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THE VECTOR POTENTIAL A FOR AN ELECTRIC 

CURRENT SOURCE J
• The vector potential A is useful in solving for the EM field generated by a given

harmonic electric current J. The magnetic flux B is always solenoidal; that is, ∇
· B = 0.

• Therefore, it can be represented as the curl of another vector because it obeys

the vector identity.

∇ ·∇×A = 0

• Maxwell’s curl equation

B = μH = ∇×A

∇×E = −jωμH

∇×E = −jωμH = −jω∇×A



∇×[E+ jωA] = 0

• From the vector identity

∇ × (−∇φe) = 0

E + jωA = −∇φe

E = −∇φe − jωA

• Taking the curl of both sides

∇ × (μH) = ∇(∇ · A) − ∇ A

• For a homogeneous medium

μ∇×H = ∇(∇ · A) − ∇ A

• Maxwell’s equation 

∇×H = J + jωεE
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μJ + jωμεE = ∇(∇ · A) − ∇ A

∇ A + k A = −μJ + ∇(∇ · A) + ∇(jωμεφe) = −μJ + ∇(∇ · A + 

jωμεφe)

• Now in order to simplify above equation

• The divergence of A

• Which is known as the Lorentz condition
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THE VECTOR POTENTIAL F FOR A MAGNETIC 

CURRENT SOURCE M
• Although magnetic currents appear to be physically unrealizable.

• The fields generated by a harmonic magnetic current in a homogeneous region,

with J = 0 but M = 0, must satisfy ∇ · D = 0.

• Therefore, E can be expressed as the curl of the vector potential F by



• From the vector identity,

• Taking the curl

• Maxwell’s equation



• Now suppose, 



ELECTRIC & MAGNETIC FIELDS FOR ELECTRIC (J)

& MAGNETIC (M) CURRENT SOURCES

• The electric and magnetic fields generated by an electric current source J and

a magnetic current source M. The procedure requires that the auxiliary

potential functions A and F generated, respectively, by J and M are found first.

• The total fields are then obtained by the superposition of the individual fields

due to A and F (J and M).

• Find A,

• Find F,



• The total fields are then determined by,



Far Field Radiation

• The fields radiated by antennas of finite dimensions are spherical waves.

• For these radiators, a general solution to the vector wave equation of in 
spherical components , each as a function of r, θ, φ, takes the general form of

• The amplitude variations of r in each component of are of the form 1/rn, 

Neglecting higher order terms of 1/rn,



• Neglecting higher order terms of 1/rn, the radiated E- and H-fields have only θ
and φ components. They can be expressed as,



Reciprocity 

• The reciprocity theorem, as applied to circuits, which states that “in any

network composed of linear, bilateral, lumped elements, if one places a

constant current (voltage) source between two nodes (in any branch) and

places a voltage (current) meter between any other two nodes (in any other

branch), makes observation of the meter reading, then interchanges the

locations of the source and the meter, the meter reading will be unchanged”

• Let us assume that within a linear and isotropic medium, but not necessarily

homogeneous, there exist two sets of sources J1,M1, and J2,M2 which are

allowed to radiate simultaneously or individually inside the same medium at the

same frequency and produce fields E1,H1 and E2,H2, respectively.

• The sources and fields satisfy,



• Which is called the Lorentz Reciprocity Theorem in differential form.

• Taking a volume integral of both sides, and using the divergence theorem on the 

left side.

• Which is designated as the Lorentz Reciprocity Theorem in integral form.

• For a source-free (J1 = J2 = M1 = M2 = 0) region,



• Reciprocity for Two Antennas: Two antennas, whose input impedances are Z1 

and Z2, are separated by a linear and isotropic medium.

• One antenna (#1) is used as a transmitter and the other (#2) as a receiver.

• The internal impedance of the generator Zg is assumed to be the conjugate of 

the impedance of antenna #1 while the load impedance ZL is equal to the 

conjugate of the impedance of antenna #2



• The power delivered by the generator to antenna #1 is given by

• If the transfer admittance of the combined network consisting of the generator 

impedance, antennas, and load impedance is Y21, the current through the load is 

VgY21 and the power delivered to the load is,



• The ratio is,

• In a similar manner, we can show that when antenna #2 is transmitting and #1 

is receiving, the power ratio of P1/P2 is given by 

• Under conditions of reciprocity (Y12 = Y21), the power delivered in either

direction is the same.



Reciprocity for Antenna Radiation Patterns

• The radiation pattern is a very important antenna characteristic.

• The only other restriction for reciprocity to hold is for the antennas in the

transmit and receive modes to be polarization matched, including the sense of

rotation.



• The antenna under test is #1 while the probe antenna (#2) is oriented to

transmit or receive maximum radiation. The voltages and currents V1, I1 at

terminals 1–1 of antenna #1 and V2, I2 at terminals 2–2 of antenna #2 are

related by,

• If a current I1 is applied at the terminals 1–1 and voltage V2 (designated as

V2oc) is measured at the open (I2 = 0) terminals of antenna #2, then an equal

voltage V1oc will be measured at the open (I1 = 0) terminals of antenna #1

provided the current I2of antenna #2 is equal to I1.



• If the medium between the two antennas is linear, passive, isotropic, and the

waves monochromatic, then because of reciprocity,

• If in addition I1 = I2, then,



Short Dipole



Introduction

• An infinitesimal linear wire (l  λ) is positioned symmetrically at 
the origin of the coordinate system and oriented along the z 
axis, as shown in Figure



Near field region Far field region



• Although infinitesimal dipoles are not very practical, they are 
used to represent capacitor-plate (also referred to as top-hat-
loaded) antennas.

• The spatial variation of the current is assumed to be constant 
and given by,

• To find the fields radiated by the current element, the two-
step procedure is used. It will be required to determine first A
and F and then find the E and H.

• Since the source only carries an electric current Ie only;

Im and the potential function F are zero.

• To find A



• Where (x, y, z ) represent the observation point coordinates,
(x, y, z) represent the coordinates of the source, R is the
distance from any point on the source to the observation
point.









Power Density and Radiation 
Resistance

• For a lossless antenna, the real part of the input impedance
was designated as radiation resistance. It is through the
mechanism of the radiation resistance that power is
transferred from the guided wave to the free-space wave.

• To find the input resistance for a lossless antenna, the
Poynting vector is formed in terms of the E- and H-fields
radiated by the antenna. By integrating the Poynting vector
over a closed surface (usually a sphere of constant radius), the
total power radiated by the source is found.

• The real part of it is related to the input resistance.



• For the infinitesimal dipole, the complex Poynting vector can 
be,

• whose radial Wr and transverse Wθ components are given, 
respectively, by

• The complex power moving in the radial direction is obtained 
by integrating  over a closed sphere of radius r.



• Since the antenna radiates its real power through the
radiation resistance, for the infinitesimal dipole,



• The reactance of an infinitesimal dipole is capacitive. This can
be illustrated by considering the dipole as a flared open-
circuited transmission line, Since the input impedance of an
open-circuited transmission line a distance l/2 from its
openend is given by Zin = −jZc cot (βl/2), where Zc is its
characteristic impedance, it will always be negative
(capacitive) for l << λ.



Near-Field (kr << 1) Region

• The equation can be reduced in much simpler form and canbe
approximated by,



• The E-field components, Er and Eθ , are in time-phase but
they are in time-phase quadrature with the H-field
component Hφ; therefore there is no time-average power
flow associated with them.

• This is demonstrated by forming the time-average power
density as,



Far-Field (kr >> 1) Region

• Er will be smaller than Eθ because Er is inversely proportional
to r2 where Eθ is inversely proportional to r.



• The E- and H-field components are perpendicular to each
other, transverse to the radial direction of propagation, and
the r variations are separable from those of θ and φ. The
shape of the pattern is not a function of the radial distance r,
and the fields form a Transverse ElectroMagnetic (TEM) wave
whose wave impedance is equal to the intrinsic impedance
of the medium.



Directivity

• The real power Prad radiated by the dipole,

• Radiation intensity U,

• The maximum value occurs at θ = π/2 and it is equal to,



• The directivity reduces to,

• The maximum effective aperture,



Small Dipole

• A better approximation of the current distribution of wire
antennas, whose lengths are usually λ/50 < l ≤ λ/10, is the
triangular variation.

• The most convenient geometrical arrangement for the
analysis of a dipole is usually to have it positioned
symmetrically about the origin with its length directed along
the z-axis,





• Because the overall length of the dipole is very small (usually l
≤ λ/10), the values of R for different values of z along the
length of the wire (−l/2 ≤ z ≤ l/2) are not much different from
r. Thus R can be approximated by R = r throughout the
integration path. The maximum phase error in by allowing R =
r for λ/50 < l ≤ λ/10, will be kl/2 = π/10 rad = 18◦ for l = λ/10.



• The potential function becomes a more accurate
approximation as kr →∞.

• Since the potential function for the triangular distribution is
one-half of the corresponding one for the constant (uniform)
current distribution, the corresponding fields of the former
are one-half of the latter. Thus we can write the E and H-
fields radiated by a small dipole as,



• The radiation resistance of the antenna is strongly dependent 
upon the current distribution.

• As compare infinitesimal dipole, it can be shown that for the
small dipole its radiated power is one-fourth (1/4) of
previous case.

• Thus the radiation resistance reduces to,



Finite Length Dipole

• Current Distribution: For a very thin dipole (ideally zero 
diameter), the current distribution can be written, to a good 
approximation, as,

• Experimentally it has been verified that the current in a 
center-fed wire antenna has sinusoidal form with nulls at the 
end points.



• The finite dipole antenna is subdivided into a number of 
infinitesimal dipoles of length 𝛥z’. As the number of 
subdivisions is increased, each infinitesimal dipole approaches 
a length dz.

• For an infinitesimal dipole of length dz positioned along the z-
axis at z, the electric and magnetic field components in the far 
field are,



• A very thin dipole of finite length l is symmetrically positioned 
about the origin with its length directed along the z-axis.

• Because the wire is assumed to be very thin (x’ = y’ = 0).

• Using the binomial expansion,

• For far field region,





• Using the far-field approximations

• Summing the contributions from all the infinitesimal
elements, the summation reduces, in the limit, to an
integration.



• The factor outside the brackets is designated as the element
factor and that within the brackets as the space factor. For
this antenna, the element factor is equal to the field of a unit
length infinitesimal dipole located at a reference point (the
origin). In general, the element factor depends on the type of
current and its direction of flow while the space factor is a
function of the current distribution along the source.

• For the current distribution of above equations,



• The above integral can be solved by, 


