Satellite Communication(EC0702) Unit-1
 B.Tech (Electronics and Communication) Semester-VII

Prof. Divyangna Gandhi

Academic Year 2019-2020

Introduction to Satellite Communication and Satellite Orbits and Orbital Parameters

Outline

-
-
- Map
-
-

What is a satellite?

 2nomp
 Wend

 2xiospex

Why satellite are required?

 อค2

 - S^{2} 上2

Satellite Communication Process

Frequency Band allocation for Satellite Operation

 8edel

TABLE 1.1 Frequency Band Designations

Frequency range, GHz	Band designation
$0.1-0.3$	VHF
$0.3-1.0$	UHF
$1.0-2.0$	L
$2.0-4.0$	S
$4.0-8.0$	C
$8.0-12.0$	X
$12.0-18.0$	Ku
$18.0-27.0$	K
$27.0-40.0$	Ka
$40.0-75$	V
$75-110$	W
$110-300$	mm
$300-3000$	$\mu \mathrm{~m}$

Kxupirectroadcastsatellite

> The L band is used for mobile satellite services and navigation systems. For the fixed satellite service in the C band, the most widely used subrange is approximately 4 to 6 GHz . The higher frequency is nearly always used for the uplink to the satellite, for reasons which will be explained later, and common practice is to denote the C band by $6 / 4 \mathrm{GHz}$, giving the uplink frequency first. For the direct broadcast service in the Ku band, the most widely used range is approximately 12 to 14 GHz , which is denoted by $14 / 12 \mathrm{GHz}$.

 205ixing

Applications of Satellites

- Max

(b)

Regional link
 Domestic link

Orbits and launching methods

 |x:

Kepler's First Law

 2x
-4.

 0.

 mascundeswahementernthearthwhich is therefore ลx Mand devinexde

Planets, moon and satellites follow elliptic orbits

Orbital Elements

Orbital elements are the parameters, which are helpful for describing =he orbital

臮

臮

 Cam

Orbital Elements

 Kink
-

Orbital Elements

Orbital Elements

 2x (2x =

Eccentricity

large eccentricity

medium eccentricity
circle. eccentricity $=0$

The main two elements that define the shape and sizeoftheellipse:

 Kishcebetweenhecenter of the bodies, not thedrbncewthebodies from the center of mass

Orbital Elements

Kaposermeanthetumherwdskncempasateliteqets

立"

Kemgeemeanstheriosest distanceofa satelite gets to Ebrnhitsprne

Khmerseehemhthp:R(earthradius

Apogeenthponthonhasaterekforthestrom the ERTMKSLEnotedzsha

Khenoknpsoeskhewjoning perigee and apogee hroghtenternune Earthuis the major axis of the bwhonehatwhiswhestength is the semi-major axis Equinenthosatertesmeandistance from the Earth.

Orbital Elements

-2mand
 S2 N.

Orbital Elements

Note: The cocentricity of the Moon's obit is exaserated for clarity

Orbital Elements

Review of Orbital Elements

Orbital Elements

 n/

 0e:

Orbital Elements

Mentoronk

 2enseast iononh somelimation ofines the Qindionot ne orit br comsiderins the echatomeanhas eeterne

Longitude of the ascending node(Right ascension of the ascending noef) (Ω)-
Theangle measuredeastwardin theequatorial planefrom the referenceline - $\mathrm{m}^{2} \mathrm{x}$

 -2 Ex

The Vernal (Spring) Equinox
March 20, 2015-5:45 pmin CDT Graw on me doy menn tarnixaxh,
 Sut with meveriy copel hourr cf nigte anf diry f:2 Alolohely

 Wex mhe
2.hw
 xenak

 Sx

Orbits

Therearefourtwespoforbitshasedonthe angeof

PKothatwhblkangewincination lies between

Reknmadewhikhngebfinclination lies between 90.ndh80degrees.

Orbits

Orbits

-xdand -x

0-2 |x

Orbits

Orbits

 h2ehsonehy
 -

Argument of perigee

 andmenkhs equmpaplantsmeasured at the ascendinhodetwmbeequathtothe orbit, going
 - Enotabsk
 \&escenam!nodesthroghthementerof Earth.

 -
 permeemeasurnhthewnblwanemathe Earth's Kentwhthewrectnonhesatememotion.
Kueananomathigneskenaragevalue to the anenomosithonhesatellewithreference to the pergee
 tohemsathespositionhmeasure at the Earth's center

 Specifek Bumashek
 tefencenthwspmpracticadetermination of an
 nodensused

Kepler's Second law

- For equal time intervals, a satellite will sweep out equal areas in its

 ลxayx

Mincspectuxhenws overing the banekrymotinarounthesun this law dully desteads Anine oining a planet and hesunswees our equal area during Equanteralsot timet.

品以 Satermuakendskncesshandshmetesinisecond,

Kepler's $3^{\text {rd }}$ law

 Ghembenthemeandiskhbebetweenthetwobodies.
 prontonahowhecubenthesemimajo axis of its 0.bit
 saternexnmeathandheirorbitalperiod.

Kepler's $3^{\text {rd }}$ law

- <x

 -

 -

- Earth Orbit Satellites

Satmenhoulbepropenkpacedinthewcorresponding 0bwaterneavngunthespacewtevorsin a particular WaWanksweskhtpuposebokscientifichmilitary or comerchenhemphimwhiaremassigned to satellites minkerectubearthearevealledas

The Saterespresenhnthosembits arexalled as

The following figure depicts the paths of LEO, MEO and GEO

Weshoukhnosewhobnmoperwfonasatelite baseaknihewequemenkfohexampenthe
 Limekwavearudheweathandtherewill be betemesputoninanhboardwamerasimilarly Khesaterehspacedinh bakemoretimetotrave around the earth and it cowermoreeathssuraceat onetime.

 5. 2

Mexame

The following figure shows the difference between Geo-synchro and Geo-stationary orbits. The axis of rotation indicates the movement of Earth

Khesaturemesenhinhesembithavetheangular KelochsameashabuNearthencenthese satellites
 EheseanewsynhonoumihtheEarhs rotation.
 trekthenathashnorderkotind the position of sateries
 Weathenfrecasthg satellite TV satellite radio and Khetwperngiobahcommunications.

Low Earth Orbit Satellites

Mhenkhobh

Mhentutshx

 Ex

Mant
 20-xhen

 Whenskoxdm missmscheme

 -2

 2x

Orbital Slots

 C. mondyonatix

Calendars

 Madeex
 -
hewatmens ©

Calendars

 -

Determine which of the following years are leap years: (a) 1987, (b) 1988, (c) 2000, (d) 2100.

solution

a) $1987 / 4=496.75$ (therefore, 1987 is not a leap year)
b) $1988 / 4=497$ (therefore, 1988 is a leap year)

Calculate the time in days, hours, minutes, and seconds for the epoch day 324.95616765 .
solution This represents the 324th day of the year plus 0.95616765 mean solar day. The decimal fraction in hours is $24 \times 0.95616765=22.948022$; the decimal fraction of this, 0.948022 , in minutes is $60 \times 0.948022=$ 56.881344; the decimal fraction of this in seconds is $60 \times 0.881344=$ 52.88064 . The epoch is at $22 \mathrm{~h}, 56 \mathrm{~min}, 52.88 \mathrm{~s}$ on the 324th day of the year.

Universal time coordinated is equivalent to Greenwich mean time (GMT), as well as Zulu (Z) time.

Universal time

Calculate the average length of the civil year in the Gregorian calendar.
solution The nominal number of days in 400 years is $400 \times 365=146,000$. The nominal number of leap years is $400 / 4=100$, but this must be reduced by 3 , and therefore, the number of days in 400 years of the Gregorian calendar is $146,000+100-3=146,097$. This gives a yearly average of $146,097 / 400=365.2425$.

In calculations requiring satellite predictions, it is necessary to determine whether a year is a leap year or not, and the simple rule is: If the year number ends in two zeros and is divisible by 400 , it is a leap year. Otherwise, if the year number is divisible by 4 , it is a leap year.

Sidereal time

The time measured with respect to stationary stars is called sidereal

Numerical

Kindhernemonspbetweensideatimeandsolar Emekndyshumeandseconds

1 mean solar day $=1.0027379093$ mean sidereal days $=24^{\mathrm{h}} 3^{\mathrm{m}} 56^{\mathrm{s}} .55536$ sidereal time $=86,636.55536$ mean sidereal seconds

1 mean sidereal day $=0.9972695664$ mean solar days
$=23^{\mathrm{h}} 56^{\mathrm{m}} 04^{\mathrm{s}} .09054$ mean solar time
$=86,164.09054$ mean solar seconds

Geo stationary orbit

 2adM

Reference

 Nand

