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Fields of Data Science

-Data Mining
-Machine Learning
- Artificial Intelligence
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Computer
Description Programming
Skill
Statistics o Quantify data o Pure
m Statistics is just about the numbers, and mathematics

quantifying the data.
Data o Find patterns, explain phenomenon o More
Mining = Using Statistics as well as other programming towards math

methods to find patterns hidden in the data so than

that you can explain some phenomenon. programming
Machine o Build models to predict future o More
Learning = Using Data Mining techniques and other towards

learning algorithms to build models of what is programming

happening behind some data so that it can

predict future outcomes.
Artificial o Reason about the world to have intelligent behavior o Very
Intelligence = Using models built by Machine Learning and programming

other ways to reason about the world and give based

rise to intelligent behavior
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Artificial Intelligence
(When Machine Starts Thinking)
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Machine Learning
(When Machine Starts Learning)

o
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What is learning?

Using past experiences to improve
future performance.

For a machine, experiences come in
the form of data.
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Machine Learning

-Machine Learning is the sub-field of data
science that focus on designing algorithms
that can learn from and make prediction on
data.

-field of study that gives computers the
ability to learn without being explicitly
programmed.
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Introduction of Machine Learning
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Traditional Approach

Study the
problem

Write rules

Analyze
errors
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Machine Learning Approach

Evaluate
solution

Study the _| Train ML
problem algorithm

Analyze
errors
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L
Why Machine Learning?

-We need computers to make informed
decisions on new, unseen data.

-Often it is too difficult to design a set of
rules “by hand”.

-Machine learning is about automatically
extracting relevant information from data
and applying it to analyze new data.
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Videos

Video 1

-Video 2
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APPLICATIONS AND

GAMES
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Smart Speakers

Amazon Echo Google Home Mini

echo
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Text Recognition

(Image Recognition)
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Intelligent Robot
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CONTENT-BASED FILTERING

O Read by user
Recommended
to user

Similar articles
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Recommendation System

COLLABORATIVE FILTERING

Read by both users
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Read by her,
recommended to him!
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Self-Driving Car
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Smart Glass
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Google Photos (Face, Image,
Place Recognition)
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L
Applications of ML

Computer vision and robotics:

- detection, recognition and categorization of objects
- face recognition

- tracking objects (rigid and articulated) in video
- modeling visual attention

e Speech recognition

 Biology and medicine:

- drug discovery

- computational genomics (analysis and design)
- medical imaging and diagnosis

 Financial industry:

- Fraud detection

- Credit approval

- Price and market prediction

 Information retrieval, Web search, Google ads...
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L
What is Learning problem?

-A computer program is said to learn from
experience E with respect to some class of
tasks T and performance measure P, if its
performance at tasks in T, as measured by
P, improves with experience E.
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L
What is Learning problem?

Learning = Improving with experience
at some task

- Improve over task T

- with respect to performance measure
P

- based on experience E
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A handwriting recognition
learning problem:

Task T: recognizing and classifying handwritten
words within images.

Performance measure P: percent of words
correctly classified.

Training experience E: a database of handwritten
words with given classifications.
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A robot driving learning

problem:

- Task T: driving on public four-lane highways using
vision sensors

- Performance measure P: average distance
traveled before an error (as judged by human
overseer)

- Training experience E: a sequence of images
and steering commands recorded while observing
a human driver
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Design a learning System

-Data Acquisition
-Data Exploration
-Modeling

-Testing / Evaluation
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DATA ACQUISITION
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Data Acquisition

1. Collection of relevant data.
- From data warehouses
- From sensors

2. Data Transformation

3. Data Cleaning

- Get rid of errors, noise, Removal of
redundancies.

4. Missing value treatment.
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L
Sensors

Device, module or subsystem whose purpose is to
detect events or changes in its environment and
send the information.

- Light sensor

- Sound sensor

- Temperature Sensor

- Contact Sensor

- Proximity Sensor (Range sensor)
- Pressure sensor

- Biometric sensor
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Missing Value Treatment

- Missing data in the training data set can reduce
the power / fit of a model or can lead to a biased
model.

- It can lead to wrong prediction or classification.
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Methods to treat missing value

-lgnoring the tuple (Deletion)
Fill iIn missing value manually

-Use global constant to fill in the missing
value

-Averaging Technique
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lgnoring the tuple (Deletion)
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Averaging Technigue
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Data Exploration
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WHY DATA
EXPLORATION?

Data Quality - accuracy, consistency
and completeness
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Data Exploration

Steps involved in data Exploration
-Variable Identification
-Qutlier Analysis
-Variable creation
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D
Variable Identification

- First, identify Predictor (Input)
and Target (output) variables.

- Next, identify the data type and category of the
variables.
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Exam

ple

Suppose, we want to predict, whether the students
will play cricket or not (refer below data set). Here
you need to identify predictor variables, target
variable, data type of variables and category of

variables.
S001 M 65 178 61 1
S002 F 15 174 56 0
SO003 M 45 163 62 1
S004 M 57 175 70 0
S005 F 59 162 67 0
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OUTLIER ANALYSIS

Outlier is defined as an object that
deviates from other objects.
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Outlier Analysis
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Medical Diagnosis

Outlier in ECG data (representing second degree
heart block)
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Various types of outlier

- Data Entry Error
- Measurement Error
- Natural Outlier
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Impact of outlier on dataset

Without outlier
445555066677

With Outlier
44555566677 300

Find mean, Median and mode.
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Impact of Outliers on a

dataset
Without Outlier With Outlier
4,455, 55.9,6,0,7,7 4.4, 5,5,5,5,6,6,6,7,7.300
Mean = 5.45 Mean = 30.00
Median = 5.00 Median = 5.50
Mode = 5.00 Mode = 5.00
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Scatter Plot
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Example 1 : Computer Shopping
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Variable Creation

Creating Derived Variable

Emp Code| Gender Date |New Day|MNew Month| New Year
A001 Male |21-Sep-11 21 9 2011
A002 Female |27-Feb-13 27 2 2013
AD003 Female |14-Nov-12 14 11 2012
AO04 Male |07-Apr-13 Fi 4 2013
ADOS Female | 21-Jan-11 21 1 2011
AODGO NMale 26-Apr-13 20 4 2013
AO0O/ Male |15-Mar-12 15 24 2012
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Variable Creation

Categorical variable into
numeric value

Emp_Code| Gender (Var_Male|Var_Female
A001 Male 1 0
AD02 Female 0 1
ADO3 Female 0 1
AQ004 Male L 0
AQ05 Female 0 1
A006 Male 1 0
A007 Male - § 0
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Scatter Point

Money Invested | ____ Profit

60 3.1
61 3.6
62 3.8
63 4
65 4.1
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Data Modelling

- Data modeling (data modelling) is the analysis
of data objects and their relationships to
other data objects.

- Data modeling is the process of producing a
descriptive diagram of relationships between
various types of information
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Data Modeling

- Linear Regression
- Decision Tree

- Neural Network

- Bayesian Learning
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L
Testing or Evaluation

- Apply learned model to new data.

- Predict output for new inputs using learned
function.

- Evaluate on test data.

Simple holdout method -Divide the data to the
training and test data

{!
Cheamit) D ., [Fedetie]

Typically 2/3 training and 1/3 testing
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DATA NORMALIZATION

Transform the data into smaller or
common range such as [-1,1] or [0, 1]
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Data Normalization methods

1. Min-Max normalization
2. Z-score normalization
3. Decimal scaling
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Min - Max Normalization

Performs linier transformation on the original data.

v-min
V' = (new _max
max ,—min , A

—new _min )+m :mmA
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Min - Max Normalization
new range - [0,1]

Marks after min-
max normalization

8 0
10 0.16
15 0.58
20 1
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Z-Score Normalization

Xi— X

2y — X : average
\) S: standard deviation

Formula of standard
deviation

> e —zf*
D=\ —,
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Decimal scaling

Salary bonus Normalized after decimal
scaling

40000 0.31
35000 0.35
31000 0.31
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Issues In Machine Learning

Which algorithms perform best for
which types of problems and
representations?
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Issues In Machine Learning

How much training data is sufficient?
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Issues In Machine Learning

How does number of training
examples influence accuracy?
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Issues In Machine Learning

What is the best strategy for
choosing a useful next training
experience ?

Ms. Krishna Modi, DCS



L
Issues In Machine Learning

How does noisy data influence
accuracy?
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Issues In Machine Learning

How to develop a theoretical
understanding of algorithms?
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Issues In Machine Learning

Scale for distributed big data.
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Issues In Machine Learning

Extract information with unlabeled
data. Still is it useful?
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CONCEPT LEARNING

Acquiring the definition of a general
category from given sample positive

and negative training examples of the
category.
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Concept learning - Example

-learning of bird-concept from the given
examples of birds (positive examples) and
non-birds (negative examples).

-Enjoy sports or not from given situations
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A Concept Learning Task - Enjoy
Sport

Training Examples

Example | Sky AirTemp | Humidity | Wind Water Forecast | EnjoySport
1 Sunny Warm Normal Strong Warm Same YES
2 Sunny Warm High Strong Warm Same YES
3 Rainy Cold High Strong Warm Change NO
B Sunny Warm High Strong Warm Change YES
- N . T
R
ATTRIBUTES CONCEPT
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A Concept Learning Task - Enjoy

Sport

- A set of example days, and each is described by
six attributes.

- The task is to learn to predict the value of

EnjoySport for arbitrary day, based on the values
of its attribute values.

- Each hypothesis consists of a conjunction of
constraints on the instance attributes.

- Each hypothesis will be a vector of six constraints,
specifying the values of the six attributes - (Sky,
Airfemp, Humidity, Wind, Water, and Forecast).
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A Concept Learning Task - Enjoy
Sport
Hypothesis Representation

Each attribute will be:

-? - Indicating any value is acceptable for the
attribute (don’t care)

- single value - specifying a single required value
(ex. Warm) (specific)

- @ - indicating no value is acceptable for the
attribute (no value)
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A Concept Learning Task - Enjoy
Sport

Hypothesis Representation

-Most general hypothesis: ?7,7,7, 7,7, 74
-Most specific hypothesis: @, @, @, @, @, ofl
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Sport example

| Concept to be learned:

Days in which Aldo can enjoy water sport

Attributes:

Sky: Sunny, Cloudy, Rainy Wind: Strong,
Weak

AirTemp: Warm, Cold Water: Warm, Cool
Humidity: Normal, High Forecast: Same,
Change

| Sky Temp Humid Wind Water Forecst ﬁnijSpt\

Sunny Warm Normal Strong Warm Same Yes

Sunny Warm High Strong Warm Same Yes
Ramy Cold High Strong Warm Change No

Sunny Warm High Strong Cool Change Yes

J
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L
Hypotheses representation

*h is a set of constraints on attributes:

- a specific value: e.g. Water = Warm
- any value allowed: e.qg. Water = ?
- no value allowed: e.g. Water = @

- Example hypothesis:

Sky  AirTemp Humidity Wind Water
Forecast

Sunny, ?, ?, Strong, ?,
Samefl

Corresponding to boolean function:
Sunny(Sky) A Strong(Wind) A Same(Forecast)

Ms. Krishna Modi, DCS



L
Hypothesis satisfaction

- An instance x satisfies an hypothesis h iff all the
constraints expressed by h are satisfied by the
attribute values in x.

- Example 1:

X1:  Sunny, Warm, Normal, Strong, Warm, Samefl

hy: Sunny, ?, ?, Strong, 7, Samefl
Satisfies? Yes

- Example 2:

X>: Sunny, Warm, Normal, Strong, Warm, Samefl
h>: Sunny, ?,7?7, 4, ?, Samefl Satisfies?
No

Ms. Krishna Modi, DCS



FIND-S

FINDING A MAXIMALLY SPECIFIC
HYPOTHESIS
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FInd-S

- Begin with the most specific possible hypothesis in
H, then generalize this hypothesis each time it fails
to cover an observed positive training example.

- Most specific Hypothesis.
- Consider only positive examples.

Ms. Krishna Modi, DCS



L
Find-S Algorithm

1. Initialize h to the most specific hypothesis
H={d, 4, 9, ..., O}
2. For each positive training instance x
For each attribute constraint g, in h
If the attribute value=hypothesis value
Then do nothing

Else replace hypothesis value with the
more general constraint ‘?’

3. Output hypothesis h
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L
Find-S example

Example [ Sky AirTemp | Humidity | Wind Water Forecast | EnjoySport
1 Sunny Warm Normal Strong Warm Same YES
2 Sunny Warm High Strong Warm Same YES
3 Rainy Cold High Strong Warm Change NO
- Sunny Warm High Strong Warm Change YES
Wz, . T
g e
ATTRIBUTES CONCEPT
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Find-S example

Ex. Sky Temp [HumidWind |Water ::reca E:J:r‘é? II;IZEics’t
(0, O,

0 D,2,9,
D )
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Find-S example

Humi - Wate [Fore |[Enjoy i
Ex. |Sky TempcI Wind r cast |Sport? Hypothesis
0 (0, ©, 0,0,0,0 )
1 Sunn Warm Norma |Stron Warm Sam Yes { Sunny,Warm,Normal,St
y I g e rong,Warm,Same)
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Find-S example

Humi - Wate [Fore [Enjoy -

Ex,Sky TempGI Wind - cast |Sport Hypothesis

0 (9, ©, 0,0,0,0 )

1 Sunn Warm Norma|Stron Warm Sam Yes ( Sunny,Warm,Norma
y I g e |,Strong,Warm,Same)

?

2 >unn Warm |High |String|Warm >am Yes { Sunny,Warm,?,5tro

y e ng,Warm,Same)

Ms.
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Find-S example

Enjo
Humi i Wate |Fore |y i
Ex,Sky TempoI Wind r cast |Spor Hypothesis
t?
0 (0, 0, ©,0,0,2 )
1 Sunn Warm Norma |Stron Warm Sam Yes { Sunny,Warm,Normal,
y I g e Strong,Warm,Same)
?
5 Sunn Warm [High  |String|warm Sam Yes ( Sunny,Warm,?,Stron
y e g,Warm,Same)
?
3 |Rainy |Cold |High Stron Warm Chan NG { Sunny,Warm,?,Stron
g ge g,Warm,Same)
?
4 Sunn Warm |High Stron Cool Chan Yes ( Sunny,Warm,?,Stron
y g ge g9,?,7?)

Ms.
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Example : 2 Concept - Finding
Malignant tumor from MRI Scan

Concept - Malignant Tumor

Color Thicknes | Tumor p
S rediction

Circular Large Light Smooth Thick malignant
Circular Large Light Irreqular  Thick malignant
Oval Large Dark Smooth Thin Not
malignant
Oval Large Light Irreqular  Thick malignant
Circular Small Light Smooth thick Not
malignant
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Example 3 : Concept - Japanese
Economy Car

Manufactur Color Decade Type Example

er Type
Japan Honda Blue 1980 Economy Positive
Japan Toyota Green 1970 Sports Negative
Japan Toyota Blue 1990 Economy Positive
USA Chrysler Red 1980 Economy Negative
Japan Honda White 1980 Economy Positive
Japan Toyota Green 1980 Economy Positive
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CANDIDATE ELIMINATION
ALGORITHM

The Candidate elimination algorithm
finds all describable hypotheses that are

consistent with the observed training
examples.
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Candidate Elimination

- Finds version space
- Consider both positive and negative results.

- This algorithm represents the set of all hypotheses
consistent with the observed training examples.
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Version Space

- Set of all hypothesis is called as “Version Space”.

- The version space, with respect to hypothesis
space H and training examples D, is the subset of
hypotheses from H consistent with the training
examples in D.

VS={ h € H/ Conistent(h, D)}
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Candidate Elimination Algorithm

1. Generalize G and S as most general and most
specific hypothesis.

2. For each example e,
if e is +ve,
make specific Hypothesis more general. [Find-S]
else
make general hypothesis more specific.
3. End
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L
Candidate elimination algorithm

Input: training set

Output:

« G = maximally general hypotheses in H
S = maximally specific hypotheses in H

Algorithm:
For each training example d, do

e If d is a positive example
- Remove from G any hypothesis inconsistent with d
- For each hypothesis s in S that is not consistent with d
* Remove s from S
* Add to S all minimal generalizations h of s such that
(a) his consistent with d, and
(b) some member of G is more general than h

* Remove from S any hypothesis that is more general than
another hypothesis in S
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Candidate elimination algorithm

If d is a negative example
- Remove from S any hypothesis inconsistent with d

- For each hypothesis g in G that is not consistent
with d

* Remove g from G

* Add to G all minimal specializations h of g such
that

(a) h i1s consistent with d, and
(b) some member of S is more specific than h

* Remove from G any hypothesis that is less
general than another hypothesis in G

Ms. Krishna Modi, DCS
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Example

Example [ Sky AirTemp | Humidity | Wind Water Forecast | EnjoySport
1 Sunny Warm Normal Strong Warm Same YES
2 Sunny Warm High Strong Warm Same YES
3 Rainy Cold High Strong Warm Change NO
- Sunny Warm High Strong Warm Change YES
Wz, . T
g e
ATTRIBUTES CONCEPT
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Version space

S: | { <Sunny, Warm, ?, Strong, ?, 7>}

<Sunny, ?, ?, Strong, ?, ?> <Sunny, Warm, ?, ?, ?, ?> <2, Warm, ?, Strong, ?, ?>

NSNS

G:| {<Sunmy, ?,?, 2 2 72> <? Warm, ?,?, ?, 2>}
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Example

((red,small,round,humid,low,smooth), poisonous)
((red,small,elongated,humid,low,smooth),

POISONOuUS)
((gray,large,elongated,humid,low,rough), not-
POISONOUS)
((red,small,elongated,humid,high,rough),
POISONOUS)
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L
Version Space - previous

example

(red,?,2,2,2,? (2,small,2,2,2,7))

(red,?,?,humd,?,?) (red,small,?,2,2,?) (?,small,?,humid,?,?)

\/

S (red,small,? humid,?,?)

S: Most specific
G: Most general
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The inductive learning

assumption

| We can at best guarantee that the output
hypothesis fits the target concept over the training
data

| Assumption: an hypothesis that approximates well
the training data will also approximate the target
function over unobserved examples

| i.e. given a significant training set, the output
hypothesis is able to make predictions
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Thank you..!!
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