
Unit 4
Systems Engineering
and Quality Assurance

Introduction of SEQA

 The quality of a system depends on its
◦Design
◦Development
◦Testing
◦Implementation

 A weakness in any of these areas will seriously risk the quality
and therefore the value of the system to the users.

Design Objectives
 The two main objectives of design are
Reliability:
◦The first is that the system is meeting the right requirements.
◦The second level of reliability involves the actual working of the system
delivered to the user.

Maintainability:
◦When systems are installed, they generally are used for long periods. The
average life of a system is 4 – 6 years with the oldest applications often in
use for over 10 years.

Program Structure Charts
Well-structured designs improve the maintainability of a system.

The modules should be designed such that they have minimal effect
on other modules in the system.

The connections between modules are limited and the interaction of
data is minimal.

Hence, we need to show the relationships between modules of a
system.

The tool used to show this relationship visually is called structure
charts.

Notation of Structure Charts
 A common notation is used in the construction of structure charts for
ease of communication among systems developers.

1. Program modules are identified by rectangles with the name
written inside the rectangle.

2. Arrows indicate calls between modules.

 3. Annotations (comments, remarks, notes) on structure
charts indicate the parameters that are passed and the
direction of data movement.

Selection Notation Iteration Notation

 The principles of good software design are as
follows
◦Modularity and partitioning
◦Coupling
◦Cohesion
◦Span of control
◦Size
◦Shared use

Modularity and partitioning
 Modularity and partitioning means each system should
consist of number of modules and they should be arranged
in a hierarchy.

 Design structure in top-down fashion with modules
performing specific function.

 We start at the top with general understanding and
gradually move down to levels of greater details.

 This is called stepwise enhancement.

Example

Example

Coupling
 Coupling refers to the strength of relationship
between modules in a system.

 Coupling is a measure of interconnection among
modules in a program structure.
◦High Coupling
◦Low Coupling

High Coupling / Tight Coupling
 These type of systems have interconnections with
program units dependent on each other.

 Changes to one subsystem leads to high impact on the
other subsystem.

Edit
Vendor Record

Retrieve
Vender Record

Vendor Name
Vendor Id
Vendor Address
Date

Vendor
Record
EOF

Low Coupling / Loose Coupling
 These type of systems are made up of
components which are independent or almost
independent.

 A change in one subsystem does not affect any
other subsystem.

Edit
Vendor
Record

Retrieve
Vender Record

Vendor Id
Vendor
Record
EOF

Advantages of Loose Coupling over
High Coupling
◦Loose coupling minimizes the interdependence
between.
◦Control the number of parameters passed between modules.

◦Avoid passing unnecessary data to called modules.
◦Pass data only when needed.
◦Maintain superior / subordinate relationship between
called and calling modules.
◦Pass data , not control information.

Edit
Vendor
Record

Retrieve
Vender
Record

Vendor
Record
EOF

Edit
Vendor
Record

Retrieve
Vender
Record

Vendor Id
Vendor
Record
EOF

Instead

Poor Good

Vendor
Name
Vendor Id
Vendor
Address
Date

Cohesion
 Cohesion is the indication of the relationship within
module.

 Cohesion shows the module’s relative functional
strength. It defined as the degree to which all
elements of a module, class, or component work
together as a functional unit.

Coupling and Cohesion

 Span of control refers to the number of subordinate
modules controlled by a calling module.

 In general, we should seek to have no more than 5 – 7
subordinate modules.

 Module size refers to the size of the module in terms
of number of instructions. It will depend on the
generation of the language (2nd, 3rd, 4th) and specific
language within that generation (COBOL, C , Java).

 Shared Modules refers to having one module do a
job that is required frequently by number of modules
and then sharing it (example data validation).

Software Testing
 “Software testing is the process of finding
defects in the software so that these can be
debugged and the defect-free software can
meet the customer needs and expectations.”

If developer tests the system independent tester
Understands the
system
but, will test
"gently"
and, is focused on
"delivery"

Must learn about the system,

but, will attempt to break it

and, is focused on
“quality”

Software Testing Strategies

Unit Testing:

● Unit Testing is a level of the software testing process where
individual units/components of a software/system are tested.

● The purpose is to validate that each unit of the software
performs as designed.

● Unit testing focuses verification effort on the smallest unit of
software design – the software component.

● Who performs it?
● Unit Testing is normally performed by software developers.

In rare cases it may also be performed by independent
software testers.

Example of Unit Testing with Login
Page

Integration Testing

● Once parts work properly we have to integrate
them to get the whole system.

● But there is no guarantee that the integrated
system will work properly since parts are
working properly. That is why we need
integration testing.

Example of Banking System

Withdraw
from Bank

Types of integration testing:
● For integration there are two approaches:

● “big bang” / non-incremental
● Incremental

Big-Bang Approach

 Tester have to Wait for all
modules to developed.

 It is time Consuming

 If bugs are there it is difficult
to trace root cause of bugs

Incremental Approach
 In incremental approach the program is constructed
and tested in small increments, where errors are
easier to isolate and correct and interfaces are tested
more completely.

 If current balance and transfer modules are ready then we can test
those two modules.

 Top down approach: A module that can accept data or pass
data that module is converted to Stub.

 Bottom Up approach: A module that is calling
modules that module is converted to Driver.

Validation testing
● This testing focuses on user visible action and

user- recognizable output from the system

● Software Requirement Specification (SRS)

describes all user-visible attributes of the software

and contains a validation criteria section that

forms the basis for a validation testing approach

System testing
● The software is tested with system elements as a whole. Types of

system testing:

1) Recovery testing

2) Security testing

3) Stress testing

4) Performance testing

5) Deployment Testing

 1) Recovery testing:

This testing refers to intentionally failing the system by creating a data loss event and
then to see whether and how fast the recovery is possible.

This will test the recovery plans and procedures and may lead to corrections in the
same.
2) Security testing:
It attempts to verify that protection mechanisms built into a system, protect it from
improper access or entry in the system.
The tester plays a role of the individual who desires to access the system.
3) Stress testing:
Stress tests are designed to confront programs with abnormal situations
 Stress testing executes a system in a manner that demands resources in abnormal
quantity, frequency and volume

4) Performance testing:

● Performance testing is designed to test the run time performance of s/w

within the context of an integrated system

5) Deployment Testing:

● In many cases, software must execute on a variety of platforms and under

more than one operating system environment.

Designing test data
 There are two very different sources of test data, live and artificial. Both have distinct advantages
and disadvantages for the user.

 Live test data are those that are actually extracted from organization files. This will test the system
for its normal operation. Since this is typical data it does not test all the combinations and the bias
towards the typical data does not provide a true system test. It ignores the cases most likely to cause
system failures.

 Artificial data are created solely (only, exclusively) for test purposes. They can be quickly prepared by
using a data generating utility program and make possible the testing of all logic and control paths
through the program.

Unit 4
Managing System Implementation

Introduction

•Analysts responsible for implementation must pay
attention to every minute (small, tiny) detail.

•There are three main aspects of implementation.
•Training personnel

•Conversion procedures

•Post-implementation review

Training methods

• The training of operators and users can be achieved in several different ways.

• The training activities may take place at vendor locations; at rented facilities
(hotels/training institutes/universities); or in-house at employees’ organizations.

Vendor and In-service training
•As the name suggests this training takes place at vendor
location.
•The equipment may be specially kept for training and hence
there may not be rush to finish off training fast so that it can
be utilized for production purpose.
•Sometimes this training is provided by the vendor without
any extra charge.
•In case of special software like RDBMS or ERP package
sending personnel to off-site short term courses providing
in-depth training is preferable to in-service training.

•There is an additional advantage of interaction with users
from other organizations and sharing of questions,
problems and experiences with them.

•The only disadvantage is that it involves additional time
and costs for travel to other cities if they are not offered
in your own city.

In-house training

•As the name suggests this is the training given to the users
in their on organizations (also called on-site training).

•The advantages are that the training can be personalized to
the organization’s needs and setting, fees can be negotiated
and made more economical and the organization can
involve more people since traveling may not be required.

•The biggest disadvantage is that the employees are in their
own organization and hence there may be distractions like
telephone calls and emergencies.

Conversion

•Conversion is the process of changing from the old system
to the new one. The analyst needs to know the methods
of performing system conversion and the procedures
used to ensure that it is performed properly.

•There are four methods of handling a system conversion.

•Parallel systems

•Direct cutover

•Pilot approach

•Phase-in method

•Parallel Systems

•The most secure method of converting from an old system
to a new system is to run both systems in parallel.

•Users continue to operate the old system in the usual
manner but they also start using the new system.

•This method is the safest approach, since it guarantees that
in case of any problem in the new system the organization
can still fall back to the old system without loss of time,
revenue or service.

•The system costs double, since there are two sets of
systems costs.

•Direct cutover

•The direct cutover method converts from the old to
the new system abruptly (quickly, immediately),
sometimes over a weekend or overnight. The old
system is used until a planned conversion day, when
it is replaced by the new system.

•There are no parallel activities.

•If it is absolutely necessary to go for the new system
then this approach should be used. Psychologically it
forces all users to make the new system work since
they do not have the old system to fall back on.

•Pilot approach

•In this method a working version of the system is
implemented in one part of the organization such as
a single work area or module.

•The advantage of this method is that it provides a
sound proof before full implementation.

•Phase-in method

•The phase-in method is used when it is not possible to
install a new system throughout the organization all at
once.

•The conversion of files, training of personnel, or arrival
of equipment may force the staging of implementation
over a period of time ranging from weeks to months.

•Some users will start taking advantage of the new
system before others. Example : Bank computerization.

Conversion Plan

•The conversion plan includes a description of all the activities that
must occur to implement the new system and put it into operation.

•List of files for conversion
• Identify all data required to build new files

• List all new documents and procedures that go into use during conversion.

• Identify all controls to be used during conversion.

• Assign responsibility for each activity.

• Verify conversion schedules.

Site Preparation

•Very little site preparation is needed for installation of
one or few PCs.

•But, if the information system is to be implemented with
a powerful server and number of PCs connected in LAN,
MAN or WAN then extensive site preparation will be
required.

•Post-implementation review

•Post-implementation is to determine how well the
system is working, how it has been accepted and
whether adjustments are needed. The
post-implementation review is also important to
gather information for the maintenance phase of the
system which is the first source of information.

•The analyst has to see the quality of system’s output,
the ease of use and tendency toward errors in input.
User confidence is also an indicator of system quality.
If it is low, the analyst must determine why it is low.

