
SE UNIT 2

Chapter 5 Requirements Engineering

 The step we generally know as analysis is also known as
Software Requirements Engineering.

 It is a systematic and disciplined approach to deal with
requirements.

 It helps software engineers to better understand the problem
they will work to solve.

 It consists of tasks that lead to an understanding of what the
business impact of software will be, what the customer wants,
and how the end-users will interact with the software.

 The software engineer and customer play an active role in this
activity and the software engineer acts as interrogator,
consultant, problem solver and negotiator.

 The activity may appear to be simple but it is not since the
communication content is very high.

Requirements Engineering Tasks

 The software requirements activity is accomplished

through the execution of following seven distinct

functions:

1. Inception

2. Elicitation

3. Elaboration

4. Negotiation

5. Specification

6. Validation

7. Management

1. Inception : (Start, beginning). How does a software
project get started?

 Sometimes a casual discussion results into a major
software development project. But, in most of the cases
the software development projects begin when a business
need is identified or a potential new market or service is
discovered.

 Analyst establish

◼ A basic understanding of problem

◼ People who want a solution

◼ Nature of the solution

◼ Effectiveness of communication and collaboration required

with stakeholders

2. Elicitation : (drawing out, extracting, obtaining)

 Requirements elicitation is the process of getting
requirements from the customer.

 It appears to be simple and easy but it is not.

 Difficulties faced are

◼ problems of scope (boundary is ill-defined or customers give
unnecessary details),

◼ problems of understanding (customers not clear about the
capability of computing environment, having problem in
communicating, omit information that is obvious, give conflicting
requirements etc.) and

◼ problems of volatility (change).

3. Elaboration : (Expansion, amplification, explanation)

 The information obtained from the customer during inception and
elicitation is expanded and refined during elaboration.

 It focuses on developing a refined technical model of software
functions, features and constraints.

 It is basically an analysis modeling action i.e. you make analysis
models like ERD, DFD, STD.

4. Negotiation :

 Lot of times customers / end users ask for more than what can be
given with the resources available (time, money, manpower).

 There may be conflicting requirements from different users also. There
is a need for the negotiation process in such cases to reconcile
(resolve, settle) the conflicts.

 Using an iterative process the requirements are eliminated, combined,
and / or modified so that each party achieves some measure of
satisfaction.

5. Specification : Whatever requirements the requirement engineer

has elicited, elaborated and finalized after negotiations so far

have to be put in a form which can be used by others to take the

work ahead.

• That process is called specification process.

• The output of that process is called Specification. It can be

a written document, a formal mathematical model, a

collection of usage scenarios, a prototype or any

combination of these.

• It serves as the foundation for subsequent software engineering

activities like design, development, testing etc.

6. Validation : (Confirmation)

 Lot of work products are produced as a consequence of

requirements engineering.

 It is necessary to assess the quality of these work products.

 Their quality is assessed through the step of validation.

 It examines the specification to ensure that all requirements

have been stated unambiguously (clearly), that

inconsistencies, errors and omissions are detected and

resolved, and that work products conform to the standards.

 Validation is done through FTR (formal technical review).

7. Requirement Management :

 Requirements management is a set of activities that help

the project team identify, control, and track requirements

and changes to requirements at any time as the project

proceeds.

 Each requirement is assigned a unique identifier

Establishing the ground work (Inception)

 Starting the requirements engineering process and successfully
completing it is very difficult.

 In an ideal setting, customers and software engineers work
together on the same team.

 In such cases, requirements engineering is simply a matter of
conducting meaningful conversations with colleagues who are
well-known members of the team.

 But reality is often quite different. Customers may be located in
a different city or country, may have only a unclear idea of
what is required, may have conflicting opinions about the system
to be built, may have limited technical knowledge and limited
time to interact with the requirements engineer.

 None of these things are desirable but they do exist and the
engineer has to deal with it. How do you start the process in
such a situation?

 Identify the stakeholders – anyone who benefits in a direct
or indirect way from the system. Keep expanding this list
and ensure that you get contribution from all of them since
all of them will have different views and requirements.

 Recognize Multiple view points. The multiple view points in
lot of cases will be conflicting with each other. So
categorize these conflicting, multiple view points to arrive
at some decision.

 Work toward collaboration. Try to work as a team. A
team tries to achieve the main objective by following the
philosophy of give and take rather than insisting on sticking
to one’s own ideas.

 First, start with context-free questions to “break the ice”.

 These questions will lead to basic understanding of the
problem, the people who want a solution, the nature of
solution that is desired and the effectiveness of the first
encounter itself.

 Some of these questions could be
 Who is behind the request for this work?

 Who will use the solution?

 What will be the economic benefit?

 Are you the right person to answer these questions? Are your answers
official?

 Are my questions relevant to the problem you have?

 Can anyone else provide additional information?

 Should I be asking you anything else?

Eliciting Requirements

 The style of collecting information discussed above is
not very effective.

 There is always a feeling of “us and them” in this kind
of meetings.

 So this technique is OK for the first meeting but then
one can go for team oriented approach called
Collaborative Requirements Gathering.

 In this approach a joint team of customers and
developers is formed to identify the problem, propose
elements of the solution, negotiate different
approaches and specify a preliminary set of solution
requirements.

 Conducted at a neutral site.

 Rules for preparation and participation are established.

 Agenda is suggested that is formal enough to cover all

important points but informal enough to encourage the free

flow of ideas.

 A facilitator (a customer, a developer or an outsider)

controls the meeting.

 A definition mechanism is used.(work sheets, flip charts etc)

 What should happen and how it should happen before and

during a meeting is also decided.

 Before a meeting

 A meeting place, time and date are selected and a facilitator is

chosen.

 Attendees from the development team and customer

organizations are invited to attend and the product request is

distributed to all attendees before the meeting date.

 Each attendee is requested to make a list of objects, services,

constraints and performance criteria.

◼ Objects : That are part of the environment in which the system operates,

that are to be produced and that are used by the system.

◼ Services : Processes or functions that interact with the objects.

◼ Constraints : cost , size, business rules.

◼ Performance :Speed , accuracy etc.

 During meeting

 First point is need and justification of the product.

 Each participant presents his/her list for discussion. Critique and
debate are strictly prohibited at this stage.

 A combined list is created (no deletion is allowed).

 Discussion starts and a consensus lists (for objects, services,
constraints, performance) are created.

 Team is divided into smaller sub teams and each works to
develop mini-specifications for each item on the consensus list.

 Mini-specs are then presented to the whole team and discussed.

 A list of validation criteria is prepared.

 One person is assigned to write the complete draft
specification.

Quality Function Deployment (QFD)

 After the meeting one can do Quality Function Deployment
(QFD) for requirements.

 It is a Quality management technique.

 It emphasizes an understanding of what is valuable to the
customer.

 If we give it to the customer the customer will be happy i.e.
better quality.

 QFD identifies 3 types of requirements

 Normal requirements: Explicitly stated requirements.

 Expected requirements: Implicit requirements. Absence will be
cause for dissatisfaction.

 Exciting requirements: they go beyond the customer’s
expectations and prove to be very satisfying.

 Elicitation work products

 At the end of the elicitation step there will be few work
products depending on the size of the project. Some of
these work products are:

 A statement of need and feasibility

 A bounded statement of scope for the system (how many guests,
how many items and what type of service?)

 A list of customers, users and other stakeholders who
participated in requirements elicitation.

 A description of system’s technical environment

 A list of requirements and constraints that apply

 A set of usage scenarios (withdrawal of money from ATM,
opening of a new SB account etc)

 Any prototypes developed to better define requirements

Part of Elaboration : Use-cases

 A system will have number of functionalities.

 Those functionalities will be useful in different situations.

 Use-cases describe how the system will be used in a given situation.

 The system will be used by people or devices. They are called actors.

 Basically use-cases are written narratives that describe the role of an
actor.

 How to write a use case

 Define a set of actors. Anything that communicates with the system.

 Every actor has one or more goals when using system.

 It is an iterative process so not all actors are defined during the first iteration.

 Primary actors during first iteration and secondary actors during later
iterations.

 Secondary actors support the system so that primary actors can do their
work.

 Questions that should be answered by a use case are as follows :

 Who is the primary actor, the secondary actor (s)?

 What are the actor’s goals?

 What preconditions should exist before the story begins? Withdraw
money – card valid, pin right.

 What main tasks or functions are performed by the actor?

 What extensions might be considered as the story is described?
Balance not enough, time out.

 What variations in the actor’s interaction are possible?

 What system information will the actor acquire, produce, or change?

 Will the actor have to inform the system about changes in the
external environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected changes?

 Does each requirement have attribution? That is, is a source
(generally, a specific individual) noted for each requirement?

 Do any requirements conflict with other requirements?

 Is each requirement achievable in the technical environment that
will house the system or product?

 Is each requirement testable, once implemented?

 Does the requirements model properly reflect the information,
function, and behavior of the system to be built?

 Has the requirements model been “partitioned” in a way that
exposes progressively more detailed information about the
system?

 Have requirements patterns been used to simplify the
requirements model?

 Have all patterns been properly validated? Are all patterns
consistent with customer requirements?

Typical Contents of a Software

Requirements Specification
 Requirements

 Required states and modes
 Software requirements grouped by capabilities (i.e.,

functions, objects)
 Software external interface requirements
 Software internal interface requirements
 Software internal data requirements
 Other software requirements (safety, security, privacy,

environment, hardware, software, communications, quality,
personnel, training, logistics, etc.)

 Design and implementation constraints

 Requirements traceability
 Trace back to the system or subsystem where each

requirement applies

Chapter 7: REQUIREMENTS

MODELING

 There are two views of requirements modeling:

 Structured analysis or conventional view: considers data
and the processes that transform the data as separate
entities.

 Data objects are modeled in a way that defines their
attributes and relationships.

 Processes that manipulate data objects are modeled in a
manner that shows how they transform data as data objects
flow through the system.

 Object-oriented analysis, focuses on the definition of
classes and the manner in which they collaborate with one
another to effect customer requirements

Flow Oriented Modeling

 Although data flow-oriented modeling is perceived as an outdated technique by
some software engineers, it continues to be one of the most widely used
requirements analysis notations in use today.

 Although the data flow diagram (DFD) and related diagrams and information are
not a formal part of UML, they can be used to complement UML diagrams and
provide additional insight into system requirements and flow.

 The DFD takes an input-process-output view of a system.

 Data objects flow into the software, are transformed by processing elements, and
resultant data objects flow out of the software.

 Data objects are represented by labeled arrows, and transformations are
represented by circles (also called bubbles).

 The DFD is presented in a hierarchical fashion. That is, the first data flow model
(sometimes called a level 0 DFD or context diagram) represents the system as a
whole. Subsequent data flow diagrams refine the context diagram, providing
increasing detail with each subsequent level.

 Guidelines for DFD

 (1) the level 0 data flow diagram should depict the software,/system

as a single bubble

 (2) primary input and output should be carefully noted

 (3) refinement should begin by isolating candidate processes, data

objects, and data stores to be represented at the next level

 (4) all arrows and bubbles should be labeled with meaningful names

 (5) information flow continuity must be maintained from level 1 to level

2

 (6) one bubble at a time should be refined.

Chapter 8 Design Concepts

 Once the step of analysis is completed (i.e. requirements
engineering is done) we have to perform the design
activity.

 Design is a meaningful engineering representation of
something that is to be built.

 It is the place where creativity rules.

 It is where customer requirements, business needs and
technical considerations all come together in the formulation
of a product or a system.

 Design is the first technical activity (other two are coding
and testing) required to build and verify the software. It
sits at the technical kernel of software engineering.

Design Process and Design Quality

 Design activity is extremely important in software engineering as
the quality of software (and hence ultimately customer
satisfaction) depends to a large extent on this activity.

 If quality of design is good then the quality of software will be
good.

 Software design is an iterative process. Initially the design is
represented at a high level of abstraction (generalization,
concept, idea). As design iterations occur, subsequent refinement
leads to lower level of abstraction.

 Since design has direct impact on quality of the final software
we have to continuously assess the quality through FTRs or
walkthroughs.

 We need some guidelines or characteristics to evaluate the
design. The characteristics you can look for evaluation are:

1. Whether the design takes care of all explicit and

implicit requirements or not.

2. Whether it is readable and understandable to

those who are going to generate code based on

this, test the software and support the software.

3. Whether it gives complete picture of the software

(i.e. addresses data, functional and behavioral

domains) from an implementation point of view.

Quality Attributes

 You can also check the design model for following attributes
suggested by Hewlett Packard to evaluate the quality of the
design model. They are known by their acronym FURPS.

 Functionality, Usability, Reliability, Performance, Supportability.

 Functionality – feature set and program capabilities

 Usability – human factors (aesthetics, consistency, documentation)

 Reliability – frequency and severity of failure

 Performance – processing speed, response time, throughput,
efficiency

 Supportability – maintainability (extensibility, adaptability,
serviceability), testability, compatibility, configurability

 Not all of these attributes are equally important for all
applications. Their importance will depend on the type of
application.

Design concepts

 Some of the important design concepts that we need to

know and understand to produce a good design are as

follows:

 abstraction—data, procedure, control

 architecture—the overall structure of the software

 patterns—”conveys the essence” of a proven design solution

 modularity—compartmentalization of data and function

 Information hiding—controlled interfaces

 Functional independence—single-minded function and low coupling

 refinement—elaboration of detail for all abstractions

 Refactoring—a reorganization technique that simplifies the design

Abstraction

 Abstraction is one of the fundamental ways that we as

humans cope up with complexity.

 It is the idea of looking at a problem and the solution at

the highest level using general terminology and then

moving down slowly towards the implementation details.

 The different levels at which we see the problem and

solution are called different levels of abstractions.

 We go to different levels of abstraction by the process of

refinement.

 As we move through different levels of abstraction we

work to create procedural and data abstractions.

 A procedural abstraction is a named sequence of instructions that has a
specific and limited function.

 For example Calculate salary can be refined into get attendance data,
calculate net basic, calculate net DA, calculate net HRA, calculate gross,
calculate PF, calculate professional tax, calculate loan deduction, calculate
total deduction, calculate net salary etc. to get a lower level of abstraction.

 Then each of them can (for example how to calculate net basic) be refined
further to get one more lower level of abstraction.

 Data abstraction is a named collection of data that describes a data
object.

 By refining the data object we get to the lower level of data abstraction.

 For example when you refine a data object called door you get its attributes
like door type (revolving, sliding, normal), swing direction (in ,out, both) ,
weight, dimensions (LWH) etc. i.e. you are going to lower level of abstraction.

Procedural Abstraction

open

implemented with a "knowledge" of the

object that is associated with enter

details of enter
algorithm

Data Abstraction

door

implemented as a data structure

manufacturer
model number
type
swing direction
inserts
lights

type
number

weight
opening mechanism

Architecture

 Architecture is:

- structure of program components

- the manner in which these components interact

- structure of data that are used by the components

Design Patterns

 A pattern is a named piece of insight which conveys the

essence of a proven solution to a recurring problem within a

certain context

 A design pattern describes a design structure that solves a

particular design problem within a specific context

 The intents are to determine :

- whether the pattern is applicable to the current work

- whether the pattern can be reused

- whether the pattern can serve as a guide for developing

a similar , but functionality or structurally different pattern

Separation of concerns

 Break up a large problem in smaller parts.

 Any complex problem is solvable by subdividing it into pieces that can be
solved independently.

 The perceived complexity of two problems when they are combined is
often greater than the sum of perceived complexity when each is taken
separately.

 This leads to divide and conquer strategy.

 If there are two problems p1 and p2 with complexity of p1 greater
than that of p2 [i.e. c(p1) > c(p2)] then the effort required to solve the
problem p1 will be more than that of p2 [i.e. E(p1) > E(p2)].

 If these two problems are combined to make one problem p1 + p2 then
people feel that the complexity of combined problem is more than the
sum of individual complexities i.e. c(p1 + p2) > c(p1) + c(p2).

 Hence the same rule is applied for effort requirement. E(p1 + p2) >
E(p1) + E(p2).

Modularity

 Modularity is the concept of breaking up a problem into separately
named and addressable components (modules) that can be integrated to
satisfy the problem requirement.

 It is always easier to solve smaller components of a problem and then
integrate the components to get the solution to the problem.

 So people like to divide the problem and then conquer it. But how much
division should be there?

 Breaking up the problem into smaller and smaller parts will make the
effort required for every part very small but the effort required to
integrate the parts will start increasing as number of parts grows.

 There is a total cost or effort curve that can help us in deciding the ideal
number of modules. Figure 8.2 page 226. X axis – no of modules. Y
axis cost or effort of development and integration.

Information Hiding

 Modules should be specified and designed so that information
(procedure and data) contained within one module is
inaccessible to other modules that have no need for such
information.

 Abstraction helps to define the procedural entities that make up
the software.

 (Partitioning of books in the library should be such that books
required for only BCA are hidden from the view of MCA
students and vice versa.)

 The use of information hiding as a design criterion for modular
systems provides the greatest benefits when modifications are
required during testing and later during software maintenance.

 Because most data and procedural detail are hidden from other
parts of the software, inadvertent errors introduced during
modification are less likely to propagate to other locations
within the software.

Functional Independence

 Everybody understands the importance of modularity in general
and hence tries to solve every problem by breaking it up into
number of modules.

 A modular design reduces complexity, facilitates change and
results in easier implementation by encouraging parallel
development of different parts of the system.

 When a system is modularized the modules should be
functionally independent.

 This functional independence can be achieved by developing
modules with “single minded” function and dislike to excessive
interaction with other modules.

 In other words each module should address a specific sub-
function of requirements and should have a simple interface
(flow of information between modules should be less).

 Independent modules are easier to develop/maintain/test

and error propagation is reduced.

 Functional independence is a key to good design and design

is the key to software quality.

 How do you measure functional independence? There are two

qualitative criteria cohesion and coupling.

COHESION - the degree to which a
module performs one and only one
function.

COUPLING - the degree to which a
module is "connected" to other
modules in the system.

 Cohesion

 Cohesion (unity, hanging together) is a natural extension of

the information hiding concept.

 A cohesive module performs a single task within a software

procedure, requiring little interaction with procedures being

performed in other parts of a program.

 A cohesive module should ideally do just one thing.

 (Teaching team for MCA should be cohesive i.e. should not

teach BCA subjects or teach at other institutions or do

something else. MCA teaching team is hidden from BCA

students.)

 Coupling

 Coupling is a measure of interconnection among modules in

a software structure.

 In software design we try for lowest possible coupling.

 Simple connectivity among modules results in software that

is easier to understand and less prone to a “ripple effect”,

caused when errors occur at one location and propagate

through a system.

Refactoring

 It is a reorganization technique that simplifies the design (or
code) of a component without changing its function or behavior.

 Another definition is refactoring is the process of changing a
software system in such a way that it does not alter the external
behavior of the component yet improves its internal working.

 when software is refactored, the existing design is examined for

 redundancy,

 unused design elements,

 inefficient or unnecessary algorithms,

 poorly constructed or inappropriate data structures, or

 any other design failure that can be corrected to yield a better
design.

 Breaking up of a non-cohesive component into 2 or 3 cohesive
parts.

Object-oriented design concepts

 OO concepts:

- classes

- objects

- inheritance

- message passing

- polymorphism

Chapter 9 Architectural Design

 What is software Architecture of a computing system?

 It is

◼ the structure of the system consisting of its various components,

◼ the externally visible properties of those components and

◼ the relationships among them.

 At the architectural level internal properties like details of
algorithms are not specified. They come at component level.

 The architecture is a representation that enables you to

◼ analyze the effectiveness of the design in meeting its stated
requirements

◼ consider architectural alternatives at a stage when making design
changes is still relatively easy

◼ reduce the risks associated with the construction of the s/w.

Architectural styles

 Each style describes a system category that encompasses:

1. a set of components (e.g., a database, computational modules) that perform

a function required by a system,

2. a set of connectors that enable “communication, coordination and

cooperation” among components

3. constraints that define how components can be integrated to form the system,

and

4. semantic models that enable a designer to understand the overall properties

of a system by analyzing the known properties of its constituent parts.

 An architectural style is a transformation that is imposed on the design of

an entire system.

 Out of millions of computer-based systems developed so far in the last 50

years the vast majority can be categorized into one of a relatively small

number of architectural styles. They are as follows:

Taxonomy of architectural styles

 Data-centered architecture:

 A data-store like a file or a database resides at the center of
this architecture and is accessed frequently by other components
that update, delete, or otherwise modify data within the store.

 The means of communication distinguishes the two subtypes:

 repository and blackboard

 Repository: a client sends a request to the system to perform a
Necessary action (eg insert date)

 Blackboard: The system sends notification and data to
subscribers when data of interest changes, and is thus active

 This style promotes integrability i.e. existing components can be
changed and new client components can be added to the
architecture without concern about other clients since the client
components operate independently.

 Data-flow architecture

 This architecture is applied when input data are to be transformed through a
series of computational or manipulative components into output data.

 This style can be described as a pipe and filter pattern. Components are called
filters.

 They transform data and transmit them through the pipes to the next filter.

 Each filter works independently of those components upstream and downstream.

 It expects data input in a certain form and generates output of a specified form.

 It does not require knowledge of the working of its neighboring filters. (Seems like
assembly line. Result processing software for B Sc ?).

 If the data flow degenerates into a single line of transforms, it is termed batch
sequential. This pattern accepts a batch of data and then applies a series of
sequential components (filters) to transform it. (Result processing for lower
standards. All students study the same subjects.)

 (There is no data flow in data-centered architecture. Data stay in the center they
do not flow.)

 Call and return architecture

 When one requires flexibility to modify the program
structure one can use this type of architecture. There are
number of sub-styles in this type of architecture like

 Main program / subprogram architectures where the
program structure is decomposed into a control
hierarchy i.e. a main program invokes a number of
program components which in turn may invoke still other
components. MS Word or Excel?

 Remote procedure call architectures where the
components of the main program / subprogram are
distributed across multiple computers on a network.

 Object oriented architectures

 The components of a system encapsulate data and the

operations that must be applied to manipulate the data.

Communication and coordination between components is

accomplished by message passing.

 Layered architectures

 In this architecture a number of different layers are

defined, each accomplishing operations that

progressively become closer to the machine instruction

set.

 At the outer layer, components service user interface

operations. At the inner layer, components perform

operating system interfacing. Intermediate layers

provide utility services and application software

functions. (OS?)

