INDUS INSTITUTE OF ENGINEERING \& TECHNOLOGY

Semester: IV
Subject: COMPLEX ANALYSIS(MA0411)

UNIT-II
 THEORY OF COMPLEX FUNCTIONS

7 hours

1. Limit, continuity and differentiability of complex functions
2. Analytic function, Cauchy-Riemann equations in Cartesian and polar forms (without proof)
3. Harmonic functions, conformal mappings, some standard conformal transformations: translation, magnification and rotation, inversion.

1 Functions of Complex Variable

- Let $z=x+i y$ be a complex variable, where x and y are real numbers and $i^{2}=-1$. Then the function $f(z)$ is called a complex function and is denoted by $w=f(z)$
- $w=f(z)$ is also complex in general and so we have $w=u(x, y)+i v(x, y)$, where $u(x, y)$ and $v(x, y)$ are real valued functions and respectively the real and imaginary parts of the w.

2 Limits and Continuity

- A function $w=f(z)$ is said to have a limit l as z approaches to a point z_{0} if for a given small positive number ϵ, we can find a positive number δ such that for all $z \neq z_{0}$ in the (circular)disk $\left|z-z_{0}\right|<\delta$, we have $|f(z)-l|<\epsilon$. Symbolically,

$$
\lim _{z \rightarrow z_{0}} f(z)=l
$$

- A function $w=f(z)$ is said to be continuous at $z=z_{0}$, if:
(1) $f\left(z_{0}\right)$ is defined;
(2) $\lim _{z \rightarrow z_{0}} f(z)$ exists and
(3) $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$
- If f is continuous at each point of its domain D, then we say that f is a continuous function.
- Algebra of Limits: Let $f(z)$ and $g(z)$ be two functions for which $\lim _{z \rightarrow z_{0}} f(z)=l$ and $\lim _{z \rightarrow z_{0}} g(z)=m$ exists. Then we have:

1. $\lim _{z \rightarrow z_{0}}[f(z) \pm g(z)]=l \pm m$
2. $\lim _{z \rightarrow z_{0}}[f(z) \cdot g(z)]=l m$
3. $\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\frac{l}{m}$, provided $m \neq 0$

- Let $f(z)=u(x, y)+i v(x, y)$, then the limit of $f(z)$ at $z_{0}=x_{0}+i y_{0}$ can be written as:
$\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)+i \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)$
- $w=f(z)$ is continuous at $z=z_{0}$ when $u(x, y)$ and $v(x, y)$ both are continuous at $\left(x_{0}, y_{0}\right)$.
- A polynomial function is a continuous function on the whole of \mathbb{C}
- A rational function is a continuous function at every point of its domain of definition.

3 Differentiability of a complex function

- Let $z_{0}+\Delta z$ be a point in the neighbourhood of z_{0}. A function $f(z)$ is said to be differentiable at a point z_{0}, if the limit $\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}$ or $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists. The limit is denoted by $f^{\prime}\left(z_{0}\right)$ and is known as the derivative of $f(z)$ at z_{0}.
- Algebra of differentiable functions: Let $f(z)$ and $g(z)$ be two functions defined in the neighbourhood of z_{0} and assume that f and g are differentiable at z_{0}. Then we have:
(i) $f \pm g$ is differentiable at z_{0} and $(f \pm g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) \pm g^{\prime}\left(z_{0}\right)$
(ii) $f g$ is differentiable at z_{0} and $(f g)^{\prime}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)+f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)$
(iii) If $g\left(z_{0}\right) \neq 0$, then $\frac{f}{g}$ is differentiable at z_{0} and $\left(\frac{f}{g}\right)^{\prime}\left(z_{0}\right)=\frac{f^{\prime}\left(z_{0}\right) g\left(z_{0}\right)-f\left(z_{0}\right) g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)^{2}}$
- A polynomial function is differentiable on the whole of \mathbb{C}.
- A rational function is differentiable at every point of its domain of definition.

4 Cauchy-Reimann(C-R) Equations in Cartesian co-ordinates

- Necessary conditions for a function $f(z)$ to be differentiable at z_{0} :

If $f(z)=u(x, y)+i v(x, y)$ is differentiable at $z_{0} \in \mathbb{C}$, than the first order partial derivates of u and v, i.e. $u_{x}, u_{y}, v_{x}, v_{y}$ exists at this point and satisfy the Cauchy Reimann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial v}{\partial x}=-\frac{\partial v}{\partial y}
$$

Note: If $f(z)$ is differentiable at a point $z_{0}=\left(x_{0}, y_{0}\right)$, then

$$
f^{\prime}\left(z_{0}\right)=\left(\frac{\partial u}{\partial x}\right)_{\left(x_{0}, y_{0}\right)}+i\left(\frac{\partial v}{\partial x}\right)_{\left(x_{0}, y_{0}\right)}=\left(\frac{\partial u}{\partial x}\right)_{\left(x_{0}, y_{0}\right)}-i\left(\frac{\partial u}{\partial y}\right)_{\left(x_{0}, y_{0}\right)}=\left(\frac{\partial v}{\partial y}\right)_{\left(x_{0}, y_{0}\right)}+i\left(\frac{\partial v}{\partial x}\right)_{\left(x_{0}, y_{0}\right)}
$$

- Sufficient conditions for a function $f(z)$ to be differentiable at z_{0} :

For $f(z)=u(x, y)+i v(x, y)$ if
(i) $u_{x}, u_{y}, v_{x}, v_{y}$ are continuous functions and
(ii) $f(z)$ satisfies Cauchy Reimann Equations
at $z_{0}=\left(x_{0}, y_{0}\right)$ then $f(z)$ is said to be differentiable at z_{0}.

5 Analytic Functions

- A single-valued function $f(z)$ is said to be analytic at a point z_{0} in the domain D of a $z-$ plane, if:
(i) $f(z)$ is differentiable at z_{0}
(ii) $f(z)$ is differentiable in some neighbourhood of z_{0}.
- A function $f(z)$ is said to be analytic in a domain D, if it is analytic everywhere in D.
- An analytic function is also known as holomorphic or regular or monogenic function.
- A function which is analytic everywhere in the complex plane is known as entire function.
- The necessary and sufficient conditions for the function $f(z)=u(x, y)+i v(x, y)$ to be analytic in a domain D of $z-$ plane are:
(i) $u_{x}, u_{y}, v_{x}, v_{y}$ are continiuous functions of x and y in D.
(ii) CR equations, i.e. $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ are satisfied everywhere in D.
- If $f(z)=u(x, y)+i v(x, y)$ is analytic everywhere in a domain D, then it is differentiable everywhere in D and hence it satisfies $C R$ - equations everywhere in D. Thus,

$$
f^{\prime}(z)=u_{x}-i u_{y}=v_{y}+i v_{x}
$$

- A polynomial functions with complex co-effecients is analytic everywhere in the complex plane.
- A rational function is analytic everywhere in its domain.
- The real and imaginary part of an analytic function are called conjugate functions.
- Determination of an Analytic function whose either real or imaginary part is known

1. Method: 1 For a given analytic function $f(z)$, assume that $\operatorname{Re}[f(z)]=u(x, y)$ is given. This method will find $\operatorname{Im}[f(z)]=v(x, y)$ and hence $f(z)$ can be evaluated.
(i) For $u(x, y)$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
(ii) As $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$, integrating w.r.t y keeping x constant, we obtain $v=\int\left(\frac{\partial u}{\partial x}\right) d y+\phi(x)$, where $\phi(x)$ is to be determined.
(iii) Differentiate v obtained in (1ii) w.r.t. x and use $\frac{\partial u}{\partial y}$ in (1i) to compare $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ and obtain $\phi^{\prime}(x)$.
(iv) Integrate $\phi^{\prime}(x)$ w.r.t. x and substitute in (1ii) to get $v(x, y)$.
(v) Thus, $f(z)=u(x, y)+i v(x, y)$ is obtained. Use both functions to obtain $f(z)$ in terms of z.
2. Method: 1 If $\operatorname{Im}[f(z)]=v(x, y)$ is given, then $u(x, y)$ and hence $f(z)$ can be found using the following steps:
(i) For $v(x, y)$, find $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$.
(ii) As $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$, integrating w.r.t x keeping y constant, we obtain $u=\int\left(\frac{\partial v}{\partial y}\right) d y+\phi(y)$, where $\phi(y)$ is to be determined.
(iii) Differentiate u obtained in (2ii) w.r.t. y and use $\frac{\partial v}{\partial x}$ in (2i) to compare $\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}$ and obtain $\phi^{\prime}(y)$.
(iv) Integrate $\phi^{\prime}(y)$ w.r.t. y and substitute in (2ii) to get $u(x, y)$.
(v) Thus, $f(z)=u(x, y)+i v(x, y)$ is obtained. Use both functions to obtain $f(z)$ in terms of z.
3. Method: 2 (Milne-Thomson Method / Short cut method) For a given analytic function $f(z)$, assume that $\operatorname{Re}[f(z)]=u(x, y)$ is given.
This method will find $f(z)$ in terms of z and $\operatorname{Im}[f(z)]=v(x, y)$ can be evaluated from $f(z)$ by substituting $z=x+i y$.
(i) For $u(x, y)$, find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$.
(ii) Substitute $x=z$ and $y=0$ in (3i) to obtain $u_{x}(z, 0)$ and $u_{y}(z, 0)$
(iii) Evaluate $f(z)$ by integrating $u_{x}(z, 0)-i u_{y}(z, 0)$ w. r. t. z.
4. Method: 2 If $\operatorname{Im}[f(z)]=v(x, y)$ is given, then $u(x, y)$ and hence $f(z)$ can be found using the following steps:
(i) For $v(x, y)$, find $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$.
(ii) Substitute $x=z$ and $y=0$ in (4i) to obtain $v_{x}(z, 0)$ and $v_{y}(z, 0)$
(iii) Evaluate $f(z)$ by integrating $v_{y}(z, 0)+i v_{x}(z, 0)$ w. r. t. z.

- Determination of an Analytic function whose sum or difference of real and imaginary parts are known:
Let $f(z)=u+i v$ be a complex function. Then $i f(z)=i u-v=-v+i u$
Thus, $(1+i) f(z)=(u-v)+i(u+v)$. Let $F(z)=(1+i) f(z)=U+i V$
So, $U=u-v$ and $V=u+v$

1. If $f(z)=u+i v$ is an analytic function, where $u-v$ is given, then $\operatorname{Re}[F(z)]$ is known and methods in (1) or (3) can be used to find $F(z)$ and hence $f(z)$.
2. If $f(z)=u+i v$ is an analytic function, where $u+v$ is given, then $\operatorname{Im}[F(z)]$ is known and methods in (2) or (4) can be used to find $F(z)$ and hence $f(z)$.

- A function $f(x, y)$ is said to be harmonic in a domain D, if
(i) $f(x, y)$ satisfies Laplace's equation. i.e. $f_{x x}+f_{y y}=0$
(ii) $f_{x x}, f_{x y}, f_{y y}$ are continuous functions of x and y in D.
- The real and imaginary part of an analytic functions are harmonic functions. They are called conjugate harmonic functions of each other.
- If u and v are random harmonic functions, then it is not necessary that $u+i v$ is an analytic function.
- CR equations in Polar form Let $f(z)$ be analytic function in its domain.

In polar form, $f(z)=f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$.
Then the CR equations in polar form are given by: $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r}=\frac{-1}{r} \frac{\partial u}{\partial \theta}$.
The derivative f^{\prime} can be calculated using: $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)=\frac{-i}{r e^{i \theta}}\left(u_{\theta}+i v_{\theta}\right)$

- Laplace equation in polar form is given by: $\nabla^{2} \phi=\frac{\partial^{2} \phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \phi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}$

6 Conformal Mapping

- For a complex function $w=f(z), z=x+i y$ is an independent variable and $w=u+i v$ is a dependent variable.
- Thus, z and $f(z)=w$ cannot be plotted on the same set of axes as four variables x, y, u, v are involved.
- We plot z and $f(z)$ in two different planes.
- The plane containing the independent variable $z=x+i y$ is called the z - plane or $x y$ - plane.
- The plane contianing the dependent variable $w=u+i v$ is called the w - plane or $u v$ - plane.
- Thus, corresponding to each point (x, y) in $z-$ plane, we have a point (u, v) in w - plane which is the image of (x, y) under a given function f.
- We say that $w=f(z)$ is a mapping or transformation of a point P within a region in $z-$ plane called the domain to a point P^{\prime} within a region in $w-$ plane called the range.

- Let C_{1} and C_{2} be two smooth curves in z - plane intersecting at a point z_{0} at an angle α with $0<\alpha<\pi$. Let C_{1}^{\prime} and C_{2}^{\prime} be the corresponding curves in w - plane under $w=f(z)$ intersecting at w_{0} as shown in figure below.

- If C_{1}^{\prime} and C_{2}^{\prime} intersect at angle α, when $w=f(z)$ is called isogonal mapping.

Example of an isogonal mapping is $f(z)=\bar{z}$ as $\arg (\bar{z})=-\arg (z)$

- If C_{1}^{\prime} and C_{2}^{\prime} intersect at angle α preserving the sense of rotation, then $w=f(z)$ is called conformal mapping.
- If $f(z)$ is an analytic function then $w=f(z)$ defines a conformal mapping except at point where $f^{\prime}(z)=0$. These points are called critical points.

- Conformal mapping by some elementary functions:

1. Identity Transformation: $w=z$
2. Translation: $w=z+\alpha, \alpha \in \mathbb{C}$
3. Rotation: $w=e^{i \theta} z$, where θ is a real constant.

Note: If $\theta>0$, the rotation is counter clockwise and if $\theta<0$, the rotation is clockwise
4. Stretching or Magnification: $w=a z$, where a is a positive real constant.

Note: If $0<a<1$, the graph is contracted if $a>1$, the graph is stretched.
5. Linear Transformation: $w=\alpha z+\beta$, where α and β are complex constants.
6. Inversion: $w=\frac{1}{z}$

- Under the transformation $w=\frac{1}{z}$:

1. A circle or a line that passes through the origin transforms into a line.
2. A circle or a line that does not pass through the origin transforms into a circle.
