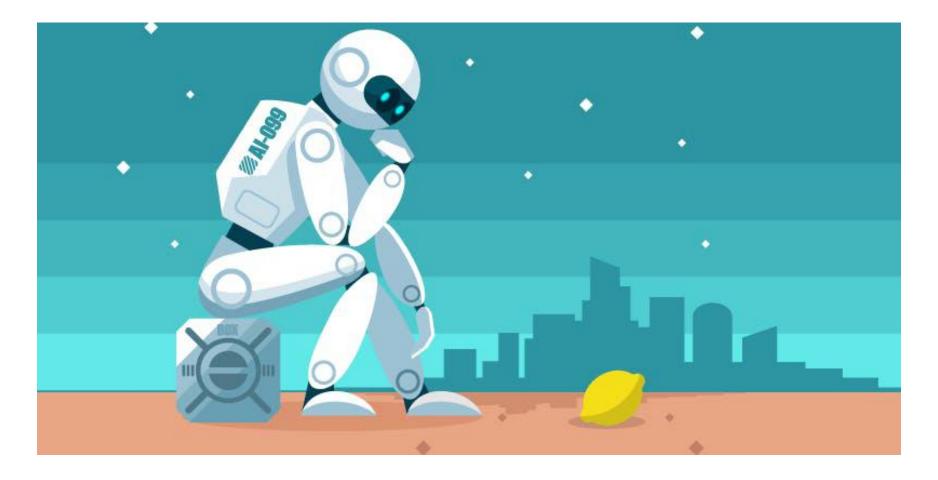
INTRODUCTION TO MACHINE LEARNING

Fields of Data Science

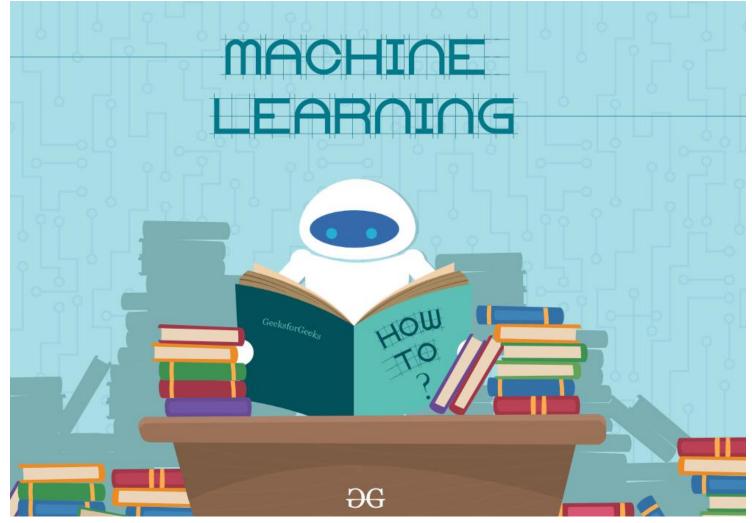
- Data Mining
- Machine Learning
- Artificial Intelligence

	Description	Computer Programming Skill	
Statistics	 Quantify data Statistics is just about the numbers, and quantifying the data. 	• Pure mathematics	
Data Mining	 Find patterns, explain phenomenon Using Statistics as well as other programming methods to find patterns hidden in the data so that you can explain some phenomenon. 	 More towards math than programming 	
Machine Learning	 Build models to predict future Using Data Mining techniques and other learning algorithms to build models of what is happening behind some data so that it can predict future outcomes. 	 More towards programming 	
<u>Artificial</u> Intelligence	 Reason about the world to have intelligent behavior Using models built by Machine Learning and other ways to reason about the world and give rise to intelligent behavior 	 Very programming based 	

Artificial Intelligence (When Machine Starts Thinking)



Machine Learning (When Machine Starts Learning)



What is learning?

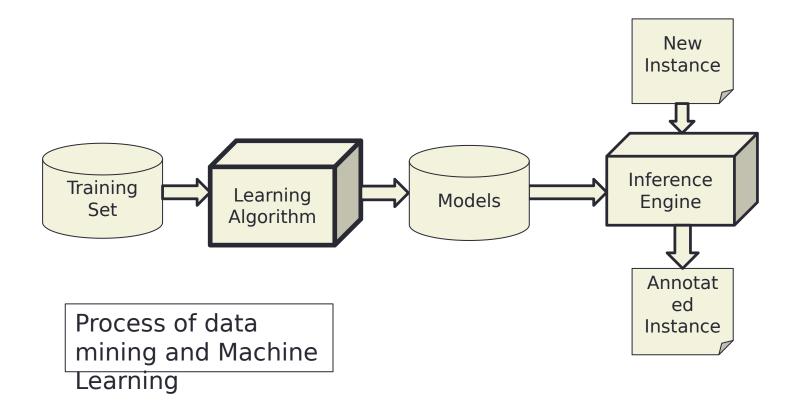
Using past experiences to improve future performance.

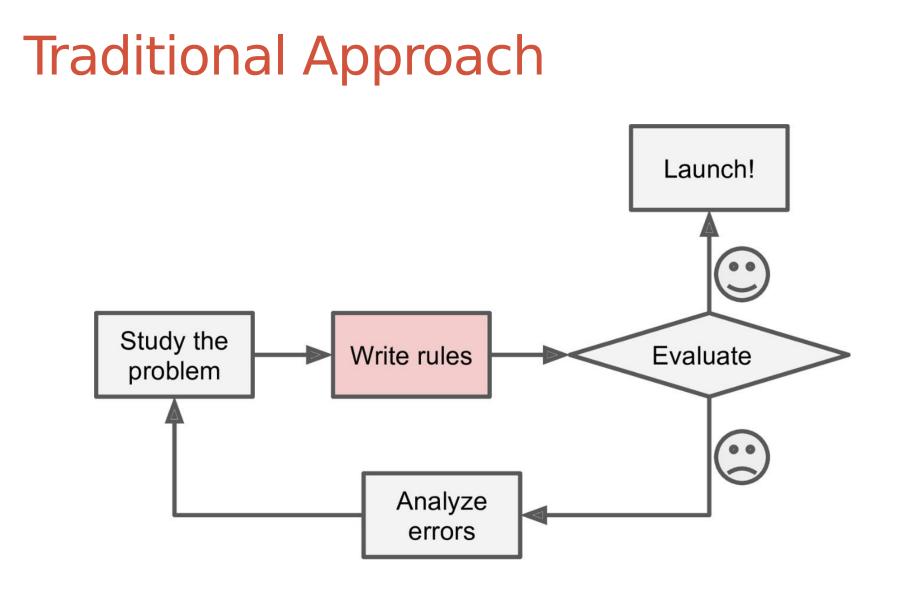
For a machine, experiences come in the form of data.

Machine Learning

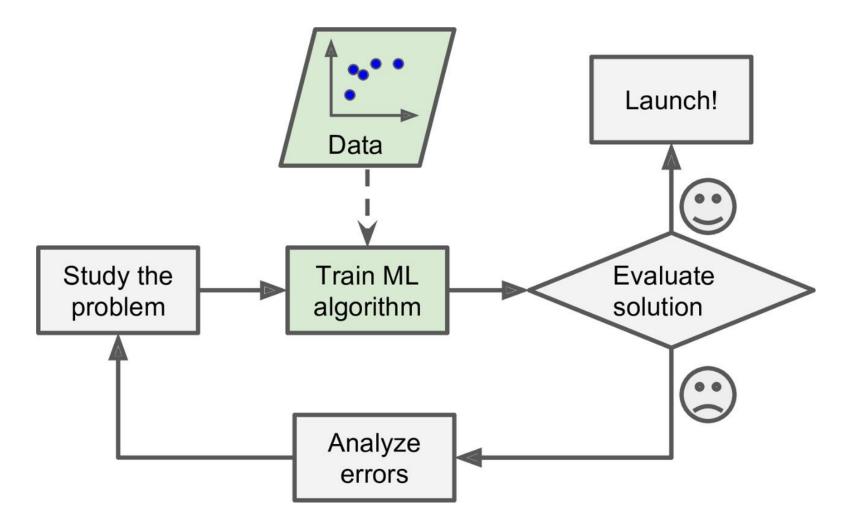
- Machine Learning is the sub-field of data science that focus on designing algorithms that can learn from and make prediction on data.
- field of study that gives computers the ability to learn without being explicitly programmed.

Introduction of Machine Learning





Machine Learning Approach



Why Machine Learning?

- •We need computers to make informed decisions on new, unseen data.
- •Often it is too difficult to design a set of rules "by hand".
- Machine learning is about automatically extracting relevant information from data and applying it to analyze new data.

Videos

- <u>Video 1</u>
- <u>Video 2</u>

APPLICATIONS AND GAMES

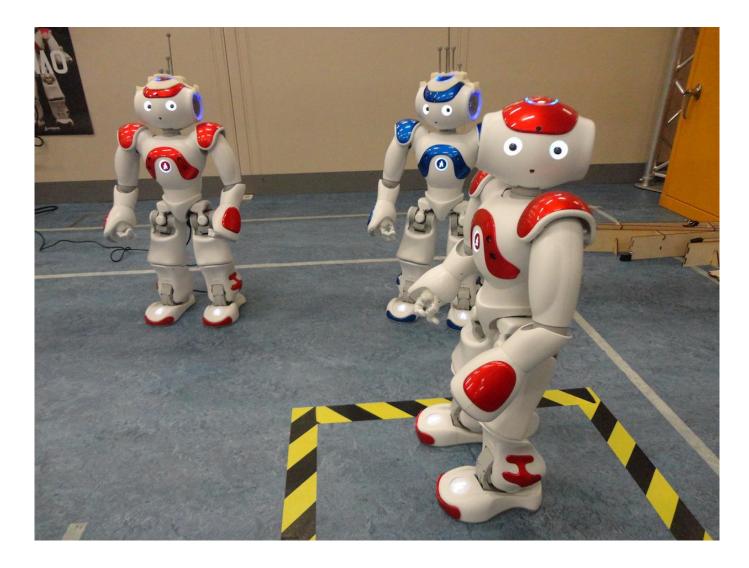
Smart Speakers

Amazon Echo

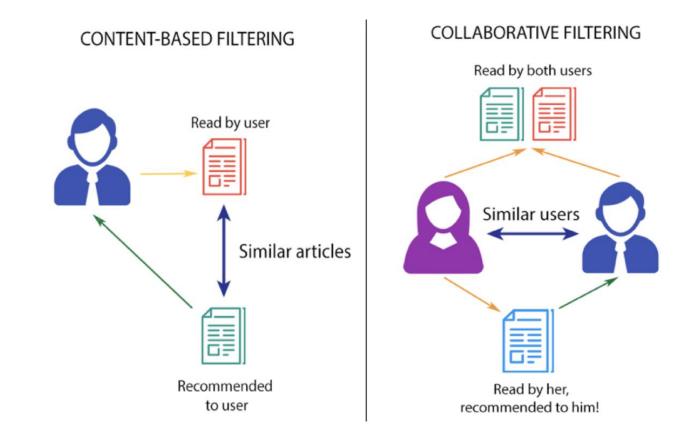
Text Recognition (Image Recognition)

/ \ \ \ / 1 / 1 / 7 1) / / / | 22222222222222 6666666666666666 777177777777777 999999999999999999999

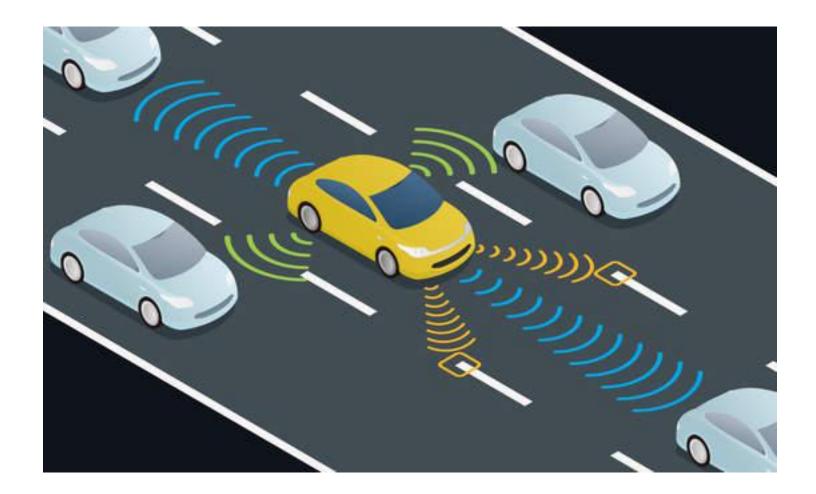
Intelligent Robot



Recommendation System

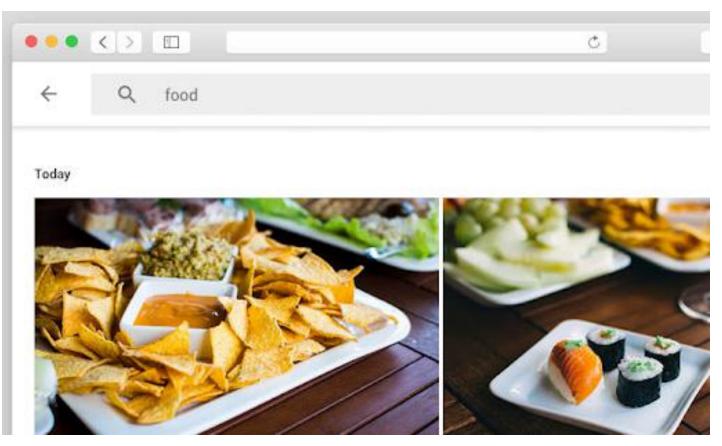


Self-Driving Car



Smart Glass

Google Photos (Face, Image, Place Recognition)



Applications of ML

Computer vision and robotics:

- detection, recognition and categorization of objects
- face recognition
- tracking objects (rigid and articulated) in video
- modeling visual attention
- Speech recognition
- **Biology and medicine**:
- drug discovery
- computational genomics (analysis and design)
- medical imaging and diagnosis
- Financial industry:
- Fraud detection
- Credit approval
- Price and market prediction
- Information retrieval, Web search, Google ads... Ms. Krishna Modi, DCS

What is Learning problem?

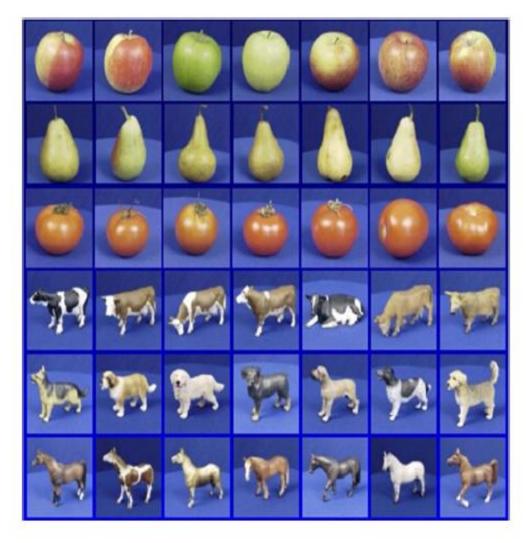
 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

What is Learning problem?

Learning = Improving with experience at some task

- Improve over task T
- with respect to performance measure
- based on experience E

Example : Object Categorization



A handwriting recognition learning problem:

Task T: recognizing and classifying handwritten words within images.

Performance measure *P***:** percent of words correctly classified.

Training experience E: a database of handwritten words with given classifications.

A robot driving learning problem:

- Task T: driving on public four-lane highways using vision sensors
- Performance measure P: average distance traveled before an error (as judged by human overseer)
- **Training experience E**: a sequence of images and steering commands recorded while observing a human driver

Design a learning System

- Data Acquisition
- Data Exploration
- Modeling
- Testing / Evaluation

DATA ACQUISITION

Data Acquisition

- **1. Collection of relevant data.**
 - From data warehouses
 - From sensors
- **2. Data Transformation**
- 3. Data Cleaning
- Get rid of errors, noise, Removal of redundancies.

4. Missing value treatment.

Device, module or subsystem whose purpose is to detect events or changes in its environment and send the information.

- Light sensor
- Sound sensor
- Temperature Sensor
- Contact Sensor
- Proximity Sensor (Range sensor)
- Pressure sensor
- Biometric sensor

Missing Value Treatment

- Missing data in the training data set can reduce the power / fit of a model or can lead to a biased model.
- It can lead to wrong prediction or classification.

Methods to treat missing value

- Ignoring the tuple (Deletion)
- Fill in missing value manually
- Use global constant to fill in the missing value
- Averaging Technique

Ignoring the tuple (Deletion)

User	Device	OS	Transactions
A	Mobile	NA	5
В	Mobile	Android	3
С	NA	ios	2
D	Tablet	Android	1
E	Mobile	ios	4

Averaging Technique

OS	Revenue	OS	Global Mean	Group Mean
Android	1,804	Android	1,804	1,804
ios	3,027	ios	3.027	3,027
iOS	8,788	ios	8,788	8,788
Android	NA	Android	4,145	2,696
Android	3,735	Android	3,735	3,735
Android	1,056	Android	1,056	1,056
ios	9,319	ios	9,319	9,319
Android	6,199	Android	6,199	6,199
Android	2,235	Android	2,235	2,235
ios	NA	iOS	4,145	7,045
Android	1.146	Android	1,146	1,146

Data Exploration

WHY DATA EXPLORATION?

Data Quality – accuracy, consistency and completeness

Data Exploration

Steps involved in data Exploration

- Variable Identification
- Outlier Analysis
- Variable creation

Variable Identification

- First, identify **Predictor** (Input) and **Target** (output) variables.
- Next, identify the data type and category of the variables.

Example

Suppose, we want to predict, whether the students will play cricket or not (refer below data set). Here you need to identify predictor variables, target variable, data type of variables and category of variables.

Student_ID Gender		Prev_Exam_Marks	Height (cm)	Weight Caregory (kgs)	Play Cricket	
S001	М	65	178	61	1	
S002	F	75	174	56	0	
S003	М	45	163	62	1	
S004 M		57	175	70	0	
S005	F	59	162	67	0	

Type of Variable	Data Type	Variable Category
Predictor Variable	Character	Categorical
- Gender	- Student ID	- Gender
Prev_Exam_Marks	- Gender	- Play Cricket
Height	Numeric	Continuous
- Weight	- Play Cricket	- Prev_Exam_Marks
Target Variable	- Prev_Exam_Marks	- Height
Play Cricket	- Height	- Weight

OUTLIER ANALYSIS

Outlier is defined as an object that deviates from other objects.

Outlier Analysis



Medical Diagnosis

Outlier in ECG data (representing second degree heart block)

Various types of outlier

- Data Entry Error
- Measurement Error
- Natural Outlier

Impact of outlier on dataset

Without outlier 4 4 5 5 5 5 6 6 6 7 7

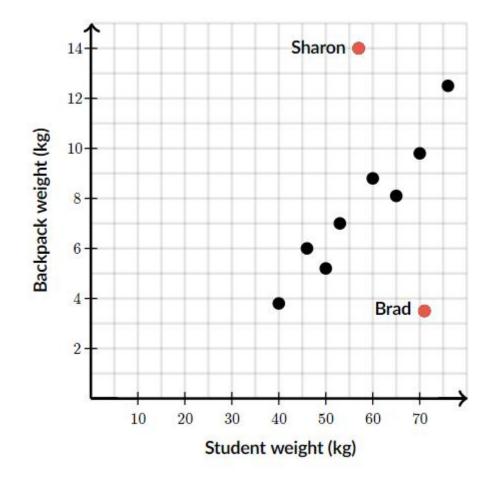
With Outlier 4 4 5 5 5 5 6 6 6 7 7 300

Find mean, Median and mode.

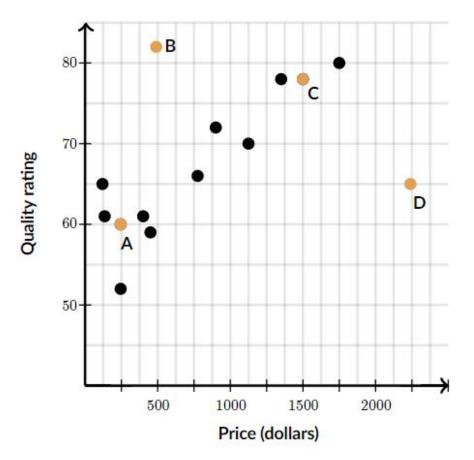
Impact of Outliers on a dataset

Without Outlier	With Outlier
4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7	4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7,300
Mean = 5.45	Mean = 30.00
Median = 5.00	Median = 5.50
Mode = 5.00	Mode = 5.00

Scatter Plot



Example 1 : Computer Shopping



Variable Creation Creating Derived Variable

Emp_Code	Gender	Date	New_Day	New_Month	New_Year
A001	Male	21-Sep-11	21	9	2011
A002	Female	27-Feb-13	27	2	2013
A003	Female	14-Nov-12	14	11	2012
A004	Male	07-Apr-13	7	4	2013
A005	Female	21-Jan-11	21	1	2011
A006	Male	26-Apr-13	26	4	2013
A007	Male	15-Mar-12	15	3	2012

Variable Creation

Categorical variable into numeric value

Emp_Code	Gender	Var_Male	Var_Female
A001	Male	1	0
A002	Female	0	1
A003	Female	0	1
A004	Male	1	0
A005	Female	0	1
A006	Male	1	0
A007	Male	1	0

Scatter Point

Money Invested	Profit
60	3.1
61	3.6
62	3.8
63	4
65	4.1

Data Modelling

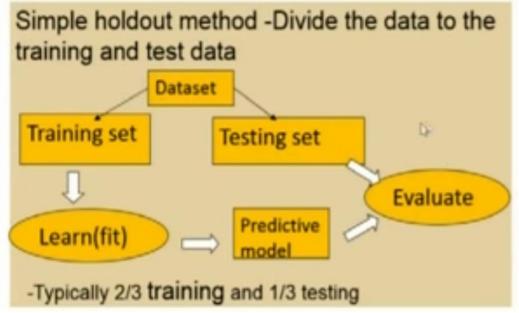
- Data modeling (data modelling) is the analysis of data objects and their relationships to other data objects.
- Data modeling is the process of producing a descriptive diagram of relationships between various types of information

Data Modeling

- Linear Regression
- Decision Tree
- Neural Network
- Bayesian Learning

Testing or Evaluation

- Apply learned model to new data.
- Predict output for new inputs using learned function.
- Evaluate on test data.



DATA NORMALIZATION

Transform the data into smaller or common range such as [-1,1] or [0,1]

Data Normalization methods

- 1. Min-Max normalization
- 2. Z-score normalization
- 3. Decimal scaling

Min – Max Normalization

Performs linier transformation on the original data.

$$v' = \frac{v - \min_{A}}{\max_{A} - \min_{A}} (new \max_{A} - new \min_{A}) + new \min_{A}$$

Min – Max Normalization new range - [0,1]

Marks	Marks after min- max normalization
8	0
10	0.16
15	0.58
20	1

Z-Score Normalization

$$z_i = \frac{x_i - \bar{x}}{s}$$

 \bar{x} : average S: standard deviation

Formula of standard deviation

$$ext{SD} = \sqrt{rac{\sum |x-ar{x}|^2}{n}}$$

Decimal scaling

Salary bonus	Normalized after decimal scaling
40000	0.31
35000	0.35
31000	0.31

Which algorithms perform best for which types of problems and representations?

How much training data is sufficient?

How does number of training examples influence accuracy?

What is the best strategy for choosing a useful next training experience ?

How does noisy data influence accuracy?

How to develop a theoretical understanding of algorithms?

Scale for distributed big data.

Extract information with unlabeled data. Still is it useful?

CONCEPT LEARNING

Acquiring the definition of a general category from given sample positive and negative training examples of the category.

Concept learning - Example

- learning of bird-concept from the given examples of birds (positive examples) and non-birds (negative examples).
- Enjoy sports or not from given situations

A Concept Learning Task – Enjoy Sport Training Examples

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	YES
2	Sunny	Warm	High	Strong	Warm	Same	YES
3	Rainy	Cold	High	Strong	Warm	Change	NO
4	Sunny	Warm	High	Strong	Warm	Change	YES
4	Sunny	Warm	High	Strong	Warm	Change	Y
			ATTRIE	UTES		(CONCEPT

A Concept Learning Task – Enjoy Sport

- A set of example days, and each is described by six attributes.
- The task is to learn to predict the value of EnjoySport for arbitrary day, based on the values of its attribute values.
- Each hypothesis consists of a conjunction of constraints on the instance attributes.
- Each hypothesis will be a vector of six constraints, specifying the values of the six attributes – (Sky, AirTemp, Humidity, Wind, Water, and Forecast).

A Concept Learning Task – Enjoy Sport Hypothesis Representation

Each attribute will be:

- •? indicating any value is acceptable for the attribute (don't care)
- single value specifying a single required value (ex. Warm) (specific)
- Ø indicating no value is acceptable for the attribute (no value)

A Concept Learning Task – Enjoy Sport Hypothesis Representation

- •Most general hypothesis: ?, ?, ?, ?, ?, ?fl
- Most specific hypothesis:
- Ø, Ø, Ø, Ø, Ø, Ø, Øfl

Sport example

Concept to be learned:

Days in which Aldo can enjoy water sport Attributes:

Sky: Sunny, Cloudy, Rainy Weak

AirTemp: Warm, Cold *Humidity*: Normal, High Change Wind: Strong,

Water: Warm, Cool Forecast: Same,

Sky	Temp	Humid	Wind	Water	Forecst	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
\mathbf{Sunny}	Warm	High	Strong	Cool	Change	Yes

Hypotheses representation

• *h* is a set of constraints on attributes:

- a specific value: e.g. *Water* = *Warm*
- any value allowed: e.g. *Water* = ?
- no value allowed: e.g. Water = Ø

• Example hypothesis:

Sky AirTemp Humidity Wind Water Forecast

Sunny, ?, ?, Strong, ?, Samefl

Corresponding to boolean function:

Sunny(Sky) A Strong(Wind) A Same(Forecast)

Hypothesis satisfaction

- An instance x satisfies an hypothesis h iff all the constraints expressed by h are satisfied by the attribute values in x.
- Example 1:
 - x₁: Sunny, Warm, Normal, Strong, Warm, Samefl
 - *h*₁: *Sunny*, ?, ?, *Strong*, ?, *Same*fl Satisfies? Yes
- Example 2:
 - x₂: Sunny, Warm, Normal, Strong, Warm, Samefl
 - *h*₂: *Sunny*, ?, ?, Ø, ?, *Same*fl Satisfies? No

FIND-S

FINDING A MAXIMALLY SPECIFIC HYPOTHESIS

Find-S

- Begin with the most specific possible hypothesis in H, then generalize this hypothesis each time it fails to cover an observed positive training example.
- Most specific Hypothesis.
- Consider only positive examples.

Find-S Algorithm

1. Initialize h to the most specific hypothesis $H = \{\emptyset, \emptyset, \emptyset, ..., \emptyset\}$ 2. For each positive training instance \mathbf{x} For each attribute constraint a, in h If the attribute value=hypothesis value Then do nothing Else replace hypothesis value with the general constraint '?' more 3. Output hypothesis h

Normal High	Strong Strong	Warm Warm	Same	YES YES
High	Strong	Warm	Same	VES
			Sume	ILS
High	Strong	Warm	Change	NO
High	Strong	Warm	Change	YES
	High	High Strong	High Strong Warm	High Strong Warm Change

Ex.	Sky	Тетр	Humid	Wind	Water	Foreca st	Enjoy Sport?	Hypot hesis
								(Ø,Ø,
0								Ø,Ø,Ø, Ø

Ex.	Sky	Temp	Humi d	Wind	Wate r	Fore cast	Enjoy Sport?	Hypothesis
0								{Ø,Ø,Ø,Ø,Ø,Ø)
1	Sunn y	Warm	Norma I	Stron g	Warm	Sam e		<pre>{ Sunny,Warm,Normal,St rong,Warm,Same}</pre>

Ex	Sky	Temp	Humi d	Wind	Wate r	Fore cast	Enjoy Sport	Hypothesis
0								{ Ø, Ø, Ø,Ø,Ø,Ø }
1	Sunn y	Warm	Norma I	Stron g	Warm	Sam e		<pre>{ Sunny,Warm,Norma I,Strong,Warm,Same}</pre>
2	Sunn y	Warm	High	String	Warm	Sam e	Yes	<pre>{ Sunny,Warm,?,Stro ng,Warm,Same}</pre>

Ex.	Sky	Тетр	Humi d	Wind	Wate r		Enjo y Spor t?	Hypothesis
0								{Ø,Ø,Ø,Ø,Ø,Ø,
1	Sunn y	Warm	Norma I	Stron g	Warm	Sam e	Yes	<pre>{ Sunny,Warm,Normal, Strong,Warm,Same}</pre>
2	Sunn y	Warm	High	String	Warm	Sam e	Yes	< Sunny,Warm,?,Stron g,Warm,Same>
3	Rainy	Cold	High	Stron g	Warm	Chan ge	No	< Sunny,Warm,?,Stron g,Warm,Same>
4	Sunn y	Warm	High	Stron g	Cool	Chan ge	Yes	< Sunny,Warm,?,Stron g,?,?)

Example : 2 Concept – Finding Malignant tumor from MRI Scan

Concept – Malignant Tumor

Shape	Size	Color	Surface	Thicknes s	Tumor_p rediction
Circular	Large	Light	Smooth	Thick	malignant
Circular	Large	Light	Irregular	Thick	malignant
Oval	Large	Dark	Smooth	Thin	Not malignant
Oval	Large	Light	Irregular	Thick	malignant
Circular	Small	Light	Smooth	thick	Not malignant

Example 3 : Concept - Japanese Economy Car

Origin	Manufactur er	Color	Decade	Туре	Example Type
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chrysler	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive
Japan	Toyota	Green	1980	Economy	Positive

CANDIDATE ELIMINATION ALGORITHM

The Candidate elimination algorithm finds all describable hypotheses that are consistent with the observed training examples.

Candidate Elimination

- Finds version space
- Consider both positive and negative results.
- This algorithm represents the set of *all* hypotheses consistent with the observed training examples.

Version Space

- Set of all hypothesis is called as "Version Space".
- The **version space**, with respect to hypothesis space **H** and training examples D, is the subset of hypotheses from **H** consistent with the training examples in D.

$VS = \{ h \in H / Conistent(h, D) \}$

Candidate Elimination Algorithm

- 1. Generalize G and S as most general and most specific hypothesis.
- 2. For each example e,

if e is +ve,

make specific Hypothesis more general. [Find-S]

else

make general hypothesis more specific.

3. End

Candidate elimination algorithm

Input: training set

Output:

- G = maximally general hypotheses in H
- S = maximally specific hypotheses in H

Algorithm:

For each training example d, do

If d is a positive example

- Remove from G any hypothesis inconsistent with d
- For each hypothesis s in S that is not consistent with d

* Remove s from S

* Add to S all minimal generalizations h of s such that

- (a) h is consistent with d, and
- (b) some member of G is more general than h

* Remove from S any hypothesis that is more general than another hypothesis in S

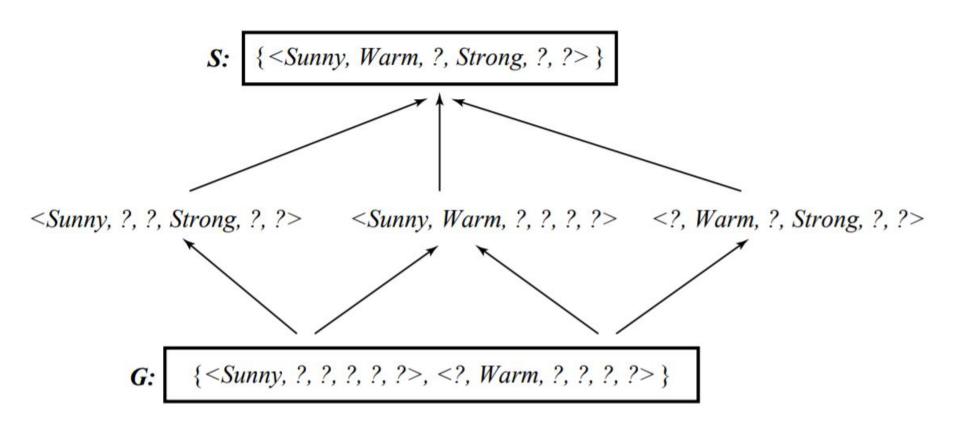
Candidate elimination algorithm

If d is a negative example

- Remove from S any hypothesis inconsistent with d
- For each hypothesis g in G that is not consistent with d
- * Remove g from G
- * Add to G all minimal specializations h of g such that
- (a) h is consistent with d, and
- (b) some member of S is more specific than h
- * Remove from G any hypothesis that is less general than another hypothesis in G

Example

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	YES
2	Sunny	Warm	High	Strong	Warm	Same	YES
3	Rainy	Cold	High	Strong	Warm	Change	NO
4	Sunny	Warm	High	Strong	Warm	Change	YES



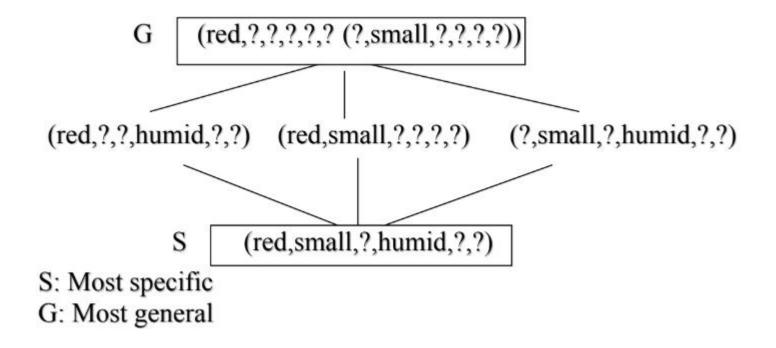
Example

((red,small,round,humid,low,smooth), poisonous) ((red,small,elongated,humid,low,smooth), poisonous)

((gray,large,elongated,humid,low,rough), notpoisonous)

((red,small,elongated,humid,high,rough), poisonous)

Version Space – previous example



The inductive learning assumption

- We can at best guarantee that the output hypothesis fits the target concept over the training data
- [Assumption: an hypothesis that approximates well the training data will also approximate the target function over unobserved examples
- [i.e. given a significant training set, the output hypothesis is able to make predictions

Thank you..!!

References

1. Tom M Mitchell, "Machine Learning", McGraw Hill