
UNIT 4

Software Testing

Strategies

Chapter 17

 No matter how carefully you analyze, design and develop software, errors

are bound to be there and hence testing of the software before you deliver

it to the customer is absolutely necessary.

 Proper testing enables you to remove most of the errors and improve the

quality of software delivered to the customer.

 But there are number of different techniques available for testing of

software. We also have questions like how much time, resources and effort

should be spent on testing, which techniques should be used, when should

the planning take place, when should the actual testing take place.

 These are the things that we decide when we develop testing strategy.

 There are number of different strategies proposed in the literature but all

have certain common characteristics. They are

 Common characteristics in Software Strategy:

 FTRs should be performed before testing starts. FTRs remove errors

at the earlier stage and hence eliminate most of the errors before

testing starts.

 Testing begins at component level and works “outward” toward the

integration of the entire computer based system.

 Different testing techniques are appropriate at different points of

time.

 Testing is conducted by the developer of the software and an

independent test group.

 Testing (finding errors) and debugging (removing errors) are

different activities, but debugging must be accommodated in any

testing strategy.

A strategic approach to s/w testing
1) Verification and validation

 Software testing is one element of a broader topic that is often referred to as
verification and validation.

 Other elements in V and V are other SQA activities like FTR, quality and
configuration audit, performance monitoring, simulation, feasibility study,
documentation review etc.

 Verification refers to the set of activities that ensure that software correctly
implements a specific function (whether it is required or not is a different issue).

 Validation refers to a different set of activities that ensure that the software that
has been built is traceable to customer requirements.

 Verification – “Are we building the product right?”

 Validation - “Are we building the right product?”
 Are we conducting the MCA course properly? Does market need MCAs? Validation

deals with the requirements.
 Are we teaching the subject properly? Are we teaching the proper subject? COBOL,

.Net

2) Organizing for s/w testing

 For the developer analysis, design and coding seem to be constructive
activities (creating software) whereas testing seems to be psychologically a
destructive activity (since you are trying to find errors or break the
software).

 The developer also would like to show that the software works and there
are no errors and hence he/she would be biased at the time of testing.

 So there is a need for independent testing.

 But the developer should test the individual components and also should
be available to correct the errors.

 So developer also has a role to play in testing.

 Similarly the testing group also has to be involved at the specification stage
and planning of test procedures. This group is called independent test
group (ITG).

developer independent tester

Understands the system

but, will test "gently"

and, is driven by "delivery"

Must learn about the system,

but, will attempt to break it

and, is driven by quality

 3)Software Testing strategy

 In software engineering we are carrying out four major activities

namely system engineering, analysis, design and coding.

 Testing also has to be done for each of these levels. The

relationship is as shown below:

Activity Testing Step Type of testing

System Engg. System Testing

Analysis Validation Black-box

Design Integration testing Black-box

Coding Unit testing White-box

Fig: s/w testing steps

 Unit testing: component properly functions as a unit, ensure

complete coverage and maximum error detection.

 Integration testing: dual problems of verification and program

construction, focus on i/p and o/p are more prevalent during

integration.

 High-order tests: validation testing provide final assurance that s/w

meets all informational, functional, behavioral, and performance

requirements.

 Once validated combined with other system elements.

4)Criteria for completion of testing

 Whenever software is being developed and the time comes to do

testing, there is a question that invariably arises and that is how

much testing should be done? Or when do you stop testing? There is

no definitive (best, perfect) answer. Different people have come up

with different answers and suggestions. Some of them are :

 Testing never stops since while the end user uses the system it is being

tested.

 You are done with testing when you run out of time or money.

 Then there is statistical criteria involving probability and confidence.

Test strategies for conventional s/w

 There are many strategies for conventional software.

 At one extreme is the strategy of waiting till the whole software is

ready and then test it for all the errors at one stroke.

 At the other extreme is the strategy of testing daily. None of these

approaches is practical and hence one can take incremental view of

testing.

 There are following four phases or Levels:

 Unit testing (individual programs),

 integration testing (modules),

 validation testing (whole software) and

 system testing (the whole product).

Unit Testing:
 Unit Testing is a level of the software testing process where individual

units/components of a software/system are tested.

 The purpose is to validate that each unit of the software performs as
designed.

 Unit testing focuses verification effort on the smallest unit of software
design – the software component.

 It is a white-box testing method i.e. it focuses on the internal processing
logic and data structures of a component or unit.

 Using the component-level design description as a guide, important
control paths are tested to uncover errors.

 This type of testing can be conducted in parallel for multiple
components.

 A unit is the smallest testable part of software. It usually has one or a few
inputs and usually a single output.

 In procedural programming a unit may be an individual program,
function, procedure, etc. In object-oriented programming, the smallest
unit is a method, which may belong to a base/super class, abstract class
or derived/child class.

 Who performs it?
 Unit Testing is normally performed by software developers themselves or

their peers. In rare cases it may also be performed by independent software
testers.

 Unit-test considerations:
 Following five different types of tests are conducted :

 Interface : To ensure that information properly flows into and out of the program unit
under test.

 Local data structure : Data stored temporarily maintains its integrity

 Boundary conditions : Program operates properly at boundary conditions

 Independent paths: tested to ensure that all statements get executed at least once.
Cyclomatic complexity

 Error handling paths: are tested to make sure that they work properly.

 Unit test procedures
 Unit testing starts as soon as coding of that part is over.
 Now the program that we are interested in testing may call some other

programs(subordinate) and would definitely be called by a main program.
 Since these programs may not be ready we have to develop dummy programs so that

this program can be tested.
 The dummy programs are called drivers (the calling program) and stubs (the called

programs).
 Drivers and stubs are overheads since they are not delivered with the software. They

are developed only for testing.
 The design of unit tests can occur before coding begins or after source code has

been generated.
 Each test case should be coupled with a set of expected results.
 Driver and/or stub s/w must often be developed for each unit test.
 Stubs serve to replace modules that are subordinate the component to be tested.
 If drivers and stubs are kept relatively simple, overhead can be low, but when not

possible; complete testing can be postponed until the integration test step.

Fig: unit test environment

Integration Testing
 Once parts work properly we have to integrate (link) them to get the

whole system.

 But there is no guarantee that the integrated system will work properly
since parts are working properly.

 That is why we need integration testing.

 It is a systematic technique for constructing the program structure (as
per design) while at the same time conducting tests to uncover errors
associated with interfacing.

 For integration there are two approaches:

 “big bang” (or non-incremental) and

 incremental.

 In big bang approach all components are combined and then the whole
system is tested as a whole. This approach is not advisable as finding of
errors and correction is more difficult.

Big-Bang Approach

 In incremental approach the program is constructed and

tested in small increments, where errors are easier to isolate

and correct and interfaces are tested more completely.

 There are number of different incremental integration

strategies like

 top-down integration,

 bottom-up integration,

 regression testing and

 smoke testing.

 Top-down integration:
 It is an incremental approach to construction of program structure.

 Modules are integrated by moving downward through the control hierarchy,
beginning with the main control module (main program).

 Modules subordinate to the main control module are incorporated into the
structure in either a depth-first or breadth-first manner.

 The integration process is performed in following 5 steps:
1. The main control module is used as a test driver and stubs are substituted for all

components directly subordinate to the main control module.
2. Depending on the integration approach (depth or breadth first) subordinate stubs

are replaced one at a time with actual components.
3. Tests are conducted as each component is integrated.
4. On completion of each set of tests, another stub is replaced with the real

component.
5. Regression testing may be conducted to ensure that new errors have not been

introduced.

top module is tested

with stubs

stubs are replaced one at
a time, "depth first"

as new modules are integrated,
some subset of tests is re-run

A

B

C

D E

F G

 Since decision making occurs at upper levels the control structure is
tested early.

 If depth first integration is selected, a complete function may be
implemented and demonstrated. Financial Accounting, sales, purchase,
inventory.

 There are some problems with this approach.

 The most common is when data from the lower levels is required for
testing of upper level.

 But that data is not available since we are using stubs at lower levels (not
the actual components) and replacing them one by one with real
components.

 There are 3 choices :
 delay testing of some functionality till stubs are replaced with actual

components (then what is the use of top-down approach?),
 develop stubs with limited functionality for testing (overhead) and
 use bottom-up approach.

 Bottom-up integration

 Start integration and testing from bottom up. There is no need of

stubs since actual components are already tested. The steps are as

follows:

 Low-level components are combined into clusters (also called builds)

that perform a specific software subfunction.

 A driver is written to coordinate test case input and output.

 The cluster is tested.

 Drivers are removed and clusters are combined moving upward in

the program structure.

drivers are replaced one at a
time, "depth first"

worker modules are grouped

into builds and integrated

A

B

C

D E

F G

cluster

 Regression testing:

 Each time a new module is added as part of integration testing, the

software changes.

 New data flow paths are established, new I/O may occur, and new

control logic is invoked, errors are corrected.

 These changes may cause problems with functions that previously

worked flawlessly.

 Regression testing is the re-execution of some subset of tests that

have already been conducted to ensure that changes have not

propagated any unintended side effects. Medicine.

 Smoke Testing:

 It can be considered as rolling integration.

 Basically you test the whole product daily for the major functionalities.

 It is used for “shrink-wrapped” software products.

 It is used as a pacing mechanism for time critical projects.

 Encompasses following activities:

 s/w components that have been translated into code are integrated into a

build. A build includes all data files, libraries, reusable modules, and

engineered components that are required to implement one or more product

functions.

 A series of tests is designed to expose errors that will keep the build from

properly performing its functions.

 The build is integrated with other builds and the entire product is tested daily.

 Benefits:

 Integration risk is minimized.

 Quality of end product is improved.

 Error diagnosis and correction are simplified.

 Progress is easier to assess.

Validation testing

 This testing focuses on user visible action and user- recognizable

output from the system

 SRS describes all user-visible attributes of the s/w and contains a

validation criteria section that forms the basis for a validation testing

approach

1) Validation test criteria

 A test plan outlines the classes of test to be conducted, and a test

procedure defines specific test cases that are designed to ensure

transportability, compatibility, error recovery, maintainability.

 After validation test two possible conditions exist:

- the function conforms to specification and is accepted

- a deviation from specification is uncovered and deficiency list is

created

2) Configuration review

 Intent is to ensure that all elements of the s/w configuration have

been properly developed, are cataloged

 Sometimes called audit.(ch:20)

3) Alpha and beta testing

 It is difficult to predict that how customer will use a program

 Alpha and beta testing are used to uncover errors that only the end

user seems able to find, and in a situation when product will be used

by many customers.

 Alpha test:

- is conducted at the developer’s site by a representative group of end
users.

- the s/w is used in a natural setting with the developer “looking over the
shoulder” of the users and recoding errors and usage problems.

 Beta test:

- it is conducted at one or more end-user site

- developer is not present so it is a live application of s/w in an
environment that can not be controlled by developer

- customer records all problems and reports to developer at the regular
intervals

- modifications are done and prepare for the release to the entire
customer base

 A variation in beta testing called customer acceptance testing

 In which custom s/w is delivered to a customer under contract

 customer performs a series of specific tests in an attempt to uncover

error before accepting the s/w from the developer

System testing
 It is a series of different tests whose primary purpose is to fully exercise

the computer-based system.

 These tests fall outside the scope of the software process and are not
conducted solely by software engineers.

 Types of system testing:

1) Recovery testing:

 Many computer-based systems must recover from faults and resume
processing with little or no downtime.

 It is system test that forces the s/w to fail in a variety of ways and verifies that
recovery is properly performed

 If recovery is automatic- reinitializing, checkpoint mechanisms, data
recovery, and restart are evaluated

 If recovery requires human interaction- MTTR is evaluated.

2) Security testing:

 It attempts to verify that protection mechanisms built into a system,
protect it from improper access or entry in the system.

 The tester plays a role of the individual who desires to access the
system.

 He may attempt to acquire password ,may attack the system with
custom s/w designed to break down any defenses

 He may purposely cause system errors, hoping to penetrate during
recovery.

 Good security testing will ultimately access a system.

 Role of the designer is to make access cost more than the value of
the information that will be obtained.

3) Stress testing:

 Stress tests are designed to confront programs with abnormal situations

 Stress testing executes a system in a manner that demands resources in
abnormal quantity, frequency and volume
 special tests may be designed that generate ten interrupts per second, when

one or two is the average rate
 input data rates may be increased by an order of magnitude to determine how

input functions will respond
 test cases that require maximum memory or other resources are executed,
 test cases that may cause excessive hunting for disk-resident data are created.

 Variation in stress testing is called sensitivity testing

 sometimes a very small range of data contained within the bounds of valid
or data for program may cause extreme or erroneous processing

 Sensitivity testing attempts to uncover data combinations within valid i/p
classes that may cause improper processing

4) Performance testing:

 Performance testing is designed to test the run time performance of s/w
within the context of an integrated system

 Performance testing occurs throughout all steps in the testing process.

 Even at the unit level, the performance of an individual module may be
assessed as tests are conducted

 It is often coupled with stress testing and usually require both h/w and
s/w instrumentation

 It is often necessary to measure resource utilization (e.g., processor
cycles) in an exacting fashion. External instrumentation can monitor
execution intervals, log events (e.g., interrupts) as they occur,

 and sample machine states on a regular basis.

 By instrumenting a system, the tester can uncover situations that lead to
degradation and possible system failure.

5) Deployment Testing:

 In many cases, software must execute on a variety of platforms and under

more than one operating system environment.

 Deployment testing, sometimes called configuration testing, exercises the

software in each environment in which it is to operate.

 In addition, deployment testing examines all installation procedures and

specialized installation software (e.g., “installers”) that will be used by

customers, and all documentation that will be used to introduce the

software to end users.

TESTING CONVENTIONAL

APPLICATIONS

Chapter 18

SOFTWARE TESTING FUNDAMENTALS

 The goal of testing is to find errors, and a good test is one that has a

high probability of finding an error.

 Therefore, you should design and implement a computer based

system or a product with “testability” in mind.

 s/w testability is simply how easily a computer program can be

tested .

 Characteristics of good tests:

 A good test has a high probability of finding an error

 A good test is not redundant

 A good test should be “best of breed”

 A good test should be neither too simple nor too complex.

Black Box Testing
 Also known as functional testing and behavioral testing, Black-box testing

focuses on the functional requirements of the software.

 The test designer selects valid and invalid input and determines the correct

output. There is no knowledge of the test object's internal structure.

 Black Box Testing is testing without knowledge of the internal workings

of the item being tested.

 For example, when black box testing is applied to software engineering,

the tester would only know the "legal" inputs and what the expected

outputs should be, but not how the program actually arrives at those

outputs.

 The tester does not ever examine the programming code.

 The types of testing under this strategy are totally based/focused on the
testing for requirements and functionality of the work
product/software application.

 Black box testing is sometimes also called as "Opaque Testing",
"Functional/Behavioral Testing" and "Closed Box Testing".

 It attempts to find errors in following categories:

 incorrect or missing functions,

 interface errors,

 errors in data structures or

 external database access

Equivalence Partitioning
 Divides input domain of program into classes of data from which test

cases can be derived.

 Goals:-

1) To reduce the number of test cases to a necessary minimum.

2) To select the right test cases to cover all possible scenarios.

 Test-case design for equivalence partitioning is based on an evaluation

of equivalence classes for input condition.

 An equivalence class represents a set of valid or invalid states for input

condition.

 An input condition is either a specific numeric value, a range of values,

a set of related values, or a Boolean condition.

 Equivalence classes may be defined according to the following

guidelines:

1. If an input condition specifies a range, one valid and two invalid

equivalence classes are defined.

2. If an input condition requires a specific value, one valid and two invalid

equivalence classes are defined.

3. If an input condition specifies a member of a set, one valid and one

invalid equivalence classes are defined.

4. If input condition is Boolean. One valid and one invalid classes are

defined.

 Example : An input has certain ranges, one valid and two invalid

equivalence classes are defined. This may be best explained at the following

example of a function which has the pass parameter "month" of a date. The

valid range for the month is 1 to 12, standing for January to December.

This valid range is called a partition. In this example there are

two further partitions of invalid ranges. The first invalid partition

would be <= 0 and the second invalid partition would be >= 13.

-2 -1 0 1 12 13 14 15

 invalid partition 1 valid partition invalid partition 2

 (one valid and two invalid equivalence classes are defined)

BVA (Boundary Value Analysis)
 The boundaries of software component input ranges are areas of frequent

problems.

 A greater no of errors occurs at the boundaries of input domain rather than in the
“center”.

 BVA leads to selection of test cases that exercise bounding values.

 if (month > 0 && month < 13)

 But a common programming error may check a wrong range e.g. starting the
range at 0 by writing:

 if (month >= 0 && month < 13)

 For more complex range checks in a program this may be a problem which is not
so easily spotted as in the above simple example.

 To set up boundary value analysis test cases you first have to determine which
boundaries you have at the interface of a software component. This has to be done
by applying the equivalence partitioning technique. Boundary value analysis and
equivalence partitioning are inevitably linked together.

http://en.wikipedia.org/wiki/Equivalence_partitioning

-2 -1 0 1 12 13 14 15

 invalid partition 1 valid partition invalid partition 2

 Applying boundary value analysis you have to select now a test case at each

side of the boundary between two partitions. In the above example this

would be 0 and 1 for the lower boundary as well as 12 and 13 for the

upper boundary

 The boundary value analysis can have 6 text cases. n, n-1,n+1 for the

upper limit and n, n-1,n+1 for the lower limit.

White-box testing

 White-box testing, also known as Clear Box Testing, Open Box

Testing, Glass Box Testing, Transparent Box Testing, Code-Based

Testing or Structural Testing.

 Using white-box testing methods, you can derive test cases that

 (1) guarantee that all independent paths within a module have been

exercised at least once,

 (2) exercise all logical decisions on their true and false sides,

 (3) execute all loops at their boundaries and within their operational

bounds, and

 (4) exercise internal data structures to ensure their validity.

 Why we perform WBT?

 To ensure:

 That all independent paths within a module have been exercised at
least once.

 All logical decisions verified on their true and false values.

 All loops executed at their boundaries and within their operational
bounds internal data structures validity.

 To discover the following types of bugs:

 Logical error tend to creep into our work when we design and
implement functions, conditions or controls that are out of the
program

 The design errors due to difference between logical flow of the
program and the actual implementation

 Typographical errors and syntax checking

 3 Main White Box Testing Techniques:

 Statement Coverage

 Branch Coverage

 Path Coverage

1) Statement coverage:

 In a programming language, a statement is nothing but the line of
code or instruction for the computer to understand and act
accordingly. A statement becomes an executable statement when it
gets compiled and converted into the object code and performs the
action when the program is in a running mode.

 Hence “Statement Coverage”, as the name itself suggests, it is the
method of validating whether each and every line of the code is
executed at least once.

2) Branch Coverage:

 “Branch” in a programming language is like the “IF statements”. An
IF statement has two branches: True and False.

 So in Branch coverage (also called Decision coverage), we validate
whether each branch is executed at least once.

 In case of an “IF statement”, there will be two test
conditions:

 One to validate the true branch and,

 Other to validate the false branch.

 Hence, in theory, Branch Coverage is a testing method which is
when executed ensures that each and every branch from each
decision point is executed.

3) Path Coverage

 Path coverage tests all the paths of the program. This is a

comprehensive technique which ensures that all the paths of the

program are traversed at least once. Path Coverage is even more

powerful than Branch coverage. This technique is useful for testing

the complex programs.

INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

 For Statement Coverage – we would only need one test case to
check all the lines of the code.

 That means:

 If I consider TestCase_01 to be (A=40 and B=70), then all the lines of
code will be executed.

 Now the question arises:

 Is that sufficient?

 What if I consider my Test case as A=33 and B=45?

 Because Statement coverage will only cover the true side, for the

pseudo code, only one test case would NOT be sufficient to test it.

As a tester, we have to consider the negative cases as well.

 Hence for maximum coverage, we need to consider “Branch

Coverage”, which will evaluate the “FALSE” conditions.

INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

ELSE

PRINT “ITS PENDING”

 for Branch coverage, we would require two test cases to complete
the testing of this pseudo code.

 TestCase_01: A=57, B=45

 TestCase_02: A=25, B=30

 With this, we can see that each and every line of the code is
executed at least once.

 Path coverage is used to test the complex code snippets, which

basically involve loop statements or combination of loops and

decision statements.

INPUT A & B

C = A + B

IF C>100

PRINT “ITS DONE”

END IF

IF A>45

PRINT “ITS PENDING”

END IF

 In order to have the full coverage, we would need

following test cases:

 TestCase_01: A=50, B=60

 TestCase_02: A=55, B=40

 TestCase_03: A=40, B=65

 TestCase_04: A=30, B=30

Software Review
 Software reviews are a "filter" for the software process. That is, reviews are

applied at various points during Software engineering and solve to uncover
errors and defects that can then be removed.

 Software reviews "purify" soft-ware engineering Work products, including
requirements and design models, code, and testing data.

 Technical work needs reviewing for the same reason that pencils need erasers: To
err is human.

 The second reason we need technical reviews is that although people are good at
catching some of their own errors, large classes of errors escape the originator
more easily than they escape any one else.

 A review is a way of using the diversity of a group of people to: (Objectives)
 Point out needed improvements in the product of a single person or team.
 Confirm those parts of a product in which improvement is either not desired

or not needed;
 Achieve technical work of more uniform, or at least more predictable, quality

than can be achieved without reviews, in order to make technical work more
manageable.

 Many different types of reviews can be conducted as part of
software engineering.

 Each has its place.

 An informal meeting around the coffee machine is a form of review,
if technical problems are discussed.

 A formal presentation of software architecture to an audience of
customers, management, and technical staff is also a form of review.

 A technical review (TR) is the most effective filter from a quality
control standpoint.

 Conducted by software engineers(and others) for software
engineers, the TR is an effective means for uncovering errors and
improving software quality.

Static Testing Techniques
 Informal Reviews: This is one of the type of review which

doesn’t follow any process to find errors in the document. Under
this technique , you just review the document and give informal
comments on it.

 Technical Reviews: A team consisting of your peers, review the
technical specification of the software product and checks whether it
is suitable for the project. They try to find any discrepancies in the
specifications and standards followed. This review concentrates
mainly on the technical document related to the software such as
Test Strategy, Test Plan and requirement specification documents.

 Walkthrough: The author of the work product explains the
product to his team. Participants can ask questions if any. Meeting is
led by the author. Scribe makes note of review comments

 Inspection: The main purpose is to find defects and meeting is

led by trained moderator. This review is a formal type of review

where it follows strict process to find the defects. Reviewers

have checklist to review the work products .They record the

defect and inform the participants to rectify those errors.

 Static code Review:This is systematic review of the software

source code without executing the code. It checks the syntax of

the code, coding standards, code optimization, etc. This review

can be done at any point during development.

Informal Reviews:
 Informal reviews include a simple desk check of a software engineering

work product with a colleague, a casual meeting (involving more than two
people) for the purpose of reviewing a work product

 A simple desk check or a casual meeting conducted with a colleague is a
review.

 However, because there is no advance planning or preparation, no agenda
or meeting structure, and no follow-up on the errors that are uncovered,
the effectiveness of such reviews is considerably lower than more formal
approaches.

 But a simple desk check can and does uncover errors that might otherwise
propagate further into the software process.

 One way to improve the efficacy of a desk check review is to develop a set
of simple review checklists for each major work product produced by the
software team.

 The questions posed within the checklist are generic, but they will serve to
guide the reviewers as they check the work product.

Formal Technical Review (FTR):
 A formal technical review (FTR) is a software quality control activity performed

by software engineers (and others).

 A software technical review is a form of peer review in which "a team of

qualified personnel ... examines the suitability of the software product for its

intended use and identifies discrepancies from specifications and standards.”

 Technical reviews may also provide recommendations of alternatives and

examination of various alternatives.

 Technical review differs from software walkthroughs in its specific focus on the

technical quality of the product reviewed.

 It differs from software inspection in its ability to suggest direct alterations to the

product reviewed, and its lack of a direct focus on training and process

improvement.

 The term formal technical review is sometimes used to mean a software

inspection.

 IEEE 1028 recommends the inclusion of participants to fill the following
roles:
 The Decision Maker (the person for whom the technical review is

conducted) determines if the review objectives have been met.
 The Review Leader is responsible for performing administrative tasks

relative to the review, ensuring orderly conduct, and ensuring that the review
meets its objectives.

 The Recorder documents anomalies, action items, decisions, and
recommendations made by the review team.

 Technical staff are active participants in the review and evaluation of the
software product.

 Management staff may participate for the purpose of identifying issues that
require management resolution.

 Customer or user representatives may fill roles determined by the
Review Leader prior to the review.

 A single participant may fill more than one role, as appropriate.

 The objectives of an FTR are:

1. to uncover errors in function, logic, or implementation for any representation of
the software;

2. to verify that the software under review meets its requirements;

3. to ensure that the software has been represented according to predefined
standards;

4. to achieve software that is developed in a uniform manner; and

5. to make projects more manageable.

 In addition, the FTR serves as a training ground, enabling junior engineers to
observe different approaches to software analysis, design, and implementation.

 The FTR also serves to promote backup and continuity because a number of
people become familiar with parts of the software that they may not have
otherwise seen.

 The FTR is actually a class of reviews that includes walkthroughs and inspections.

 Each FTR is conducted as a meeting and will be successful only if it is properly
planned, controlled, and attended.

Review Meeting :
 Every review meeting should stand by the following constraints:

 Between three and five people (typically) should be involved in the
review.

 Advance preparation should occur but should require no more than two
hours of work for each Person.

 The duration of the review meeting should be less than two hours.

 Given these constraints, it should be obvious that an FTR focuses on
a specific (and small) part of the overall software.

 For example, rather than attempting to review an entire design,
walkthroughs are conducted for each component or small group of
components.

 By narrowing the focus, the FTR has a higher likelihood of
uncovering errors.

 The focus of the FTR is on a work product (e.g., a portion of a
requirements model, a detailed component design, source code for a
component).

 The individual who has developed the work pro duct-the producer-
informs the project leader that the work product is complete and that a
review is required.

 The project leader contacts a review leader, who evaluates the product for
readiness, generates copies of product materials, and distributes them to
two or three reviewers for advance preparation.

 Each reviewer is expected to spend between one and two hours reviewing
the product, making notes, and otherwise becoming familiar with the
work.

 Concurrently, the review leader also reviews the product and establishes an
agenda for the review meeting, which is typically scheduled for the next
day.

 The review meeting is attended by the review leader, ail reviewers,
and the producer.

 One of the reviewers takes on the role of a recorder, that is, the
individual who records (in writing) all important issues raised during
the review.

 The FTR begins with an introduction of the agenda and a brief
introduction by the producer.

 The producer then proceeds to "walk through" the work product,
explaining the material, while reviewers raise issues based on their
advance preparation.

 when valid problems or errors are discovered, the recorder notes
each.

 At the end of the review, all attendees of the FTR must decide

whether to:

1. accept the product without further modification ,

2. reject the product due to severe errors (once corrected, another

review must be performed), or

3. accept the product provisional$ (minor errors have been encountered

and must be corrected, but no additional review will be required).

 After the decision is made, all FTR attendees complete a sign-off,

indicating their participation in the review and their concurrence

with the review team's findings.

Review Reporting & Record keeping
 During the FTR, a reviewer (the recorder) actively records all issues that

have been raised.

 These are summarized at the end of the review meeting, and, a review
issues list is produced.

 In addition, a formal technical review summary report is completed.

 A review summary report answers three questions:

1. What was reviewed?

2. Who reviewed it?

3. What were the findings and conclusions?

 The review summary report is a single page form (with possible
attachments).

 It becomes part of the project historical record and may be distributed to
the project leader and other interested parties.

 The review issues list serves two purposes:

1. to identify problem areas within the product and

2. to serve as an action item checklist that guides the producer as

corrections are made.

 An issues list is normally attached to the summary report.

 You should establish a follow-up procedure to ensure that items on

the issues list have been properly corrected.

 Unless this is done, it is possible that issues raised can "fall between

the cracks."

 One approach is to assign the responsibility for follow-up to the

review leader

COST IMPACT OF SOFTWARE DEFECTS

 Within the context of the software process, the terms defect and fault

are synonymous. Both imply a quality problem that is discovered

after the software has been released to end users.

 The term error to depict a quality problem that is discovered by

software engineers (or others) before the software is released to the

end user.

 The primary objective of technical reviews is to find errors during

the process so that they do not become defects after release of the

software.

 The obvious benefit of technical reviews is the early discovery of

errors so that they do not propagate to the next step in the software

process.

 A number of industry studies indicate that design activities

introduce between 50 and 65 percent of all errors (and ultimately,

all defects) during the software process.

 However, review techniques have been shown to be up to 75

percent effective in uncovering design flaws. By detecting and

removing a large percentage of these errors, the review process

substantially reduces the cost of subsequent activities in the software

process.

DEFECT AMPLIFICATION AND REMOVAL

 A defect amplification model can be used to illustrate the generation

and detection of errors during the design and code generation

actions of a software process.

 A box represents a software engineering action. During the action,

errors may be inadvertently generated.

 Review may fail to uncover newly generated errors and errors from

previous steps, resulting in some number of errors that are passed

through. In some cases, errors passed through from previous steps

are amplified (amplification factor, x) by current work.

 The box subdivisions represent each of these characteristics and the

percent of efficiency for detecting errors, a function of the

thoroughness of the review.

 To conduct reviews, you must expend time and effort, and your

development organization must spend money

REVIEW METRICS AND THEIR USE
 The following review metrics can be collected for each review that is

conducted:

 Preparation effort, Ep—the effort (in person-hours) required to review a work
product prior to the actual review meeting

 Assessment effort, Ea—the effort (in person-hours) that is expended during the
actual review

 Rework effort, Er—the effort (in person-hours) that is dedicated to the
correction of those errors uncovered during the review

 Work product size, WPS—a measure of the size of the work product that has been
reviewed (e.g., the number of UML models, or the number of document
pages, or the number of lines of code)

 Minor errors found, Errminor—the number of errors found that can be
categorized as minor (requiring less than some prespecified effort to correct)

 Major errors found, Errmajor—the number of errors found that can be
categorized as major (requiring more than some prespecified effort to
correct)

Introduction to Software Configuration

Management

 Change is inevitable when computer software is built. And change

increases the level of confusion when you and other members of a

software team are working on a project.

 Confusion arises when changes are not analyzed before they are

made, recorded before they are implemented, reported to those

with a need to know, or controlled in a manner that will improve

quality and reduce error.

 The art of coordinating software development to minimize . . .

confusion is called configuration management. Configuration

management is the art of identifying, organizing, and controlling

modifications to the software being built by a programming team.

The goal is to maximize productivity by minimizing mistakes.

 Software configuration management (SCM) is an umbrella activity

that is applied throughout the software process.

 Because change can occur at any time, SCM activities are developed

to (1) identify change, (2) control change, (3) ensure that change is

being properly implemented, and (4) report changes to others who

may have an interest.

Why SCM?
 The output of the software process is information that may be divided into

three broad categories: (1) computer programs (both source level and

executable forms), (2) work products that describe the computer

programs (targeted at various stakeholders), and (3) data or content

 As software engineering work progresses, a hierarchy of software

configuration items (SCIs)—a named element of information that can be as small

as a single UML diagram or as large as the complete design document—is

created.

 Change may occur at any time, for any reason. In fact, the

 First Law of System Engineering [Ber80] states: “No matter where you are in the

system life cycle, the system will change, and the desire to change it will

persist throughout the life cycle.”

 What is the origin of these changes?

 New business or market conditions dictate changes in product
requirements or business rules.

 New stakeholder needs demand modification of data produced by
information systems, functionality delivered by products, or services
delivered by a computer-based system.

 Reorganization or business growth/downsizing causes changes in
project priorities or software engineering team structure.

 Budgetary or scheduling constraints cause a redefinition of the system
or product.

 Software configuration management is a set of activities that have
been developed to manage change throughout the life cycle of
computer software. SCM can be viewed as a software quality
assurance activity that is applied throughout the software process.

THE SCM REPOSITORY

 In the early days of software engineering, software configuration

items were maintained as paper documents (or punched computer

cards!), placed in file folders or three-ring binders, and stored in

metal cabinets. This approach was problematic for many reasons:

(1) finding a configuration item when it was needed was often

difficult, (2) determining which items were changed, when and by

whom was often challenging, (3) constructing a new version of an

existing program was time consuming and error prone, and (4)

describing detailed or complex relationships between configuration

items was virtually impossible.

 Today, SCIs are maintained in a project database or repository.

 The SCM repository is the set of mechanisms and data structures

that allow a software team to manage change in an effective

manner.

 It provides the obvious functions of a modern database management

system by ensuring data integrity, sharing, and integration. In

addition, the SCM repository provides a hub for the integration of

software tools, is central to the flow of the software process, and

can enforce uniform structure and format for software engineering

work products.

 The repository is defined in terms of a meta-model. The meta-model

determines how information is stored in the repository, how data can be

accessed by tools and viewed by software engineers

 General Features and Content:

 Versioning.

 Dependency tracking and change management

 Requirements tracing

 Configuration management

 Audit trails

THE SCM PROCESS
 The software configuration management process defines a series of

tasks that have four primary objectives: (1) to identify all items that
collectively define the software configuration, (2) to manage
changes to one or more of these items, (3) to facilitate the
construction of different versions of an application, and (4) to
ensure that software quality is maintained as the configuration
evolves over time.

 Referring to the figure, SCM tasks can viewed as concentric layers.
SCIs flow outward through these layers throughout their useful life,
ultimately becoming part of the software configuration of one or
more versions of an application or system.

 As an SCI moves through a layer, the actions implied by each SCM
task may or may not be applicable

 For example, when a new SCI is created, it must be identified.

 However, if no changes are requested for the SCI, the change

control layer does not apply. The SCI is assigned to a specific version

of the software (version control mechanisms come into play).

 A record of the SCI (its name, creation date, version designation,

etc.) is maintained for configuration auditing purposes and

reported to those with a need to know.

