
 (SUBJECT CODE-CE0506/CS0506)
UNIT-1

 B.TECH (CE/CSE)
SEMESTER-V

Syllabus
Uni
t

Chapters

1 Introduction to 8085 Microprocessor

Basic functions of the microprocessor, System bus, Architecture, Pin
Configuration and Programmer’s model of Intel 8085
Microprocessor. Overview of the instruction groups of 8085 and the
addressing modes..

2 Intel 8086 Architecture:

features of 8086 processor, 8086/88 CPU Architecture and the
pipelined operation, Programmer’s Model and Segmented Memory.

Designing the 8086 CPU module:
 8086 pin description in details, Generating the 8086 System Clock
and Reset Signals, 8086 Minimum and Maximum Mode CPU
Modules, Minimum and Maximum Mode Timing Diagrams, Interrupt
Structure, Interrupt Processing and the Predefined interrupts in
8086 Processor.

Syllabus
Unit Chapters

3 Instruction Set of 8086 and Programming:
Instruction Set of 8086 microprocessor in details, Addressing modes
of 8086/88, Programming the 8086 in assembly language, Mixed
mode programming with C-language and assembly.

Peripheral Controllers for 8086 family and System Design:
Functional Block Diagram and description, Control Word Formats,
Operating Modes and Applications of the Peripheral Controller
namely 8255-PPI, 8253-PIT, 8259- PIC and 8237-DMAC. Interfacing
of the above Peripheral Controllers. Keyword and Display Interface
using 8255. Memory Interfacing: SRAM, ROM and DRAM (using a
typical DRAM Controller such as Intel 8203). System Design based
on the Memory and Peripherals

4 Multiprocessor Systems:
Study of Multiprocessor Configurations namely Tightly Coupled
System (TCS) and Loosely Coupled System (LCS), TCS with the case
study of the Coprocessor, Various System Bus Arbitration Schemes
in LCS, and Role of the Bus Arbiter (Intel 8289) in the LCS.

Books
Text Book:

1) Microprocessor architecture and applications with 8085: By Ramesh
Gaonkar (Penram
International Publication).
2) 8086/8088 family: Design Programming and Interfacing: By John
Uffenbeck (Pearson
Education).
3) 8086 Microprocessor Programming and Interfacing the PC: By Kenneth
Ayala
4) Microcomputer Systems: 8086/8088 family Architecture, Programming
and Design: By
Liu & Gibson (PHI Publication).
5) Microprocessor and Interfacing: By Douglas Hall (TMH Publication).

Ref. Books:

1) Advanced Microprocessor: By Roy & Bhurchandi (Tata McGraw Hill).
2) Advanced Microprocessors: By Daniel Tabak (McGraw Hill)
3) The SPARC Architecture Manual (Version 8).
4) Intel Manuals.

Basic functions of the microprocessor,
System bus, Architecture, Pin Configuration
and Programmer’s model of Intel 8085
Microprocessor. Overview of the instruction
groups of 8085 and the addressing modes.
(No programming based on 8085).

Definition of the Microprocessor
•The microprocessor is a

• Multipurpose,
• Programmable,
• Clock-driven,
• Register-based Electronic device that reads binary

instructions from the storage device called memory and
takes in binary data and process it according to those
instructions and provides result as output.

Programmable Machine
Programmable Machine

Memory

OutputInput
Mi

cr
op

ro
ce

ss
or

• Internally, the microprocessor is made up of 3
main units.

•The Arithmetic/Logic Unit (ALU)
•The Control Unit.
•An array of registers for holding data
while it is being manipulated.

•Arithmetic/Logic Unit
• Performs all computing and logic operations such as

addition and subtraction as well as AND, OR and XOR.

•Register Array
• A collection of registers within the microprocessor itself.

These are used primarily for data storage during
program execution. The number and the size of these
registers differ from one microprocessor to the other

•Control Unit
• As the name implies, the control Unit controls what is

happening in the microprocessor. It provides the necessary
control and t iming signals to all operations in the
microprocessor as well as it contact to the outside world.

Organization of a microprocessor-
based system

I/O

Memory
ROM RAM

System Bus
ALU

Register
Array

Control

Memory
•Memory stores information such as instructions
and data in binary format (0 and 1). It provides this
information to the microprocessor whenever it is
needed.

Memory(1)
•Read Only Memory (ROM) (Non - Volatile)

• used to store information that does not change.

•Random Access Memory (RAM) (also known
as Read/Write Memory).

• used to store information supplied by the user. Such as
data.

I/O (Input/Output)- peripherals.

•Input devices : transfer binary information from
the outside world to the microprocessor.
• Examples of input devices are: keyboard, mouse, bar

code reader, scanner etc.
•Output devices: transfer binary information from

the microprocessor to the outside world.
• Theses include things like an LED, a monitor, a printer

etc.

System Bus
• It is simply a group of wires carrying the voltages and

curents representing the different bit values.

•The microprocessor communicates with only one
peripheral at a time and the Controlling the bus is
done by the Control Unit.

Program
› Program: A program is a sequence of
instructions that bring data into the
microprocessor, processes it and sends it
out.

•There are many programming languages (C, C++,
FORTRAN etc.) However, these programming
languages can be grouped into three main levels

Continue…
› Programming Languages

•Machine language
• Machine language is the lowest level programming

language. It is a language intended to be understood by
the microprocessor (the machine) only. In this language,
every instruction is described by binary patterns.
e.g. 11001101 may mean 1 + 3

• This is the form in which instructions are stored in
memory. This is the only form that the microprocessor
understands.

Continue….
› Programming Languages

•Assembly language
• This language is more understandable by humans. In this

language, the binary patterns are assigned mnemonics
(short abbreviated names).

• There is usually one assembly language instruction for each
machine language instruction.
e.g. “Add 1,3” is assigned to the machine language
pattern 11001101 mentioned above to refer to the
operation 1+3.

Continue….
› Programming Languages

•High level languages
• These are languages like C, PASCAL and Java. These are

more natural for humans to use than assembly or
machine languages. They are also more compact .

• One high level instruction translates into many assembly
or machine language instructions.
e.g. z = y + x may translate into:

MOV R1,#20H
MOV R2,#30H
ADD R1,R2

The three cycle instruction execution
model
› To execute a program, the microprocessor “reads” each

instruction from memory, “interprets” it, then “executes” it.

› To use the right names for the cycles:
The microprocessor fetch each instruction,
decodes it,
Then execute it.

› This sequence is continued until all instructions are
performed.

8085 Microprocessor
Architecture

The 8085 Hardware Model &
Programming Model

Fig. 1 8085 Hardware Model Fig.2 8085 Programming Model

8085 Microprocessor Architecture

8085 Hardware Model
•Fig 1 Shows the hardware model of 8085. i t
contains two major segment . One segment
includes arithmetic / logic unit (ALU) , accumulator ,
flag register and instruction decoder.

•The second segment shows various 8-bit and 16-
bit registers.

•The 8085 uses 8-bit bidirectional data bus , 16-
bit unidirectional address bus and control
bus.

8085 Programming Model
•The programming model represents the various
registers of the microprocessor. It is very useful to
write assembly language programs.

•The 8085 Programming model inc ludes s ix
registers, one accumulator and one flag register
and it has two 16 bit registers Stack Pointer(SP)
and Program Counter (PC) shown in figure 2.

8085 Programming Model (2)
 Registers

 The 8085 has 6 general purpose registers to store
8-bit data. These are identifies as a B,C,D,E,H,L.
They can be combines as register pairs BC,DE,HL to
perform 16-bit operations

 Accumulator
 The accumulator is a 8-bit register that is part of

ALU. This register is used to store the 8 bit data and
to perform the arithmetic and logical operations.
The result of operation is stored in to accumulator.

8085 Programming Model (3)
 Flags

 The ALU includes five flip-flops , which are set or reset
after an operation according to data conditions of the
result in accumulator and other registers. The y are
called Zero (Z) , Carry (Cy) , Sign (S) , Parity (P) ,
Auxiliary Carry (AC) flags.

8085 Flag Register

Flag Register
 Zero Flag (Z): The zero flag is set when the result is zero,

otherwise it is reset.
 Carry Flag (CY): If an arithmetic operation results in carry,

the carry flag is set, otherwise it is reset .
 Sign Flag(S) : Sign flag is set if the D7 of the result is 1,

otherwise it is reset .
 Parity Flag(P) : If the result has an even number of 1’s the

flag is set, for an odd number of 1’s it is reset.
 Auxiliary Carry (AC): In an arithmetic operation , when a

carry is generated by digit D3 and passed to D4, the AC flag
is set. Used for BCD operations.

Program Counter (PC) & Stack
Pointer(SP)
 These are the two 16-bit registers to hold the memory address.
 PC:

 Microprocessor use the PC to Sequence the Execution of the Program.
Function of the program counter is to point the memory address from
which next byte is to be fetched.

 PC contains the Address of the next instruction to be Executed

 SP:
 The SP points to the R/W memory location and it is used for the temporary

storage of the Data.

8085 Instruction Classification
 The 8085 instructions can be classified as the
following five categories:
 Data transfer Operations

 Between registers
 Specific data byte to a
Register from memory
location
 Between a Memory location
and Register
 Between I/O device and the
Accumulator

 Arithmetic Operations
 Addition
 Subtraction
 Increment / Decrement

 Logical Operations
 AND , OR , X-OR ,
 Rotate , Compare ,
Complement

 Branching Operations
 Jump : Conditional &
Unconditional
 Call , Return and Restart

 Machine Control Operations
 Halt , Interrupt or Do
nothing

Intel 8085 Pin Configuration

Signals

Signals and I/O Pins

Clock Pins
•8085 MPU has 3 pins that control or present the
clock signal.
• X1 and X2 pins determine the clock frequency.
• CLK OUT is a square-wave output clock.

•The CLOCK OUT is one-half the crystal frequency.
8085

X1 CLK
OUT

X2

6 MHz

8085 Pinout
•8085 μp consists of 16 signal pins use as address
bus.

•Divide into 2 part: A15 – A8 (upper) and
AD7 – AD0 (lower).

• A15 – A8 : Unidirectional, known as ‘high order address
bus’.

• AD7 – AD0 : bidirectional and dual purpose (address and
data placed once at a time).

• AD7 – AD0 also known as ‘low order address’.

Control and Status Signals
•Signals:

• RD – Read (active low). To indicate that the I/O or memory
selected is to be read and data are available on the bus.

• WR – Write: Active low. This is to indicate that the data
available on the bus are to be written to memory or I/O
ports.

• IO/M – To differentiate I/O operation or memory operations.
• ‘0’ - indicates a memory operation.
• ‘1’-indicates an I/O operation.

• IO/M combined with RD and WR to generate I/O and
memory control signals.

• S1 and S0: Status signals, similar to IO/M, can identify
various operations as shown on the following table :

Control and Status Signals.

S1 S0 Statu
s

0 0 Halt
0 1 Write
1 0 Read
1 1 Fetch

8085 Bus Structure

Interrupt Signals
•8085 μp has several interrupt and external intiated
signals as shown in the following table.

Interrupt signals
•An interrupt is a hardware-initiated subroutine
CALL.

•When interrupt pin is activated, an ISR will be
called, interrupting the program that is currently
executing.

RESET signal
•Following are the two kind of RESET signals:

• RESET IN: an active low input signal, Program Counter (PC)
will be set to 0 and thus MPU will reset.

• RESET OUT: an output reset signal to indicate that the μp
was reset (i.e. RESET IN=0). It also used to reset external
devices.

• ALE means Address la tch Enable and i t i s used to
Demultiplex the lower order address and data lines.

ALE signal

ALE used to Demultiplex
address/data bus

Generation of Control signal

•SID:-
• SID is serial input data pin. The bit data on this line is

loaded in the seventh bit of the accumulator whenever a
RIM instruction is executed.

•SOD:-
• SOD is serial output data. The output SOD is set or reset as

specified by the SIM instruction

SID and SOD signal

Instruction
•An instruction is a command to the
Microprocessor to perform a given task on
Specific data.

•Each instruction has 2- parts
• Op-Code
• Operands

• Instruction Word Size:
 Instruction are commonly referred to in terms of Byte

 1 Byte Instruction (Ex. MOV E,A , ADD E , CMA)
 2 Byte Instruction (Ex. MVI A, 35H , MVI B,29H)
 3 Byte Instruction (Ex. LDA 2055H , JMP 2080H)

Instruction Set of 8085
oAn instruction is a binary pattern designed inside a
microprocessor to perform a specific function.

oT h e e n t i r e g ro u p o f i n s t r u c t i o n s t h a t a
microprocessor supports is called Instruction Set.

o 8085 has 246 instructions.

o Each instruction is represented by an 8-bit binary
value.

o These 8-bits of binary value is called Op-Code or
Instruction Byte.

Classification of Instruction Set

o Data Transfer Instruction

oArithmetic Instructions

oLogical Instructions

oBranching Instructions

o Machine Control Instructions

Data Transfer Instruction
oThese instructions move data between registers,
or between memory and registers.

oThese instructions copy data from source to
destination.

oWhile copying, the content of source is not
modified.

Data Transfer Instruction

oThis instruction copies the contents of the source
register into the destination register.

oThe contents of the source register are not altered.

oIf one of the operands is a memory location, its
location is specified by the contents of the HL
registers.

o Example: MOV D,E or MOV B, A

Opcode Operand Description
MOV Rd,Rs

M, Rs
Rd, M

Copy from source to destination.

Data Transfer Instruction

oThe 8-bit data is stored in the destination register or
memory.

oIf the operand is a memory location, its location is
specified by the contents of the H-L registers.

o Example: MVI B, 75H or MVI M, 55H

Opcode Operand Description
MVI Rd, Data

M, Data
Move immediate 8-bit

Data Transfer Instruction

oThe contents of a memory location, specified by a
16-bit address in the operand, are copied to the
accumulator.

oThe contents of the source are not altered.

o Example: LDA 2037H

Opcode Operand Description
LDA 16-bit address Load Accumulator Direct

Data Transfer Instruction
Opcode Operand Description

LDAX B/D Register
Pair

Load accumulator indirect

o The contents of the designated register pair
point to a memory location.

o This instruction copies the contents of that
memory location into the accumulator.

o The contents of either the register pair or the
memory location are not altered.

o Example: LDAX D

Data Transfer Instruction
Opcode Operand Description

LXI Reg. pair, 16-
bit data

Load register pair immediate

oThis instruction loads 16-bit data in the register
pair.

o Example: LXI H, 2074 H

o This instruction store 74H in L and 20H in H.

Data Transfer Instruction
Opcode Operand Description

LHLD 16-bit address Load H-L registers direct

o This instruction copies the contents of memory location
pointed out by 16-bit address into register L.

o It copies the contents of next memory location into register H.

o Example: LHLD 2050H

o Location 2050H contains 20H and 2051H contains 21H

o 21H will be loaded in to H and 20H will be loaded in to L

2050H 20H
2051H 21H

L
H

Data Transfer Instruction

Opcode Operand Description
STA 16-bit address Store accumulator direct

oThe contents of accumulator is copied into the
memory location specified by the operand.

oExample: STA 2050 H

Data Transfer Instruction

Opcode Operand Description
STAX B/D Reg. pair Store accumulator indirect

oThe contents of accumulator are copied into the
memory location specified by the contents of the
register pair.

o Example: STAX B

Opcode Operand Description
SHLD 16-bit address Store H-L registers direct

Data Transfer Instruction

oThe contents of register L are stored into memory
location specified by the 16-bit address.

oThe contents of register H are stored into the next
memory location.

oExample: SHLD 2500 H

H
L

250
0

Conten
t of L

250
1

Content
of H

Opcode Operand Description
XCHG None Exchange H-L with D-E

Data Transfer Instruction

oThe contents of register H are exchanged with the
contents of register D.

oThe contents of register L are exchanged with the
contents of register E.

oExample: XCHG

Opcode Operand Description
SPHL None Copy H-L pair to the Stack Pointer (SP)

Data Transfer Instruction

oThis instruction loads the contents of H-L pair into
SP.

oExample: SPHL

oH provides the higher order byte and L provides the
lower order byte.

Opcode Operand Description
XTHL None Exchange H–L with top of stack

Data Transfer Instruction

oThe contents of L register are exchanged with the
location pointed out by the contents of the SP.

oThe contents of H register are exchanged with the
next location (SP + 1).

o Example: XTHL

Opcode Operand Description
PCHL None Load program counter with H-L contents

Data Transfer Instruction

oThe contents of registers H and L are copied into the
program counter (PC).

oThe contents of H are placed as the high-order byte
and the contents of L as the low-order byte.

oExample: PCHL

Opcode Operand Description
PUSH Reg. pair Push register pair onto stack

Data Transfer Instruction

oThe contents of register pair are copied onto stack.

oSP is decremented and the contents of high-order
registers (B, D, H, A) are copied into stack.

oSP is again decremented and the contents of low-
order registers (C, E, L, Flags) are copied into stack.

oExample: PUSH B

Opcode Operand Description
POP Reg. pair Pop of the stack to register pair

Data Transfer Instruction

oThe contents of top of stack are copied into register pair.

oThe contents of location pointed out by SP are copied to
the low-order register (C, E, L, Flags).

oSP is incremented and the contents of location are
copied to the high-order register (B, D, H, A).

oExample: POP H

 LXI H,2525h
MVI M,25h
MOV B,M
MVI L,26h
MVI M,26H
MOV C,M
SHLD 4000h
LDAX B
SPHL

Arithmetic Instruction
Opcode Operand Description

ADD R or
M

Add register or memory to accumulator

oThe contents of register or memory are added to the
contents of accumulator.

oThe result is stored in accumulator.

oIf the operand is memory location, its address is
specified by H-L pair.

oAll f lags are modified to reflect the result of the
addition.

oExample: ADD C or ADD M

Opcode Operand Description
ADC R or

M
Add register or memory to accumulator
with carry

oThe contents of register or memory and Carry Flag (CY)
are added to the contents of accumulator.

oThe result is stored in accumulator.

o If the operand is memory location, its address is specified
by H-L pair.

oAll f lags are modified to reflect the result of the addition.

oExample: ADC D or ADC M

Arithmetic Instruction

Opcode Operand Description
ADI 8-bit data Add immediate to accumulator

Arithmetic Instruction

oThe 8-bit data is added to the contents of
accumulator.

o The result is stored in accumulator.

oAll f lags are modified to reflect the result of the
addition.

o Example: ADI 49 H

Opcode Operand Description
ACI 8-bit data Add immediate to accumulator with carry

Arithmetic Instruction

oThe 8-bit data and the Carry Flag (CY) are added to
the contents of accumulator.

oThe result is stored in accumulator.

oAll f lags are modified to reflect the result of the
addition.

o Example: ACI 48 H

Opcode Operand Description
DAD Reg. pair Add register pair to H-L pair

Arithmetic Instruction

oThe 16-bit contents of the register pair are added to
the contents of H-L pair.

oThe result is stored in H-L pair.

oIf the result is larger than 16 bits, then CY is set.

oNo other f lags are changed.

oExample: DAD D

Opcode Operand Descriptio
n

SUB R or
M

Subtract register or memory from
accumulator

Arithmetic Instruction

oThe contents of the register or memory location are subtracted
from the contents of the accumulator.

o The result is stored in accumulator.

oIf the operand is memory location, its address is specified by H-
L pair.

oAll f lags are modified to reflect the result of subtraction.

o Example: SUB H or SUB M

Arithmetic Instruction
Opcode Operand Description

SBB
R
or
M

Subtract register or memory from
accumulator with borrow

oThe contents of the register or memory location and Borrow
Flag (i .e . CY) are subtracted f rom the contents of the
accumulator.

oIf the operand is memory location, its address is specified by H-
L pair.

oAll flags are modified to reflect the result of subtraction.

o Example: SBB D or SBB M

Arithmetic Instruction

Opcode Operand Description
SUI 8-bit data Subtract immediate from accumulator

oThe 8-bit data is subtracted from the contents of
the accumulator.

o The result is stored in accumulator.

o All f lags are modified to reflect the result of
subtraction.

o Example: SUI 55 H

Arithmetic Instruction
Opcode Operand Description

SBI 8-bit data Subtract immediate from
accumulator with borrow

oThe 8-bit data and the Borrow Flag (i.e. CY) is
subtracted from the contents of the accumulator.

oThe result is stored in accumulator.

oAll f lags are modified to reflect the result of
subtraction.

o Example: SBI 65 H

Opcode Operand Description
INR R

or
M

Increment register or memory by 1

Arithmetic Instruction

oThe contents of register or memory location are
incremented by 1.

oThe result is stored in the same place.

oIf the operand is a memory location, its address is
specified by the contents of H-L pair.

o Example: INR D or INR M

Opcode Operand Description
INX R Increment register pair by 1

Arithmetic Instruction

oThe contents of register pair (B, D, H, SP)are
incremented by 1.

oThe result is stored in the same place.

oNo flags are affected.

oExample: INX B

Arithmetic Instruction
Opcode Operand Description

DCR R
or
M

Decrement register or memory by 1

oThe contents of register or memory location are
decremented by 1.

oThe result is stored in the same place.

oIf the operand is a memory location, its address is
specified by the contents of H-L pair.

o Example: DCR C or DCR M

Arithmetic Instruction
Opcode Operand Descriptio

n
DCX R Decrement register pair by 1

oThe contents of register pair(B,D,H,SP) are
decremented by 1.

oThe result is stored in the same place.

oNo flags are affected.

oExample: DCX D

Logical Instructions
Opcode Operand Description

CMP R
or
M

Compare register or memory
with accumulator

oThe contents of the operand (register or memory) are
compared with the contents of the accumulator.

oBoth contents are preserved .

oThe result of the comparison is shown by setting the
flags of the PSW as follows:

Logical Instructions

•if (A) < (reg/mem): carry flag is set

•if (A) = (reg/mem): zero flag is set

•if (A) > (reg/mem): carry and zero flags are

reset.

•Example: CMP C or CMP M

Logical Instructions

Opcode Operand Description
CPI 8-bit data Compare immediate with accumulator

oThe 8-bit data is compared with the contents of
accumulator.

oThe values being compared remain unchanged.

oThe result of the comparison is shown by setting
the flags of the PSW as follows:

Logical Instruction

 if (A) < data: carry f lag is set

 if (A) = data: zero f lag is set

 if (A) > data: carry and zero f lags are

reset

 Example: CPI 87H

Logical Instructions
Opcode Operand Description

ANA R
or
M

Logical AND register or memory with
accumulator

oThe contents of the accumulator are logically ANDed with the
contents of register or memory.

oThe result is placed in the accumulator.

oS, Z, P are modified to reflect the result of the operation.

oExample: ANA C or ANA M.

Logical Instruction
Opcode Operand Description

ANI 8-bit data Logical AND immediate with accumulator

oThe contents of the accumulator are logically ANDed
with the 8-bit data.

oThe result is placed in the accumulator.

oS, Z, P are modified to reflect the result.

oExample: ANI 96H.

Logical Instruction
Opcode Operand Description

ORA R
or
M

Logical OR register or memory with
accumulator

oThe contents of the accumulator are logically ORed with
the contents of the register or memory.

oThe result is placed in the accumulator.

oS, Z, P are modified to reflect the result.

oCY and AC are reset.

oExample: ORA B or ORA M.

Logical Instruction
Opcode Operand Description

ORI 8-bit data Logical OR immediate with accumulator

oThe contents of the accumulator are logically ORed
with the 8-bit data.

oThe result is placed in the accumulator.

oS, Z, P are modified to reflect the result.

oCY and AC are reset.

oExample: ORI 46H.

Logical Instruction
Opcode Operand Description

XRA R
or
M

Logical XOR register or memory with
accumulator

oThe contents of the accumulator are XORed with the
contents of the register or memory.

oThe result is placed in the accumulator.

oS, Z, P are modified to reflect the result of the
operation.

oCY and AC are reset.

oExample: XRA C or XRA M.

Logical Instruction
Opcode Operand Description

XRI 8-bit data XOR immediate with accumulator

oThe contents of the accumulator are XORed with the 8-
bit data.

oThe result is placed in the accumulator.

oS, Z, P are modified to reflect the result.

oCY and AC are reset.

oExample: XRI 16H.

Logical Instruction
Opcode Operand Description

RLC None Rotate accumulator left

oEach binary bit of the accumulator is rotated left by one position.

oBit D7 is placed in the position of D0 as well as in the Carry f lag.

oCY is modified according to bit D7.

oExample: RLC.

D7 D6 D5 D4 D3 D2 D1 D0
1 0 1 0 0 1 1 1

CY
0

CY
1 0 1 0 0 1 1 1 1

Logical Instruction
Opcode Operand Description

RRC None Rotate accumulator right

oEach binary bit of the accumulator is rotated right by one
position.

oBit D0 is placed in the position of D7 as well as in the Carry f
lag.

oCY is modified according to bit D0.

oExample: RRC.
 CY

0

D7 D6 D5 D4 D3 D2 D1 D0
1 0 1 0 0 1 1 1 CY

1
1 1 0 1 0 0 1 1

Previous
value

Logical Instruction
Opcode Operand Description

RAL None Rotate accumulator left through carry

oEach binary bit of the accumulator is rotated left by one
position through the Carry flag.

oBit D7 is placed in the Carry flag, and the Carry f lag is placed in
the least significant position D0.

oCY is modified according to bit D7.

oExample: RAL.

CY
0

D7 D6 D5 D4 D3 D2 D1 D0
1 0 1 0 0 1 1 1

CY
1

0 1 0 0 1 1 1 0

Logical Instruction
Opcode Operand Description

RAR None Rotate accumulator right through carry

oEach binary bit of the accumulator is rotated right by one
position through the Carry f lag.

oBit D0 is placed in the Carry f lag, and the Carry f lag is placed
in the most significant position D7.

oCY is modified according to bit D0.

oExample: RAR.

CY
0

D7 D6 D5 D4 D3 D2 D1 D0
1 0 1 0 0 1 1 1

CY
1

0 1 0 1 0 0 1 1

Logical Instruction
Opcode Operand Description
CMA None Complement accumulator

oThe contents of the accumulator are
complemented.

oNo flags are affected.

oExample: CMA.

Logical Instruction
Opcode Operand Description
CMC None Complement carry

oThe Carry f lag is complemented.

oNo other f lags are affected.

oExample: CMC.

Logical Instruction

oThe Carry f lag is set to 1.
o No other flags are affected.
oExample: STC.

Opcode Operand Descriptio
n

STC None Set carry

Branching Instructions
Opcode Operand Description
JMP 16-bit address Jump unconditionally

oThe program sequence is transferred to the
memory location specified by the 16-bit address
given in the operand.

oExample: JMP 2094 H.

Branching Instruction
Opcode Operand Description

Jx 16-bit address Jump conditionally

oThe program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified f lag of the PSW.

oExample: JZ 2094 H.

Jump Conditionally
Opcod

e
Description Status Flags

JC Jump if Carry CY =
1

JNC Jump if No Carry CY =
0

JP Jump if Positive S =
0

JM Jump if Minus S =
1

JZ Jump if Zero Z =
1

JNZ Jump if No Zero Z =
0

JPE Jump if Parity Even P =
1

Branching Instruction
Opcode Operand Descriptio

n
CALL 16-bit address Call unconditionally

oThe program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

oBefore the t ransfer , the address of the next
instruction after CALL (the contents of the program
counter) is pushed onto the stack.

oExample: CALL 2094 H.

Branching Instruction
Opcode Operand Description

Cx 16-bit address Call conditionally

o The program sequence is transferred to the
memory location specified by the 16-bit address
given in the operand based on the specified f lag of
the PSW.

oBefore the transfer , the address of the next
instruction after the call (the contents of the program
counter) is pushed onto the stack.

oExample: CZ 2094 H.

Call Conditionally
Opcode Description Status Flags

CC Call if Carry CY =
1

CNC Call if No Carry CY =
0

CP Call if Positive S =
0

CM Call if Minus S =
1

CZ Call if Zero Z =
1

CNZ Call if No Zero Z =
0

CPE Call if Parity Even P =
1

CPO Call if Parity Odd P =
0

Branching Instruction
Opcode Operand Description

RET None Return unconditionally

oThe program sequence is transferred from the
subroutine to the calling program.

oThe two bytes from the top of the stack are copied
into the program counter, and program execution
begins at the new address.

oExample: RET.

Branching Instruction
Opcode Operand Description

Rx None Return conditionally

oThe program sequence is transferred from the
subroutine to the calling program based on the
specified f lag of the PSW.

oThe two bytes from the top of the stack are copied
into the program counter, and program execution
begins at the new address.

oExample: RZ.

Return Conditionally
Opcode Description Status Flags

RC Return if Carry CY = 1

RNC Return if No Carry CY = 0

RP Return if Positive S = 0

RM Return if Minus S = 1

RZ Return if Zero Z = 1

RNZ Return if No Zero Z = 0

RPE Return if Parity Even P = 1

RPO Return if Parity Odd P = 0

Branching Instruction
Opcode Operand Descriptio

n
RST 0 – 7 Restart (Software Interrupts)

oThe RST instruction jumps the control to one of
eight memory locations depending upon the number.

oThese are used as software instructions in a
program to transfer program execution to one of the
eight locations.

oExample: RST 3.

Restart Address Table
Instructions Restart Address

RST 0 0000 H
RST 1 0008 H
RST 2 0010 H
RST 3 0018 H
RST 4 0020 H
RST 5 0028 H
RST 6 0030 H
RST 7 0038 H

Control Instruction
Opcode Operand Descripti

on
NOP None No operation

oNo operation is performed.

oThe instruction is fetched and decoded but no
operation is executed.

oExample: NOP

Control Instruction
Opcode Operand Description
HLT None Halt

oThe CPU finishes executing the current instruction
and halts any further execution.

oAn interrupt or reset is necessary to exit from the halt
state.

oExample: HLT

Control Instruction
Opcode Operand Description

DI None Disable interrupt

oThe interrupt enable f lip-f lop is reset and all the
interrupts except the TRAP are disabled.

oNo f lags are affected.

oExample: DI

Control Instruction
Opcode Operand Descriptio

n
EI None Enable interrupt

oThe interrupt enable f lip-f lop is set and all interrupts
are enabled.

oNo flags are affected.

oThis instruction is necessary to re-enable the
interrupts (except TRAP).

oExample: EI

Control Instruction
Opcode Operand Descriptio

n
RIM None Read Interrupt Mask

oThis is a multipurpose instruction used to read the
status of interrupts 7.5, 6.5, 5.5 and read serial data
input bit.

oThe instruction loads eight bits in the accumulator
with the following interpretations.

oExample: RIM

RIM Instruction

Control Instruction
Opcode Operand Description
SIM None Set Interrupt Mask

oThis is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and
serial data output.
oThe instruction interprets the accumulator
contents as follows.
oExample: SIM

SIM Instruction

Addressing mode
•The 8085 has the following 5 different types of
addressing Modes.

 1. Immediate Addressing
 2. Direct Addressing
 3. Register Addressing
 4. Register Indirect Addressing
 5. Implied Addressing

Immediate Addressing Mode
• In immediate addressing mode, the data is
specified in the instruction itself. The data will be a
part of the program instruction.

•Example
• MVI B, 37H - Move the data 37H given in the instruction to

B register;
• LXI D, 3100H.
• ADI 60H

Direct Addressing Mode
• In direct addressing mode, the address of the data
is specified in the instruction. The data will be in
memory.

•Example
• LDA 2050H - Load the data available in memory location

1050H in to accumulator
• STA 2055H

Register Addressing Mode
• In register addressing mode, the instruction
specifies the name of the register in which the
data is available.

•Example

• MOV B, C - Move the content of B register to A register
• ADD B

Register Indirect Addressing
Mode
• In register indirect addressing mode, the
instruction specifies the name of the register in
which the address of the data is available. Here
the data will be in memory and the address will be
in the register pair.

•Example

• MOV A, M - The memory data addressed by H L pair is
moved to A register

• LDAX D
• STAX D

Implied Addressing Mode
• In implied addressing mode, the instruction itself
specifies the data to be operated.

•Example

• CMA - Complement the content of accumulator,
• RAL - Rotate accumulator left through carry.

Identify the Addressing mode of
following instructions

•ORA B
•MVI C,21H
•LHLD 2000H
•LDAX B
•LDA 2000H
•CMP B
•STC
•XCHG
•DAD
•DAA

