
COMPONENT-LEVEL DESIGN

 The purpose of component-level design is to define data structures,

algorithms, interface characteristics, and communication

mechanisms for each software component identified in the

architectural design.

 Component-level design occurs after the data and architectural

designs are established.

 The component-level design represents the software in a way that

allows the designer to review it for correctness and consistency,

before it is built.

 The work product produced is a design for each software

component, represented using graphical, tabular, or text-based

notation.

Component Definitions

 “A component is a modular building block for computer software.”

 “A component is a modular, deployable, and replaceable part of a system that

encapsulates implementation and exposes a set of interfaces.”

 Components populate the software architecture and, as a

consequence, play a role in achieving the objectives and

requirements of the system to be built.

 Because components reside within the software architecture, they

must communicate and collaborate with other components and with

entities (e.g., other systems, devices, people) that exist outside the

boundaries of the software.

 There are three important views of what a component is and how it

is used as design modeling proceeds

Three views of Component

1. An Object-Oriented View:

 A component contains a set of collaborating classes.

 Each class within a component has been fully elaborated to include all

attributes and operations that are relevant to its implementation.

 As part of the design elaboration, all interfaces that enable the classes

to communicate and collaborate with other design classes must also

be defined.

 Once this is completed, the following steps are performed
1) Provide further elaboration of each attribute, operation, and interface
2) Specify the data structure appropriate for each attribute
3) Design the algorithmic detail required to implement the processing logic

associated with each operation
4) Design the mechanisms required to implement the interface to include the

messaging that occurs between objects

2. The Traditional View:

A component is viewed as a functional element (i.e., a

module) of a program that incorporates
 The processing logic

 The internal data structures that are required to implement the processing logic

 An interface that enables the component to be invoked and data to be passed to it

A component serves one of the following roles
 A control component that coordinates the invocation of all other problem domain

components

 A problem domain component that implements a complete or partial function that

is required by the customer

 An infrastructure component that is responsible for functions that support the

processing required in the problem domain

3. Process-Related view

 Emphasis is placed on building systems from existing components
maintained in a library rather than creating each component from
scratch

 As the software architecture is formulated, components are
selected from the library and used to populate the architecture

 Because the components in the library have been created with
reuse in mind, each contains the following:

 A complete description of their interface

 The functions they perform

 The communication and collaboration they require

Component-level Design Principles
 Open-closed principle (OCP)

 A module or component should be open for extension but closed for modification
 The designer should specify the component in a way that allows it to be extended

without the need to make internal code or design modifications to the existing parts
of the component

 Liskov substitution principle (LSP)
 Subclasses should be substitutable for their base classes
 A component that uses a base class should continue to function properly if a subclass

of the base class is passed to the component instead

 Dependency inversion principle (DIP)
 Depend on abstractions (i.e., interfaces); do not depend on concretions
 The more a component depends on other concrete components (rather than on

the interfaces) the more difficult it will be to extend

 Interface segregation principle (ISP)
 Many client-specific interfaces are better than one general purpose interface
 For a server class, specialized interfaces should be created to serve major

categories of clients
 Only those operations that are relevant to a particular category of clients should

be specified in the interface

 Release reuse equivalency principle (REP)

 The granularity of reuse is the granularity of release

 Group the reusable classes into packages that can be managed,
upgraded, and controlled as newer versions are created

 Common closure principle (CCP)

 Classes that change together belong together

 Classes should be packaged cohesively; they should address the same
functional or behavioral area on the assumption that if one class
experiences a change then they all will experience a change

 Common reuse principle (CRP)

 Classes that aren't reused together should not be grouped together

 Classes that are grouped together may go through unnecessary
integration and testing when they have experienced no changes but
when other classes in the package have been upgraded

Component-Level Design Guidelines:
 Components

 Establish naming conventions for components that are specified as part of the
architectural model and then refined and elaborated as part of the component-level
model

 Obtain architectural component names from the problem domain and ensure that
they have meaning to all stakeholders who view the architectural model (e.g.,
Calculator)

 Use infrastructure component names that reflect their implementation-specific
meaning (e.g., Stack)

 Interfaces
 Interfaces provide important information about communication and collaboration
 lollipop representation of an interface should be used in lieu of the more formal

UML box and dashed arrow approach
 only those interfaces that are relevant to the component under consideration

should be shown, even if other interfaces are available
 These recommendations are intended to simplify the visual nature of UML

component diagrams.

 Dependencies and inheritance in UML
 Model any dependencies from left to right and inheritance from top (base class) to

bottom (derived classes)
 Consider modeling any component dependencies as interfaces rather than

representing them as a direct component-to-component dependency

 Cohesion:
 Cohesion is the “single-mindedness’ of a component
 It implies that a component or class encapsulates only attributes and operations

that are closely related to one another and to the class or component itself
 The objective is to keep cohesion as high as possible
 The kinds of cohesion can be ranked in order from highest to lowest

 Functional

 A module performs one and only one computation and then returns a result

 Layer

 Exhibited by packages, components, and classes, this type of cohesion occurs when a

higher layer accesses the services of a lower layer, but lower layers do not access

higher layers.

 Communicational

 All operations that access the same data are defined within one class

 Classes and components that exhibit functional, layer, and communicational

cohesion are relatively easy to implement, test, and maintain.

 Coupling
 As the amount of communication and collaboration increases between

operations and classes, the complexity of the computer-based system also
increases

 As complexity rises, the difficulty of implementing, testing, and maintaining
software also increases

 Coupling is a qualitative measure of the degree to which operations and classes
are connected to one another

 The objective is to keep coupling as low as possible

 Content coupling. Occurs when one component “secretly modifies data
that is internal to another component” . This violates information hiding—
a basic design concept.

 Common coupling. Occurs when a number of components all make use
of a global variable. Although this is sometimes necessary (e.g., for
establishing default values that are applicable throughout an application),
common coupling can lead to uncontrolled error propagation and
unforeseen side effects when changes are made.

 Control coupling. Occurs when operation A() invokes operation B() and
passes a control flag to B. The control flag then “directs” logical flow within B. The
problem with this form of coupling is that an unrelated change in B can result in
the necessity to change the meaning of the control flag that A passes. If this
is overlooked, an error will result.

 Stamp coupling. Occurs when ClassB is declared as a type for an
argument of an operation of ClassA. Because ClassB is now a part of the
definition of ClassA, modifying the system becomes more complex.

 Data coupling. Occurs when operations pass long strings of data arguments. The
“bandwidth” of communication between classes and components grows and the
complexity of the interface increases. Testing and maintenance are more difficult.

 Routine call coupling. Occurs when one operation invokes another. This level of
coupling is common and is often quite necessary.

 Type use coupling. Occurs when component A uses a data type defined in
component B (e.g., this occurs whenever “a class declares an instance variable or a
local variable as having another class for its type”). If the type definition changes,
every component that uses the definition must also change.

 Inclusion or import coupling. Occurs when component A imports or includes
a package or the content of component B.

 External coupling. Occurs when a component communicates or collaborates
with infrastructure components (e.g., operating system functions, database
capability, telecommunication functions). Although this type of coupling is necessary,
it should be limited to a small number of components or classes within a system.

Conducting Component-Level Design

 You must transform information from requirements and

architectural models into a design representation that provides

sufficient detail to guide the construction (coding and testing)

activity.

 The following steps represent a typical task set for object-oriented

component-level design,

1) Identify all design classes that correspond to the problem domain

2) Identify all design classes that correspond to the infrastructure domain
• These classes are usually not present in the analysis or architectural

models
• These classes include GUI components, operating system

components, data management components, networking
components, etc.

3) Elaborate all design classes that are not acquired as reusable components
a) Specify message details when classes or components collaborate
b) Identify appropriate interfaces for each component
c) Elaborate attributes and define data types and data structures required to

implement them
d) Describe processing flow within each operation in detail by means of

pseudocode or UML activity diagrams

4) Describe data sources (databases and files) and identify the classes
required to manage them

5) Develop and elaborate behavioral representations for a class or
component

6) Elaborate deployment diagrams to provide additional implementation
detail

7) Refactor every component-level design representation and always
consider alternatives

• Experienced designers consider all (or most) of the alternative design
solutions before settling on the final design model

• The final decision can be made by using established design principles and
guidelines

DESIGNING TRADITIONAL COMPONENTS

 Traditional components can be defined as a set of constrained logical

constructs from which any program could be formed.

 That is, each construct had a predictable logical structure and was entered

at the top and exited at the bottom, enabling a reader to follow procedural

flow more easily.

 The constructs are sequence, condition, and repetition.
 Sequence implements processing steps that are essential in the specification of any

algorithm.

 Condition provides the facility for selected processing based on some logical

occurrence, and

 repetition allows for looping.

 These three constructs are fundamental to structured programming—an

important component-level design technique.

 Various notations depict the use of these constructs
 Graphical design notation
 Sequence, if-then-else, selection, repetition (see next slide)

 Tabular design notation (see upcoming slide)
 Program design language
 Similar to a programming language; however, it uses narrative text

embedded directly within the program statements

Graphical Design Notation

 ”A picture is worth a thousand words,” but it’s rather important to

know which picture and which 1000 words.

 If graphical tools are misused, the wrong picture may lead to the

wrong software.

 The activity diagram allows you to represent sequence, condition,

and repetition— all elements of structured programming—and is a

descendent of an earlier pictorial design representation (still used

widely) called a flowchart.

 A flowchart, like an activity diagram, is quite simple pictorially.

 A box is used to indicate a processing step. A diamond represents a

logical condition, and arrows show the flow of control.

Graphical Example used for Algorithm Analysis

1 int functionZ(int y)

2 {

3 int x = 0;

4 while (x <= (y * y))

5 {

6 if ((x % 11 == 0) &&

7 (x % y == 0))

8 {

9 printf(“%d”, x);

10 x++;

11 } // End if

12 else if ((x % 7 == 0) ||

13 (x % y == 1))

14 {

15 printf(“%d”, y);

16 x = x + 2;

17 } // End else

18 printf(“\n”);

19 } // End while

20 printf("End of list\n");

21 return 0;

22 } // End functionZ

3

4

6 7

9

10

12 13

15

16

18

20

21

Tabular Design Notation

 Decision Table: A decision table is an excellent tool to use in

both testing and requirements management. Essentially it is a

structured exercise to formulate requirements when dealing with

complex business rules. Decision tables are used to model

complicated logic.

 A decision table is a good way to deal with combinations of things

(e.g. inputs). This technique is sometimes also referred to as a

’cause-effect’ table.

 The four quadrants:

Conditions Condition alternatives

Actions Actions Entries

1) List all actions that can be associated with a specific procedure
(or module)

2) List all conditions (or decisions made) during execution of the
procedure

3) Associate specific sets of conditions with specific actions,
eliminating impossible combinations of conditions;
alternatively, develop every possible permutation of
conditions

4) Define rules by indicating what action(s) occurs for a set of
conditions

Conditions 1 2 3 4

Condition A T T F

Condition B F T

Condition C T T

Actions

Action X

Action Y

Action Z

 If you are a new customer and you want to open a credit card

account then there are three conditions first you will get a

15% discount on all your purchases today,

 second if you are an existing customer and you hold a loyalty

card, you get a 10% discount and

 third if you have a coupon, you can get 20% off today (but it

can’t be used with the ‘new customer’ discount). Discount

amounts are added, if applicable.

 Scenario: A marketing company wishes to construct a

decision table to decide how to treat clients according to

three characteristics: Gender, City Dweller, and age group: A

(under 30), B (between 30 and 60), C (over 60). The

company has four products (W, X, Y and Z) to test market.

Product W will appeal to male city dwellers. Product X will

appeal to young males. Product Y will appeal to Female

middle aged shoppers who do not live in cities. Product Z

will appeal to all but older males.

 The three data attributes tested by the conditions in this

problem are

 gender, with values M and F;

 city dweller, with value Y and N; and

 age group, with values A, B, and C

 as stated in the problem.

Rules

Proc 1 2 3 4 5 6 7 8 9 10 11 12

Sex m f m f m f m f m f m f

City y y n n y y n n y Y n n

Age a a a a b b b b c c c c

Actions

Market 1 2 3 4 5 6 7 8 9 10 11 12

W x x X

X x X

Y X

Z x x x x x x x x X X

User Interface Design

Chapter 11

Overview

 Wherever there is flow there is interface.

 The blue print for a house (its architectural design) is not complete

without a representation of doors, windows, and utility connections for

water, electricity, telephone, cable TV etc. They are the interfaces through

which water, electricity, air, telephone signals, TV signals and people flow.

 The “doors, windows and utility connections” for software make up the

interface design of a system.

 The interface design focuses on 3 areas:

 Design of interfaces between software components

 Design of interface between the software and other non-human producers and

consumers of information i.e. other external entities. Sensors, alarms,

telephone lines

 Design of interface between a human and the computer.

 This chapter focuses on user interface design.

 It creates an effective communication medium between a human

and a computer.

 User interface design has as much to do with the study of people as

it does with technology issue.

 We have already seen what an interface is. Now we will see what

are the goals , what you are supposed to do, by doing what and

how.

Golden rules

 There are 3 golden rules based on which certain principles have been

defined to guide the software engineer in interface design. These 3

rules are

 Place the user in control. Rather than user feeling that software is

controlling the user let the user feel that he/she is in control. Then the

user will accept and use the software.

 Reduce the user’s memory load.

 Make the interface consistent.

 Place the user in control How do you do this? Follow certain principles.
1. Provide for flexible interaction. Different users have different interaction

preferences therefore provide choices. Save icon, ctrl S , File save. software
might allow a user to interact via keyboard commands, mouse movement, a
digitizer pen, a multi touch screen, or voice recognition commands.

2. Allow user interaction to be interruptible and undoable. (UPS). Allow user
to put something on hold (interrupt) for sometime and come back to it later
without losing what he has already done. Allow undo action.

3. Allow interaction to be customized. Design a macro mechanism for
advanced users.

4. Hide technical internals from the casual user. The user does not need to
know about the operating system or file structure. (e.g., a user should never
be required to type operating system commands from within application
software)

5. Design for direct interaction with objects that appear on the screen. Allow
dragging of corners to increase / decrease size.

6. Avoid unnecessary actions. Do not force the user to do unnecessary actions
i.e. allow him to make corrections through spell check.

 Reduce user’s memory load

1. Reduce demand on short term memory. Give visual cues to recognize

past actions. New windows as you select subfolders in Win NT.

2. Establish meaningful defaults and allow customization and reset.

3. Define shortcuts that are intuitive. Ctrl S for saving and Ctrl P for

printing. Mnemonics.

4. The visual layout of the interface should be based on a real world

metaphor. For example use exact layout of cheque for making

payment. Attendance sheet.

5. Disclose information in a progressive manner. The interface should be

organized hierarchically. Information about a task, object etc. is

presented first at a high level of abstraction. More detail should be

presented after the user indicates interest in details.

 Make the interface consistent.

1. Maintain consistency across a family of applications. Appearance,

options, mnemonics (shortcuts).

2. Do not make changes unless it is absolutely necessary. If ctrl s is used

for Saving do not change it to Scaling.

User Interface analysis and design

 We need to understand about

 who is going to interact,

 what the user will do,

 how he will do it and

 on which items (which objects) he will be doing it.

 Basically we need to identify real world objects and actions and

create models.

 We have to create 4 types of models –

 design model,

 user model,

 system perception and

 system image.

 The design model incorporates data, architectural, interface and
procedural representation of the software. Made by Software engineer.

 The user model is prepared by a human engineer. Basically we need to
establish profile of the end user of the system. This is called user model.
We need to get the information about age, gender, physical abilities,
education, cultural background, motivation, goals, personality of the users.
In addition users can also be categorized as

 Novices : No syntactic knowledge (syntax) and little semantic knowledge of
the application. Syntactic = mechanics of interaction. Semantic means
understanding of the underlying sense of the application.

 Knowledgeable, intermittent users Reasonable semantic knowledge of the
application but relatively low recall of syntactic information necessary to use
the interface.

 Knowledgeable frequent user. Good semantic and syntactic knowledge. Power
user.

 The system perception is the image of the system that end-users

carry in their heads. It will depend on the level of the user. It is also

called user’s mental model.

 The system image combines the outward manifestation of the

computer-based system (look and feel) coupled with all supporting

information like manuals, books, help files, video clips.

 Manuals, help files, video clips are all means through which user

interface with the system.

 The most important principle that you should remember while

designing the user interface is “ know the user, know the tasks”.

User Interface design process

 Like the overall framework activities of software engineering, there

are framework activities for interface design also. They are

1. Interface analysis and modeling.

2. Interface design –define set of objects and actions.

3. Interface construction – create prototype.

4. Interface validation. To check whether the interface meets the

requirements of the user and he/she accepts it.

 You have to carry out these activities in an iterative fashion. They can

be shown as a spiral model.

 Interface analysis focuses on the profile of the users who will interact with the
system.
 Skill level, business understanding, and general receptiveness to the new

system are recorded; and different user categories are defined. For each user
category, requirements are elicited. In essence, you work to understand the
system perception for each class of users.

 Once general requirements have been defined, a more detailed task analysis is
conducted.

 Those tasks that the user performs to accomplish the goals of the system are
identified, described, and elaborated Finally, analysis of the user environment
focuses on the physical work environment. Among the questions to be asked
are
 Where will the interface be located physically?

 Will the user be sitting, standing, or performing other tasks unrelated to the interface?

 Does the interface hardware accommodate space, light, or noise constraints?

 Are there special human factors considerations driven by environmental factors?

 The information gathered as part of the analysis action is used to create an
analysis model for the interface. Using this model as a basis, the design action
commences.

 The goal of interface design is to define a set of interface objects and

actions (and their screen representations) that enable a user to

perform all defined tasks in a manner that meets every usability goal

defined for the system.

 Interface construction normally begins with the creation of a

prototype that enables usage scenarios to be evaluated.

 Interface validation focuses on (1) the ability of the interface to

implement every user task correctly, to accommodate all task

variations, and to achieve all general user requirements; (2) the

degree to which the interface is easy to use and easy to learn, and (3)

the users’ acceptance of the interface as a useful tool in their Work.

Design Issues

 There are four major issues which surface during interface design.

They are

 response time,

 help facility,

 error information handling and

 menu and command labeling.

 Response time (from hitting of return key or clicking of a mouse to

desired output or action)

 It is the primary complaint for many interactive applications.

 Response time has 2 characteristics – length and variability.

 Too slow response time and too fast response time both are bad.

 Too fast a response time may force the user to take quick actions and

make mistakes.

 Variability (deviation from average response time) is also bad.

 It is more important than length.

 If the user knows the length of response time is long he knows when to

expect the result. If variability is more the user does not know what is

happening. Hour glass / progress bar.

 Help Facility

 It can be in form of printed manuals or online help.

 The online help can be integrated or add-on.

 An integrated help facility is designed into the software from the

beginning and context sensitive.

 This is more user-friendly and preferred over add-on help. Add-on help

is added after the system is developed. It is on-line user’s manual with

limited query facility.

 Lot of issues that come up regarding help facility are whether it is to be

given for all functions, how the user will get help (help menu, key etc),

is help flat or hierarchical, how will the user return to the normal

interaction, new window or a small part on the same window etc.

 Error information handling

 Error messages are the bad news delivered to the user when something

goes wrong.

 Error messages which impart useless or misleading information cause

frustration e.g. severe system failure – 14A.

 Error message should be explained in simple language that user can

understand, should contain constructive advice for recovering from the

error, indicate any negative consequences so that the user can take

corrective action, should be accompanied by visual or audible cue,

should not place blame on the user.

 Menu and command labeling.

 The typed command was once the most common mode of interaction between
user and system software and was commonly used for applications of every type.

 Today, the use of window-oriented, point-and pick interfaces has reduced
reliance on typed commands, but some power-users continue to prefer a
command-oriented mode of interaction.

 A number of design issues arise when typed commands or menu labels are
provided as a mode of interaction:
 Will every menu option have a corresponding command?
 What form will commands take? Options include a control sequence (e.g., alt-P),

function keys, or a typed word.
 How difficult will it be to learn and remember the commands?
 What can be done if a command is forgotten?
 Can commands be customized or abbreviated by the user?
 Are menu labels self-explanatory within the context of the interface?
 Are submenus consistent with the function implied by a master menu item?

 Application accessibility

 One also needs to remember that there are users with different abilities and hence

the accessibility has to be provided for people with different abilities (blind, hard of

hearing, physically handicapped etc).

 Internationalization.

 One more aspect that the software engineer needs to remember is that lot of

applications these days are used by users all over the world and in different

languages. Hence the user interface has to be designed keeping this point in mind.

WebApp Design

Chapter 13

WEBAPP DESIGN QUALITY

 Every person who has surfed the Web or used a corporate Intranet

has an opinion about what makes a “good” WebApp. Individual

viewpoints vary widely.

 Some users enjoy flashy graphics; others want simple text. Some

demand copious information; others desire an abbreviated presentation.

 Some like sophisticated analytical tools or database access; others like to

keep it simple.

 In fact, the user’s perception of “goodness” (and the resultant

acceptance or rejection of the WebApp as a consequence) might be

more important than any technical discussion of WebApp quality.

What are the major attributes of quality

for WebApps?
 Security : WebApps have become heavily integrated with critical

corporate and government databases. E-commerce applications extract and

then store sensitive customer information. For these and many other

reasons, WebApp security is dominant in many situations. The key measure

of security is the ability of the WebApp and its server environment to

refuse unauthorized access and/or prevent an outright malicious attack.

 Availability: Even the best WebApp will not meet users’ needs if it is

unavailable. In a technical sense, availability is the measure of the

percentage of time that a WebApp is available for use. The typical end user

expects WebApps to be available 24/7/365. Anything less is deemed

unacceptable. But “up-time” is not the only indicator of availability. Using

features available on only one browser or one platform” makes the WebApp

unavailable to those with a different browser/platform configuration. The

user will invariably go elsewhere.

 Scalability: Can the WebApp and its server environment be scaled

to handle 100, 1000, 10,000, or 100,000 users? Will the WebApp

and the systems with which it is interfaced handle significant

variation in volume or will responsiveness drop dramatically (or

cease altogether)? It is not enough to build aWebApp that is

successful. It is equally important to build a WebApp that can

accommodate the burden of success (significantly more end users)

and become even more successful.

 Time-to-market: Although time-to-market is not a true quality

attribute in the technical sense, it is a measure of quality from a

business point of view. The first WebApp to address a specific market

segment often captures a disproportionate number of end users.

DESIGN GOALS
 Simplicity:

 There is a tendency among some designers to provide the end user with
“too much”—exhaustive content, extreme visuals, intrusive animation,
enormous Web pages, the list is long. Better to strive for moderation and
simplicity.

 Content should be informative but succinct and should use a delivery
mode (e.g., text, graphics, video, audio) that is appropriate to the
information that is being delivered.

 Aesthetics should be pleasing, but not overwhelming (e.g., too many
colors tend to distract the user rather than enhancing the interaction).

 Architecture should achieve WebApp objectives in the simplest possible
manner.

 Navigation should be straightforward and navigation mechanisms should
be intuitively obvious to the end user.

 Functions should be easy to use and easier to understand.

 Consistency: This design goal applies to virtually every element of

the design model. Content should be constructed consistently (e.g.,

text formatting and font styles should be the same across all text

documents; graphic art should have a consistent look, color scheme,

and style). Graphic design (aesthetics) should present a consistent

look across all parts of the WebApp. Architectural design should

establish templates that lead to a consistent hypermedia structure.

Interface design should define consistent modes of interaction,

navigation, and content display. Navigation mechanisms should be

used consistently across all WebApp elements. As Kaiser [Kai02]

notes: “Remember that to a visitor, a Web site is a physical place. It is

confusing if pages within a site are not consistent in design.“

 Identity: The aesthetic, interface, and navigational design of a

WebApp must be consistent with the application domain for which it

is to be built. A website for a hiphop group will undoubtedly have a

different look and feel than a WebApp designed for a financial

services company. The WebApp architecture will be entirely

different, interfaces will be constructed to accommodate different

categories of users; navigation will be organized to accomplish

different objectives. You (and other design contributors) should work

to establish an identity for the WebApp through the design.

 Robustness: Based on the identity that has been established, a

WebApp often makes an implicit “promise” to a user. The user

expects robust content and functions that are relevant to the user’s

needs. If these elements are missing or insufficient, it is likely that

the WebApp will fail.

 Navigability: I have already noted that navigation should be simple and
consistent. It should also be designed in a manner that is intuitive and predictable.
That is, CHAPTER 13 WEBAPP DESIGN 377 uote: “Just because you can,
doesn’t mean you should.” Jean Kaiser uote: “To some, Web design focuses on
visual look and feel . . . To others, Web design is about structuring information
and navigation through the document space. Others might even consider Web
design to be about the technology . . . In reality, design includes all of these things
and maybe more.”

 Thomas Powell the user should understand how to move about the WebApp
without having to search for navigation links or instructions. For example, if a
field of graphic icons or images contains selected icons or images that will be used
as navigation mechanisms, these must be identified visually. Nothing is more
frustrating than trying to find the appropriate live link among many graphical
images.

 It is also important to position links to major WebApp content and functions in a
predictable location on every Web page. If page scrolling is required (and this is
often the case), links at the top and bottom of the page make the user’s navigation
tasks easier.

 Visual Appeal: Of all software categories, Web applications are

unquestionably the most visual, the most dynamic, and the most

unapologetically aesthetic. Beauty (visual appeal) is undoubtedly in

the eye of the beholder, but many design characteristics (e.g., the

look and feel of content; interface layout; color coordination; the

balance of text, graphics, and other media; navigation mechanisms)

do contribute to visual appeal.

 Compatibility: A WebApp will be used in a variety of

environments (e.g., different hardware, Internet connection types,

operating systems, browsers) and must be designed to be

compatible with each.

A DESIGN PYRAMID FOR WEBAPPS

 WEBAPP INTERFACE DESIGN: Although WebApps present a

few special user interface design challenges.

 The user may enter the WebApp at a “home” location (e.g., the

home page) or may be linked into some lower level of the

WebApp architecture.

 In some cases, the WebApp can be designed in a way that

reroutes the user to a home location, but if this is undesirable,

the WebApp design must provide interface navigation features

that accompany all content objects and are available regardless

of how the user enters the system.

 Navigation menus—keyword menus (organized vertically or

horizontally) that list key content and/or functionality.

 Graphic icons—button, switches, and similar graphical images that

enable the user to select some property or specify a decision.

 Graphic images—some graphical representation that is selectable by

the user and implements a link to a content object or WebApp

functionality.

 AESTHETIC DESIGN: Aesthetic design, also called graphic design, is an

artistic endeavor that complements the technical aspects of WebApp

design. Without it, a WebApp may be functional, but unappealing.

 But what is aesthetic? There is an old saying, “beauty exists in the eye of the

beholder.” This is particularly appropriate when aesthetic design for

WebApps is considered. To perform effective aesthetic design, return to

the user hierarchy developed as part of the requirements model and ask,

Who are the WebApp’s users and what “look” do they desire?

 Layout Issues

 Don’t be afraid of white space

 Emphasize content

 Organize layout elements from top-left to bottom-right

 Group navigation, content, and function geographically

within the page.

 Don’t extend your real estate with the scrolling bar

 Consider resolution and browser window size when

designing layout

 Graphic Design Issues:

 Graphic design considers every aspect of the look and feel of a

WebApp. The graphic design process begins with and proceeds

into a consideration of global color schemes; text types, sizes, and

styles; the use of supplementary media (e.g., audio, video,

animation); and all other aesthetic elements of an application.

 NAVIGATION DESIGN: Once the WebApp architecture has been
established and the components (pages, scripts, applets, and other
processing functions) of the architecture have been identified, you must
define navigation pathways that enable users to access WebApp content and
functions. To accomplish this, you should (1) identify the semantics of
navigation for different users of the site, and (2) define the mechanics
(syntax) of achieving the navigation.

 Navigation Semantics: Each actor may use the WebApp somewhat
differently and therefore have different navigation requirements

 Navigation Syntax:
 Individual navigation link
 Horizontal navigation bar
 Vertical navigation column
 Tabs
 Site maps

