 40-pin Dual-

Inline-Package (DIP).
3. This microprocessor had major improvement over

the execution speed of 8085.
4. It is available in three versions:
 a. 8086 (5 MHz)
 b. 8086 (8 MHz)
 c. 8086 (10 MHz)
5. It consists of 29,000 transistors &
had Multiply and Divide instructions.

Data Structure
• Most Significant byte at lowest address ("Big Endian"), OR
• Least Significant byte at lowest address ("Little Endian")
• 8086 has a little Endian data structure

Block Diagram of Intel
8086 The 8086 CPU is divided into two functional

units:

 1. Bus Interface Unit (BIU)
 2. Execution Unit (EU)

Internal (Block Diagram) Architecture of
8086 CPU

Fig. 1: Block Diagram of Intel
8086

Bus Interface Unit (BIU)

The BIU provides hardware functions. Including
generation of the memory and I/0 addresses for the
transfer of data between itself and the outside
world.It also Fetches the instruction or data from
memory and Writes the data to memory.

Instruction Queue
To increase the execution speed, BIU fetches as
many as six instruction bytes ahead to time from
memory and stored in a register called instruction
queue.Then all bytes have to be given to EU one by
one.

This pre fetching operation of BIU may be in parallel
with execution operation of EU, which improves the
speed execution of the instruction.

Execution Unit (EU)
The functions of execution unit are:

To decode the instructions.
To execute the instructions.
EU receives the program instruction codes and
data from the BIU, executes these instructions
and store the result in general purpose registers.
By passing the data back to the BIU data can be
stored in a memory location or written to an
output device
It receives and outputs all its data through BIU.

Fetch and Execute cycle
•The BIU outputs the contents of the instruction pointer

register (IP) onto the Address bus, causing the selected
byte or word in memory to be read into the BIU.

• Register IP is incremented by one to prepare for the
next instruction fetch.

•Once inside the BIU, the instruction is passed to the
queue: a first-in/first-out storage register sometimes
likened to a pipeline.

•Assuming that the queue is initially empty, the EU
immediately draws this instruction from the queue and
begins execution.

Fetch and Execute cycle
• While the EU is executing this instruction, the BIU

proceeds to fetch a new instruction. Depending on the
execution time of the first instruction, the BIU may fill
the queue with several new instructions before the EU
is ready to draw its next instruction.

• The cycle continues, with the BIU filling the queue
with instructions and the EU fetching and executing
these instructions.

Fetch and Execute cycle

Programming model of 8086
• The programming model for a microprocessor shows

the various internal registers that are accessible to the
programmer. The Following Figure is a model for the
8086.Ingeneral, each register has a special function.

Registers
•General Purpose Registers:

• These registers can be used as 8-bit registers individually or
can be used as 16-bit in pair to have AX,BX, CX, and DX.

•Pointer Group Registers:
• The pointer and index group are all 16 bit registers. These

registers are used as memory pointers.
• MOV AH,[SI]

• Register IP is included into memory pointer but this register
has only one function to point the next instruction to be
fetched to the BIU.

Registers
•Segment Register
•Addit ional registers
c a l l e d s e g m e n t
reg i s te r s genera te
memory address when
combined with other in
the microprocessor. In
8086 microprocessor,
memory is divided into
4 segments as follow:

CONT…
• 1. Code Segment (CS): The CS register is used for

addressing a memory location in the Code Segment of the
memory, where the executable program is stored.

• 2. Data Segment (DS): The DS contains most data used
by program. Data are accessed in the Data Segment by
an offset address or the content of other register that
holds the offset address.

•3. Stack Segment (SS): SS defined the area of
memory used for the stack.

•4. Extra Segment (ES) : ES is additional data
segment that is used by some of the string to hold
the destination data.

Segment registers
•Calculate the beginning and ending address for the
data segment assuming that register

•DS = E000H
• Solution

• Base address can be found by appending four 0’s :
• Base address E0000H
• Ending address can be found by adding 64K ..
• E0000H + FFFFH = EFFFFH

Flag Registers of 8086
17

Flag register in EU is of 16-bit and is shown in
fig. :

Flags Register determines the current state of the
processor. They are modified automatically by CPU
after mathematical operations , this allows to
determine the type of the result, and to determine
conditions to transfer control to other parts of the
program.

CONT…
8086 has 9 flags and they are divided into two
categories:

• 1. Conditional Flags
• 2. Control Flags

Conditional Flags
 Conditional flags represent result of last arithmetic or
logical instruction executed. Conditional flags are as
follows:
 Carry Flag (CF)

 Auxiliary Flag (AF)

 Parity Flag (PF)

 Zero Flag (ZF)

 Sign Flag (SF)

 Overflow Flag (OF)

19

Conditional flag
• Carry Flag (CF) - this flag is set to 1 when there is an carry

out from MSB.
• Parity Flag (PF) - this flag is set to 1 when there is even

number of one bits in result, and to 0 when there is odd
number of one bits.

• Auxiliary Flag (AF) - set to 1 when there is a carry from low
nibble to upper nibble(4 bits).

• Zero Flag (ZF) - set to 1 when result is zero. For non-zero
result this flag is set to 0.

• Sign Flag (SF) - set to 1 when result is negative. When
result is positive it is set to 0. (This flag takes the value of
the most significant bit.)

• Overflow Flag (OF):Used for signed arithmetic operations.

20

Control Flags
 Control flags are set or reset deliberately to
control the operations of the execution unit.
Control flags are as follows:
1. Trap Flag (TP):
2. Interrupt Flag (IF):
3. Direction Flag (DF):

21

Control Flags
•Trap Flag (TF) - Used for on-chip debugging.

• Interrupt enable Flag (IF) - when this flag is set to 1
CPU reacts to interrupts from external devices.

•Direction Flag (DF) –Causing the string instruction to
auto decrement the index register when set and Clearing
DF causes the Auto increment.

22

Physical And Logical Address

IP Register
• T h e I n s t r u c t i o n P o i n t e r

register(IP) contains the offset
address of the next sequential
instruction to be executed. Thus,
t he I P reg i s te r can no t be
directly modified.

• These register descriptions have
slowly been introducing us to a
new way of addressing memory,
called:

• segment-offset addressing.
• The segment register is used to

point to the beginning of any
one of the 64K memory

Physical Address
•Each segment register is 16 bit wide while the
address bus is 20 bits wide. The BIU takes care of
this by appending four 0 s to the lower order bits of
the segment register.

Physical Address
20 bit

Converting Logical Address to Physical
address

Segment Register and Default offset
registers in 8086

Segment
Registers

Default offset Register

CS IP
DS BX,SI,DI
SS SP or BP
ES DI for String Instruction

Ex1
•Let us Assume that the CS register has the
value 3000H and IP register has value 2000h.
To fetch an instruction from the next memory
location.

CS x 10H = 30000H Base address of the code Segment
+IP = 02000H Offset Address

 32000H Memory Address from where the next
Instruction to be taken

Ex:2
•Consider the Execution of the instruction
MOV AX,[BX]

•Let us assume that DS and BX have the
values 1000H and 3000H respectively.

•To calculate the address from where the data
has to be taken

DS X 10 H = 10000H Base Address of Data
Segment
 + BX = 03000H Offset Address
 13000H Memory address from
where data is to be taken

• If the segment registers CS,DS and SS have values
1000H , 2000H, 3000H respectively. What will be the
20 bit start and end address of the code , data and
Stack Segments?

8086 Pin Diagram

Pin Description
•Data Bus (AD0 – AD15): D0-D15

• These 16 pins are used as Address and data bus.
During T1 state this lines provides address and data
lines are valid only during T2 to T4.

• Whenever the ALE pin is high these pins works as a
address bus and when ALE is low these pins carry the
data.

Pin Description
 Address bus (AD0 – AD 15, A16/S3 –

A19/S6):
•This 20 lines are correspond to the CPU’s 20-bit
address. These lines are valid only during T1
state.

•S6 : always remains at logic 0
•S5 : indicate condition of IF flag bit
•S4 and S3 indicate the segment addressed by
8086 during the current bus cycle

•NMI : Non- Maskable interrupt is a hardware interrupt.
• similar to INTR except that no check IF flag bit

•RESET :
• This input causes the 8086 to reset, if it is held at

logic 1 for at least 4 clock cycle. Whenever the 8086
is RESET, CS and IP are initialized to FFFFh and
0000H, respectively and all other registers are
initialized to 0000h.

•VCC(power supply) : +5.0V, ±10%

• INTR-Interrupt Request :

• This is a level triggered input. This is sampled during
the last clock cycles of each instruction to determine
the availability of the request. If any interrupt request
is pending, the processor enters the interrupt
acknowledge cycle.

• When IF = 1 and if INTR is held high the 8086 gets
interrupted . When IF = 0 , INTR is disabled.

•Ready:
• This input signal is used to insert wait state in to the timing

cycle of 8086. if the READY pin is at logic 1, it has no effect
on operation of the microprocessor. If it is at logic 0, the
8086 enters the wait state and remains idle. This signal is
used to interface the slowly interfacing device with the
8086.

•MN/MX:
• This pin is used to select either the minimum mode or

maximum mode operation for the 8086. this is achieved by
connecting this pin to either +5V (Minimum mode) or to the
ground for maximum mode.

 TEST :
• This pin is an input pin that is tested by wait instruction. If

this pin is at logic 0 , the wait instruction function as NOP.
This pin is often connected to the BUSY pin of the 8087 to
perform the floating point operations.

•Read (RD):
• This active low output signal indicates that the direction of

data flow from memory or IO to CPU. It can be combined
with M/IO to generate MEMR and IOR signals.

Pin Description
•Clock (CLK):

• All events in the microprocessor are synchronizes to the
system clock applied to CLK pin. The clock signal must
have duty cycle for 33%.

 BHE / S7:
• This signal is multiplexed with the S7 status indicator. It

is output only during the T1 state. BHE and A0 are
typically used to select even or odd memory banks.

BHE A0 Action
0 0 Access 16-bit word
0 1 Access odd byte to D8- D15
1 0 Access even byte to D0-D7
1 1 No action

Function of Pins used in Minimum
mode
• INTA –Interrupt Acknowledge :

• This signal is used as a read strobe for interrupt
acknowledge cycles. i.e. when it goes low, the processor
has accepted the interrupt.

 DT/R –Data Transmit/Receive:
• This output is used to decide the direction of data flow

through the transreceivers (bidirectional buffers). When
the processor sends out data, this signal is high and when
the processor is receiving data, this signal is low.

Pin Description
•ALE (Address Latch Enable):

• Signal output on this pin can be used to Demultiplex
the address , data bus and status lines. ALE pulse is
high during T1 state.

• M/IO :
• The 8086 does not output separate memory and

I/O signals. Instead , the M/IO signal output during
early in T1 state. So if M/IO = 1 then it is memory
operation or M/IO = 0 then IO operation.

Pin Description

 Write(WR):
• This active low output signal indicates that the direction

of data flow from CPU to memory or IO. It can be
combined with M/IO to generate MEMW and IOW signals.

•DEN –Data Enable :
• This signal indicates the availability of valid data

over the address/data lines. It is used to enable the
transreceivers (bidirectional buffers) to separate the
data from the multiplexed address/data signal. It is
active from the middle of T2 until the middle ofT4.
This is tristated during ‘ hold acknowledge’ cycle.

•HOLD, HLDA-Acknowledge :
• When the HOLD line goes high, it indicates to the

processor that another master is requesting the bus
access. The processor, after receiving the HOLD
request, issues the hold acknowledge signal on HLDA
pin, in the middle of the next clock cycle after
completing the current bus cycle.

•GND(Ground) : GND

•Minimum mode Pins
•M/IO
•WR
•INTA
•HOLD
•HLDA
•DEN
•ALE

Maximum Mode Pins
•MN/MX = 0(ground)
•S2’,S1’,S0’:indicate function of current bus cycle

•these signal : normally decoded by 8288 bus
controller

 Request / Grant (RQ0/GT0 , RQ1/GT1) :

o These two pins are bidirectional, allowing a coprocessor

to request control of the system buses . The 8086 respond

by disconnecting itself from the system buses and

pulsating the RQ/GT line in acknowledgement. These lines

are bidirectional and are used to request and grant DMA

operation.

•LOCK(lock output):
• lock is an output signal intended for use in a bus

arbitration scheme with another processor. Arbitration
refers to the process of determining which processor
should have the control of the system buses at any given
time. The LOCK signal is output low during the execution of
any instruction with LOCK prefix. This signal is meant to
be output whenever processor wants to lock out
other processor from using the bus.

•QS1, QS0(queue status) :
• show status of internal instruction queue
• p r o v i d e d f o r a c c e s s b y t h e n u m e r i c

coprocessor(8087)
• They allow the coprocessor to track the progress of

an instruction through the queue.

8284A
clock generation, RESET synchronization, READY
synchronization, and TTL-level peripheral clock
signal

Pin Diagram of 8284A Clock
generator

8284A

8284A connection with 8086

Bus Buffering and Latching

The 8288 Bus Controller

Minimum mode Interface

Maximum mode Interface

8288 Commands

Memory Read cycle Minimum
mode

Memory write cycle Minimum
mode

Minimum-mode I/O read cycle

Minimum-mode I/O write cycle

Maximum mode memory read
cycle

Maximum mode Memory Write
Cycle

Memory Bank

1Mx 8 Memory bank of
8088

Byte transfer by 8088

Memory Bank

Memory Bank

Memory Bank
BH
E

A0 Action

0 0 Access 16-bit word
0 1 Access odd byte to D8- D15
1 0 Access even byte to D0-D7
1 1 No action

Memory Bank
BH
E

A0 Action

0 0 Access 16-bit word
0 1 Access odd byte to D8- D15
1 0 Access even byte to D0-D7
1 1 No action

Memory Bank
BH
E

A0 Action

0 0 Access 16-bit word
0 1 Access odd byte to D8- D15
1 0 Access even byte to D0-D7
1 1 No action

Memory bank
BH
E

A0 Action

0 0 Access 16-bit word
0 1 Access odd byte to D8- D15
1 0 Access even byte to D0-D7
1 1 No action

Addressing Modes
•Method of Accessing data from memory or
Registers.

•Types of Addressing Modes
• Register Addressing mode
• Immediate Addressing mode
• Direct Addressing Mode
• Register Indirect Addressing Mode
• Based-Relative Addressing mode
• Indexed Relative Addressing mode
• Based-indexed relative addressing mode

Register Addressing mode
•Transfers a copy of a byte or word from the source
register or memory location to the destination
register or memory location.

MOV BX, DX ; copy the contents of DX into BX
MOV ES,AX ; copy the contents of AX into ES
ADD AL,BH ; add the contents of BH to contents of AL

Source and destination registers must have the
same size

Register Addressing mode

Immediate Addressing mode
•Transfers the source, an immediate byte or word of
data, into the destination register or memory
location.

•The source operand is a constant
• Immediate addressing mode can be used to load
information into any of the registers except the
segment registers and flag registers.

MOV AX,2500H ; move 2500H into AX
MOV CX,600 ; load the decimal value 600 into CX
MOV BL, 80H ; load 80H into BL
MOV AX,2500H
MOV DS, AX
MOV DS, 0133H ; illegal instruction!

Immediate Addressing mode

Direct Addressing mode
•Moves a byte or word between a memory location
and a register.

•This address is the offset address.

MOV AX, [2500] ; move contents of
DS:2500H into AX

The physical address is calculated by combining
the contents of offset location 2500 with DS.

Example::
Find the physical address off the memory location and its

contents after the execution off the following, assuming that
DS = 1412H.

MOV AL, 3BH
MOV [2518], AL

Solution:
First 3BH is copied into AL,
Then in line two, the contents off AL are moved to logical

address DS:3518 which is 1412:2518.
Shifting DS left and adding it to the offset gives the physical
address off 18638H (14120H + 2518H = 16638H).
After the execution off the second instruction, the memory
location with address 18638H will contain tithe value 3BH..

•Example for the instruction MOV AL,[1234H] and
DS = 1000H

Examples of Direct Addressing modes

MOV
AL,[2C00h]

Copy the content of data segment memory location
2C00h in to AL register (8 Bit)

MOV
AX,[3400h]

Copies the word content of data segment memory
location 3400h in to AX (16 bit)

MOV [100H],
AL

Copies BL in to Data Segment Memory Location 100h (8
bit)

MOV [72C2h],
CX

Copies CX in to data segment memory location 72C2H
(16 bit)

MOV
ES:[2000H],AL

Copies Al in to extra segment memory location 2000H (8
Bit)

MOV SP,[4E2h] Copies the word contents of data segment memory
location 4E2h in SP (16 bit)

Register Indirect Addressing mode

• Instruction specifies an address where data is located.
This addressing mode works with SI,DI,BX,BP registers.

•Example1 : Write value 0065h at the address pointed
by DS:BX

• MOV BX,1200h
• MOV [BX],65H

•Example1 : transfer the byte from AL to the address
pointed by DS: 1202H

• MOV [1202h],AL

The operation of MOV AX,[BX] instruction when
BX = 1000H and DS = 0100H.

Base Plus index addressing mode
•This mode is similar to indirect addressing mode
because it indirectly addresses the memory data.
This type of addressing uses one base register and
one index register to indirectly address the memory

•MOV DX,[BX+DI]
•Suppose BX = 1000h , DI = 0010h , and DS = 0100h,
which translate in to memory location 2010H. This
instruction transfers a copy of the word from location
2010H in to DX register.

Base Plus Index Mode
MOV DX,[BX+DI]

Examples

Base Plus index Plus offset
addressing mode
•Examples:

• MOV AL,DISP[BX][SI]
• MOV AL, DISP[BX+DI]
• MOV AL,[BP+SI+DISP]

•MOV AX,[BX+DI+15]

Interrupts
• Interrupt Types

• Hardware Interrupts: External event
• Software Interrupts: Internal event (Software generated)
• Maskable and non-maskable interrupts

• Interrupt priority
• Interrupt Vectors and Interrupt Handlers

Purpose of Interrupts
• Interrupts are useful when interfacing I/O devices with

low data-transfer rates, like a keyboard or a mouse, in
which case pol l ing the device wastes valuable
processing time

• The peripheral interrupts the normal application
execution, requesting to send or receive data.

• The processor jumps to a special program called
Interrupt Service Routine to service the peripheral

• After the processor services the peripheral, the
execution of the interrupted program continues.

Printer Interrupt Modem Interrupt Modem Interrupt

Main ProgramMain ProgramMain ProgramMain Program

BASIC INTERRUPT
TERMINOLOGY

•Interrupt Service Routine (ISR) or Interrupt
handler: code used for handling a specific
interrupt

•Interrupt priority: In systems with more than
one interrupt inputs, some interrupts have a higher
priority than other
• They are serviced first if multiple interrupts are triggered

simultaneously
•Interrupt vector: Code loaded on the bus by the
interrupting device that contains the Address
(segment and offset) of specific interrupt service
routine

•Interrupt Masking: Ignoring (disabling) an
interrupt

•Non-Maskable Interrupt: Interrupt that cannot
be ignored (power-down)

•Interrupt V/S Polling

Types of Interrupts

1. It decremented SP by 2 and pushes Flag register
on the stack.
2. It disables 8086 INTR input by clearing IF flag
in Flag register
3. It resets the TF (trap) flag in Flag register
4. It decremented SP again by 2 and pushes current
CS contents on the stack.
5. It decremented SP again by 2 and pushes current
IP contents on the stack.
6. It does an indirect far jump to the start of the
procedure written to respond to the interrupt.

Procedure when interrupt arrives

How does 8086 get the address of a
particular ISR?

In an 8086 system, each “interrupter” has an
id#
–8086 treat this id# as interruption type#
–after receiving INTR signal, 8086 sends an
INTA signal
–after receiving INTA signal, interrupter
re l e a s e s i t ’ s i d # , i . e . , t y p e # o f t h e
interruption.

8086 multiplies this id# or type# by 4 to
produced the desired address in the vector
table

8086 reads 4 bytes of memory starting from
this address to get the starting address of
ISR
• lower 2 byte is loaded in to IP
• higher 2 bytes to CS

