
Department of computer Science, Indus University

Principles of Programming (IMSC0206/IMCA0206)

Unit 3

Topics : actual parameter and formal parameter, Calling function by value

and call by reference, Pointer, Pass array to function

Difference between actual parameter and formal parameter

Actual parameters are parameters as they appear in function calls. Formal parameters are

parameters as they appear in function declarations.

Here n1 and n2 are formal parameter while 10 and 40 are actual parameter.

void add(int n1,int n2) //function definition

{

//Function body

}

void main()

{

 add(10,40); //function call

}

Formal

parameters

Actual

Parameter

Department of computer Science, Indus University

Calling function by value and call by reference

There are two methods to pass the data into the function in C language

1. call by value
2. call by reference.

What is Call by Value?

Call by value method copies the value of an argument into the formal parameter of that function.

we cannot modify the value of the actual parameter by the formal parameter.

In this parameter passing method, values of actual parameters are copied to function's formal

parameters, and the parameters are stored in different memory locations. So any changes made

inside functions are not reflected in actual parameters of the caller.

Example:

#include<stdio.h>

void change(int num) {

 printf("Before adding value inside function num=%d \n",num);

 num=num+10;

 printf("After adding value inside function num=%d \n", num);

}

void main() {

 int x=20;

 printf("Before function call x=%d \n", x);

 change(x);//passing value in function

 printf("After function call x=%d \n", x);

}

Output

Before function call x=20

Before adding value inside function num=20

After adding value inside function num=30

After function call x=20

Department of computer Science, Indus University

What is Call by reference?

In call by reference, the address of the variable is passed into the function call as the actual

parameter.

The value of the actual parameters can be modified by changing the formal parameters since the

address of the actual parameters is passed.

In call by reference, the memory allocation is similar for both formal parameters and actual

parameters. All the operations in the function are performed on the value stored at the address of

the actual parameters. Modified value gets stored at the same address.

Example:

void swap (int *a, int *b) //function definition

{

 int temp;

 temp = *a;

 *a=*b;

 *b=temp;

 printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a =

20, b = 10

}

void main()

{

 int a = 70;

 int b = 20;

 printf("Before swapping the values in main a = %d, b = %d\n",a,b); swap(&a,&b);

 printf("After swapping values in main a = %d, b = %d\n",a,b);

 getch();

}

No. Call by value Call by reference

1 A copy of the value is passed into

the function.

An address of value is passed into the

function.

2 Changes made inside the function is

limited to the function only.

Changes made inside the function validate

outside of the function also.

3 Actual and formal arguments are

created with the different memory

location.

Actual and formal arguments are created with

the same memory location.

Department of computer Science, Indus University

Pointers

What is pointer?

The pointer is a variable which stores the address of another variable. This variable can be of type

int, char, array, function, or any other pointer. The size of the pointer depends on the architecture.

However, in 32-bit architecture the size of a pointer is 2 byte.

type *var-name;

Example:

int no = 100;

int *p = &no; // Variable p of type pointer is pointing to the address of the variable n of type

integer.

How to declare pointer:

We can declare pointer as following:

int *a; //pointer to int

char *c; //pointer to char

Address of (&) operator

#include<stdio.h>

void main()

{

int a;

clrscr();

a=50;

printf("value of number is %d, address of number is %u",a,&a);

getch();

}

Example:

void main()

{

int number=50;

int *p;

p=&number; //stores the address of number variable

printf("Address of p variable is %x \n",p); // p contains the address of the number

therefore printing p gives the address of number.

printf("Value of p variable is %d \n",*p);

/* As we know that * is used to dereference a pointer therefore if we print *p, we will get

the value stored at the address contained by p. */

Department of computer Science, Indus University

}

Advantages of Pointer

1) Pointer reduces the code and improves the performance.

2) We can return multiple values from a function using the pointer.

3) It makes us able to access any memory location in the computer's memory.

Department of computer Science, Indus University

Passing Array to function

Array can also be passed to a function as an argument.

The array name is the address of first element of that array. For example if array name is arr then

arr is equivalent to the &arr[0].

Example:

void fun(int *no1, int size)

{

 int x;

 for(x=0; x<size; x++)

 {

 printf("Value of arr[%d] is: %d \n", x, *no1);

 /*increment pointer for next element fetch*/

 no1++;

 }

}

void main()

{

 int arr[] = {1, 2, 3, 4, 5, 6, 7};

clrscr();

 fun(arr, 6);

getch();

}

References:

https://www.javatpoint.com/c-pointers

https://www.geeksforgeeks.org/how-arrays-are-passed-to-functions-in-cc/

https://beginnersbook.com/2014/01/c-passing-array-to-function-example/

https://www.javatpoint.com/c-pointers
https://www.geeksforgeeks.org/how-arrays-are-passed-to-functions-in-cc/
https://beginnersbook.com/2014/01/c-passing-array-to-function-example/

