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The Simplex Method 

 

 

 
To understand how simplex solves a general linear programming problem, we need to know the 

answers to a number of questions: 

• How to determine if a minimum feasible solution has been found? 

• Which nonbasic variable is to enter the basis at a pivot step? 

• Which basic variable should become non-basic at a pivot step? 

• How to find an initial basic feasible solution to start simplex? 

We already had an answer to the first question, that is, checking if the coefficients of the new ob- 
jective function are all nonnegative. Let us now look at the other three questions. For convenience, 
we assume the following holds. 

Nondegeneracy assumption: In every basic feasible solution, no basic variable has zero 
value.1 

Given a linear program in the standard form 

min cT x 

subject to Ax = b 

x ≥ 0 

Suppose after zero or a few steps we have a tableau of the following form: 

′ ′ · · · a′ 
′ 
m+1 · · · a′ · · · a′ b′ 

1 0 · · · 0 a′ 

0 1 · · · 0 a′ 

· · · a′ 

· · · a′ 

· · · a′ ′ 

· · · a′ ′ 

. . 
. . . . . 

. . . . 
. . . . . 

0 0 · · · 1 a′ · · · a′ · · · a′ ′ 

c′T c′ ′ · · · c′ 
′ 
m+1 · · · c′ . . . c′ −α 

 
 

∗Most of the material is from [1] 
1 

When this assumption is violated, a degenerate basic variable (with zero value) occurs in a basic feasible solution. 

Often it can be handled as a nondegenerate basic feasible solution. However, it is possible that at pivoting the new 

variable will come in at zero value. This implies that the zero-valued basic variable is the one to go out. The 
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objective will not decrease and the new basic feasible solution will also be degenerate. The result is a cycle that could 

be repeated indefinitely. Methods have been developed to avoid such cycles [1, pp. 78]. 

 

1 Variable  to Enter  the Basis 
 

The idea of the simplex method is to select a column to pivot so that the resulting new basic feasible 
solution will yield a lower value to the objective function than the previous one. Suppose the basic 
solution at the current pivot step is 

(xT , 0T ) = (b′ , b′ , . . . , b′ , 0, . . . , 0). 

B 

The objective function is 

1 2 m 

z   =  c′ x1 + c′ x2 + · · · + c′ xn + α. (1) 
1 2 n 

For the basic solution, it has the value 

z0 = cT xB + α 
= c′ b′ + c′ b′ + · · · + c′ b′ 

 
+ α, 

 
where cB = (c′ , c′ , . . . , c′ 

 
)T . 

1  1 2  2 m m 

1 2 m 

If arbitrary values are assigned to xm+1, . . . , xn, we can solve for the basic variables as 

n 

x1 =   b′ − 

 
x2 =   b′ − 

 
. 

′ 

j=

Σ

m+1 

j=

Σ

m+1 
n 

 

n 

a′ xj, 

 
a′ xj, (2) 

 

 
′ 

xm = bm − 

j=

Σ

m+1 

amjxj. 

Substitute equations (2) into (1) to eliminate x1, x2, . . . , xm: 
 
 

where 

z = z0 + (c′ − wm+1)xm+1 + · · · + (c′ − wn)xn, (3) 

wj = a′ c′ + a′ c′ + · · · + a′ c′ , m + 1 ≤ j ≤ n. (4) 

1j 1 2j 2 mj m 

The above substitutions have equivalently transformed the tableau into the following: 

′ ′ · · · a′ 
′ 
m+1 · · · a′ · · · a′ b′ a a 
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From (3) we can now determine if introducing one of the nonbasic variable would decrease the 

value of the objective function.  More specifically, if c′  − wk < 0 for some k, m + 1 ≤ k ≤ n, then 
making xk > 0 would decrease the cost. Equations (2) will give the new values of x1, . . . , xm to 

accommodate the increase in xk, as long as the new values of these variables do not go below zero. 
 

2 Variable to Leave the Basis 

Suppose that the nonbasic variable xk, m < k ≤ n, is to become basic and result in value changes to 
the other variables to maintain feasibility. We now determine which basic variable should become 
non-basic. From the previous tableau, we clearly see that 

b′ a′ + b′ a′ + · · · + b′ a′ =  b′, (5) 
1  1 2  2 m  m 

a′ a′ + a′ a′ + · · · + a′ a′ =  a′ . (6) 

1k 1 2k 2 mk  m k 

 

We multiply (6) by some ǫ ≥ 0 and subtract from (5), obtaining 

(b′ − ǫa′ )a′ + (b′ − ǫa′ )a′ + · · · + (b′ − ǫa′ )a′ + ǫa′ =  b′. (7) 

1 1k 1 2 2k 2 m mk m k 

Two cases will follow: 

Case 1 : There exists a′ > 0 for some 1 ≤ i ≤ m. Then we set 
′ 

ǫ = min . bi

 
 

 

 

 

. 
aik > 0

Σ

 

1≤i≤m 
′ 
ik 

.
 

and pivot at a′ , where j is the minimizing index. Then we will have a new basic feasible 

solution with xk replacing xj such that the value of xk increases from 0 to b′ /a′ . Note that 

j jk 

only one single index j can achieve ǫ. Otherwise, one basic variable would become zero after 
the pivoting is performed to bring xk into the basis, thereby violating the nondegeneracy 
assumption. 

Case 2: All a′ , . . . , a′ are negative. In this case, the coefficients in (7) increase with ǫ, and 

no new basic feasible solution is obtained. As a result, the solution of Ax = b can have 

arbitrarily large components. For instance, x1 = b′ − ǫa′ , . . ., xm = b′ − ǫa′ , xk = ǫ, 

and xj = 0 for m + 1 ≤ j ≤ n and j ƒ= k, as ǫ becomes arbitrarily large. Consequently, xk 
can have an arbitrarily large value. This results in an arbitrarily small value of the objective 

function z = z0 + (c′ − wk)xk, which is reduced from (3) since xj = 0 for m + 1 ≤ j ≤ n and 
j ƒ= k. 

Theorem 1 (Improvement of Basic Feasible Solution) Given a nondegenerate basic feasible 

solution with corresponding objective value z0, suppose c′ − zk < 0 for some k. Then there is a 
feasible solution with objective value z < z0. 

a 
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1. If the variable xk can be substituted for some variable in the original basis to yield a new basic 
feasible solution, this new solution will have objective value z < z0. 

2. If xk cannot be substituted to yield a basic feasible solution, then the solution set is unbounded 
and the objective function can be made arbitrarily small. 
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In the above theorem, when xk with the coefficient c′ − zk < 0 cannot be substituted into the 

basis, a′ , . . . , a′ must be negative from our reasoning. 

Theorem 2 (Optimality Condition) If for some basic feasible solution c′ − zj ≥ 0 for all j, 
then that solution is optimal. 

 

3 Initializing the Simplex Method 

For LP problems with constraints of the form 

Ax ≤ b, with b ≥ 0, 

x   ≥  0, 

a basic feasible solution to the corresponding standard form of the problem is provided by slack 
variables. This provides a means for initiating a simplex procedure.  But initial basic feasible 
solutions are not always apparent for other types of LP problems. Interestingly, an auxiliary linear 
program will provide the required initial solution to the original linear program. 

We consider the constraints of an LP problem in the standard form: 

Ax   =  b,        with b ≥ 0, (8) 

x   ≥  0, 

In order to find an initial basic feasible solution, consider the minimization problem 

 

min 
m 

yi 
i=1 

subject to Ax + y = b, 

x ≥ 0, 

y ≥ 0, 

where y = (y1, y2, . . . , ym)T is a vector of artificial variables. 

It is clear that 

(9) 

• if (8) has a feasible solution, then (9) can achieve minimum objective value zero with y = 0; 

• if (8) has no feasible solution, then (9) has a minimum objective value greater than zero. 

Now (9) is an LP problem in variables x, y. It has a trivial basic feasible solution y = b. Use 
simplex to solve (8) and obtain a basic feasible solution at each step. If the minimum objective 
value in (9) is zero, then all yi must be 0 in the final basic solution, which in the nondegenerate 
case will have no yi in the basis. If some yi are in the basis, they can be exchanged for nonbasic xj 
variables (which have zero values) to yield a basic feasible solution involving xj variables only. 

To reiterate, a general LP problem can be solved by two phases: 

Phase I : Introduce artificial variables and use simplex to find a basic feasible solution.  
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Phase II : Using the solution found in phase I, run simplex to minimize the original objective 
function. 



8  

 
 

 

3 

 

4 − 

 

4 1 

0 

 

4 1 

0 

4 
 

2 

 

3 

 

2 

 

2 

ExAMPLE 1.  Consider the problem 

min 4x1 + x2 + x3 

subject to 2x1 + x2 + 2x3 = 4 
3x1 + 3x2 + x3 = 3 

x1, x2, x3 ≥ 0 

We introduce artificial variables x4 ≥ 0, x5 ≥ 0, and an objective function x4 + x5. The initial tableau is 

 

 

 

 
the artificial variables 

 
 

 

 

  
 

 

 
 

Next, we pivot at : 

0 1 − 4 5 −2 

0 − 3 
5 
4 

3 1 3 
   

4 2 2 
1 1 1 

   

2 2 

 
 

0 0   0 1 1 0 

The final tableau above leads to a basic solution to the original problem: 
 

x1 = 
1 3 

, x2 = 0, x3 = . 
2 2 

Beginning Phase II, we use the original cost function and delete the artificial variable columns in the final 
tableau of Phase I: 

a1 a2 a3 b 

0 − 3 3 

5 1 
  

4 2 

4 1 1 0 

Again, transform the last row so that zeros appear in the basic columns 

0 − 3 3 

5 1 
 

4 2 
 

0 − 13 0 − 7 

0 

1 

1 

4 

1 

1 

0 − 

a1 a2 a3 a4 a5 b 

2 1 2 1 0 4 
3 3 1 0 1 3 
0 0 0 1 1 0 

We first update the last row so that it has zero components under 

 
2 1 2 1 0 4 

 3 3 1 0 1 3 
 −5 −4 −3 0 0 −7 

Pivoting at 3 yields 
      

0 −1 4 1   − 2 2 
3 3 

1 1 1 0 1 1 3 3 
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5 
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5 

 

5 

5 

Pivoting at yields the final tableau:  
3 0   1 9 

4 1   0 2 

 
 

 

 
 

The optimal solution is 

13 0   0 − 11 

x1 = 0, x2 = 
2 9 

, x3 = . 
5 5 

 

ExAMPLE  2.  In fact, we could also obtain the optimal solution for Example 1 by performing a sequence of 
“pivoting” on the initial tableau directly: 

2 1 2   4 

3 3 1 3 

4 1 1   0 
 

−4 −5 0 −2 
3 3 1 3 
1 −2 0 −3 

 

1 
2 

0 − 3 3 

 

0 − 13 0 − 7 

4 1   0 2 

3 0   1 9 

13 0   0 − 11 

 

To pivot from the second tableu to the third tableu, the simplex method would have multiply the first row 
by −1 first. 

As we have seen, the above pivoting steps were not determined procedually (we were a little lucky in 
following a path to reach the optimal solution shortly). Therefore the two-phase pivoting should be applied 
on general linear programs. 

 

A Duality 
 

The linear program  

min cT x 

subject to Ax ≥ b 

x ≥ 0 

is referred to as primal. It has a dual linear program in the form of 

max   bT λ 

subject to AT λ ≤ c 

λ ≥ 0 

 

 

 
 0 1 



1
0 

 

Here A has dimension m × n, and x, b, c, λ have dimensions n × 1, m × 1, n × 1, and m × 1, 
respectively. 

The roles of primal and dual LPs can be reversed. To see this, we change the dual above to its 
equivalent formation 

min (−b)T λ 

subject to (−A)T λ ≥ −c 

λ ≥ 0 

The dual of the above LP is clearly equivalent to the original primal. 
The dual of any LP can be found by converting the problem to the primal form. For instance, 

given an LP in standard form: 

 

 
 

we write it in the equivalent form 

min cT x 
subject to Ax = b 

x ≥ 0 
 
 

min cT x 

subject to Ax ≥ b 

−Ax ≥ −b 
x ≥ 0 

 

The corresponding dual is then 

max bT u − bT v 

subject to AT u − AT v ≤ c 

u ≥ 0 

v ≥ 0 
 

We introduce λ = u − v to simplify the dual representation to 

max   bT λ 

subject to AT λ ≤ c 

This is the asymmetric form of the duality. The dual vector λ is not restricted to be nonnegative. 
Now we look at the underlying interpretation of a dual LP relative to the original LP. This is 

illustrated on the transportation problem. 
 

ExAMPLE 2.  (Dual of the transportation problem) Recall that the transportation problem asks to select the 
pattern of product shipments between a number of origins and a number of destinations so as to minimize 
transportation cost while meeting the demand of each destination. 

To interpret the dual problem, imagine an entrepreneur who, feeling that he can ship more efficiently, 
comes to the manufacturer with the offer to buy his product at the plant sites (origins) and sell it at the 
warehouses (destinations). The product prices to be used in these transactions vary from point to point. He 
must choose these prices so that his offer will be attractive to the manufacturer. 

So he select prices λ1, . . . , λm for the m origins and µ1, . . . , µn for the n destinations. To compete with 
the usual transportation, his prices must satisfy the constraints µj − λi ≤ cij, for all i, j, which represents 
the net amount the manufacturer must pay to sell a unit of product at origin i and buy it back at destination 
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Σ 

j. Then he needs to solve the LP problem 

n m 

max Σ 
µjbj − 

Σ 
λiai 

subject to µj − λi ≤ cij i = 1, . . . , m 
j = 1, . . . , n 

whereas the original transportation problem is 

min cijxij 
i,j 
n 

subject to xij = ai i = 1, . . . , m 
j=1 
m 

xij = bj j = 1, . . . , n 
i=1 

xij ≥ 0 i = 1, . . . , m 

j = 1, . . . , n 

 

 
There exists deeper connection between a problem and its dual than just their forms and 

underlying interpretations. Let us consider the primal problem in standard form 

min cT x 

 
 

and it dual 

subject to Ax = b 

x ≥ 0 

 
max bT λ 

(10) 

subject to AT λ ≤ c 
(11)

 

Lemma 3 If x and λ are feasible for the primal problem (10) and dual problem (11), respectively, 

then cT x ≥ bT λ. 

The above lemma directly follows from that 

bT λ  =  λT Ax  ≤  cT x. 

Corollary 4  If x∗ and λ∗ are feasible solutions of the primal and dual problems, respectively, and 
if cT x∗ = bT λ∗, then x∗ and λ∗ are optimal. 

Theorem 5 (Duality Theorem) If either the primal problem (10) or the dual problem (11) has  a 
finite optimal solution, so does the other and the corresponding values of the objective functions 
are equal. If either problem has an unbounded objective, the other problem has no feasible solution. 

The following theorem relates the duality theorem to the simplex procedure: 

Theorem 6 Let the primal problem (10) have an optimal basic feasible solution x = (xB, 0)T , 
without loss of generality, and let the corresponding columns in A form a submatrix B, and the 
corresponding cost coefficients form a column vector cB. Then the vector λ = (B−1)T cB is an 
optimal solution to the dual problem (11). The optimal values of both problems are equal. 

j=1 i=1 
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