
S T R I N G , A R R A Y , M Y S Q L , D B C O N N E C T I V I T Y

Unit 2

Strings in PHP

 Strings are sequences of characters that can be
treated as a unit — assigned to variables, given as
input to functions, returned from functions, or sent
as output to appear on your user’s web page.

 The simplest way to specify a string in PHP code is to
enclose it in quotation marks, whether single
quotation marks (‘) or double quotation marks (“),
like this:

 $my_string = ‘A literal string’;

 $another_string = “Another string”;

 If you enclose a string in single quotation marks, almost
no interpolation will be performed; if you enclose it in
double quotation marks, PHP will splice in the values of
any variables you include, as well as make substitutions
for certain special character sequences that begin with
the backslash (\) character.
$statement = ‘everything I say’;

$question_1 = “Do you have to take $statement so literally?\n
”;

$question_2 = ‘Do you have to take $statement so literally?\n
’;

echo $question_1;

echo $question_2;

 Interpolation with curly braces
 $plan1 = “I will play $sport1ball in the summertime”; //wrong

 $plan1 = “I will play {$sport1}ball in the summertime”; //right

Characters and string indexes

 You can retrieve the individual characters of a string
by including the number of the character, starting at
0, enclosed in curly braces immediately following a
string variable.

 These characters will actually be one-character
strings.
$my_string = “Doubled”;

for ($index = 0; $index < 7; $index++) {

$string_to_print = $my_string{$index};

print(“$string_to_print$string_to_print”);

}

String operators

 PHP offers two string operators: the dot (.) or
concatenation operator and the .= concatenating
assignment operator.

 The concatenation operator, when placed between
two string arguments, produces a new string that is
the result of putting the two strings together in
sequence. For example:
 $my_two_cents = “I want to give you a piece of my mind “;

 $third_cent = “ And another thing”;

 print($my_two_cents . “...” . $third_cent);

 How many string are there?

Concatenation and assignment

 PHP has a shorthand operator (.=) that combines
concatenation with assignment. The following
statement:

 $my_string_var .= $new_addition;

 is exactly equivalent to:

 $my_string_var = $my_string_var . $new_addition;

The heredoc syntax

 PHP offers another way to specify a string, called the heredoc
syntax.

 This syntax turns out to be extremely useful for specifying
large chunks of variable-interpolated text, because it spares
you from the need to escape internal quotation marks.

 It is especially useful in creating pages that contain HTML
forms.

 The operator in the heredoc syntax is <<<. What is expected
immediately after this is a label (unquoted) that indicates the
beginning of a multiline string.

 PHP will continue including subsequent lines in this string
until it sees the same label again, beginning a line.

 The ending label may optionally be followed by a semicolon
but by nothing else.

$my_string_var = <<<EOT

Everything in this rather unnecessarily wordy

ramble of prose will be incorporated into the

string that we are building up inevitably, inexorably,

character by character, line by line, until we reach that

blessed final line which is this one.

EOT;

 Interpolation of variables happens exactly the same way
as with double-quoted strings. The nice thing about
heredoc, though, is that quote signs can be included
without any escaping and without prematurely
terminating the string. Here’s another example:
echo <<<ENDOFFORM

<FORM METHOD=POST ACTION=”{$_ENV[‘PHP_SELF’]}“>

<INPUT TYPE=TEXT NAME=FIRSTNAME VALUE=$firstname>

<INPUT TYPE=SUBMIT NAME=SUBMIT VALUE=SUBMIT>

</FORM>

ENDOFFORM;

String Functions

 Inspecting strings:

 strlen(): Using the strlen() function (the name is
short for string length).

$short_string = “This string has 29 characters”;

print(“It does have “ . strlen($short_string) . “ characters”);

for ($index = 0; $index < strlen($short_string); $index++)

print($short_string{$index});

Finding characters and substrings

 strpos(): the strpos() function finds the numerical
position of a particular character in a string, if it exists.
 $twister = “Peter Piper picked a peck of pickled peppers”;

 print(“Location of ‘p’ is “ . strpos($twister, ‘p’) .’
’);

 print(“Location of ‘q’ is “ . strpos($twister, ‘q’) .’
’);

 the strpos() function is case sensitive.

 The strpos() function can also be used to search for a
substring rather than a single character, simply by giving
it a multicharacter string rather than a single-character
string.

 You can also supply an extra integer argument specifying
the position to begin searching forward from.

 Searching in reverse is also possible, using the
strrpos() function. Unlike with strpos(), the string
searched for must have only one character.

 $twister = “Peter Piper picked a peck of pickled peppers”;

 printf(“Location of ‘p’ is “ . strrpos($twister, ‘p’) .’
’);

 Location of ‘p’ is 40

Comparison and searching

 The simplest method to find an answer of comparision is
to use the basic comparison operator (==), which does
equality testing on strings as well as numbers.

 The most basic workhorse string-comparison function is
strcmp(). It takes two strings as arguments and compares
them byte by byte until it finds a difference.

 It returns a negative number if the first string is less than
the second and a positive number if the second string is
less. It returns 0 if they are identical.

 The strcasecmp() function works the same way, except
that the equality comparison is case insensitive. The
function call strcasecmp(“hey!”, “HEY!”) should return 0.

Searching

 The strstr() function takes a string to search in and a
string to look for (in that order).

 If it succeeds, it returns the portion of the string that
starts with (and includes) the first instance of the
string it is looking for.

 If the string is not found, a false value is returned

 $string_to_search = “showsuponceshowsuptwice”;

 $string_to_find = “up”;

 print(“Result of looking for $string_to_find” .

 strstr($string_to_search, $string_to_find) . “
”);

 The strstr() function also has an alias by the name of
strchr().

 Other than the name, the two functions are identical.
Just as with strcmp(), strstr() has a case insensitive
version, by the name of stristr().

Substring selection

 Many of PHP’s string functions have to do with
slicing and dicing your strings.

 By slicing, we mean choosing a portion of a string;

 By dicing, we mean selectively modifying a string.

 Keep in mind that (most of the time) even dicing
functions do not change the string you started out
with. Usually, such functions return a modified copy,
leaving the original argument intact.

 The most basic way to choose a portion of a string is
the substr() function, which returns a new string that
is a subsequence of the old one.

 As arguments, it takes a string (that the substring
will be selected from), an integer (the position at
which the desired substring starts), and an optional
third integer argument that is the length of the
desired substring.

 If no third argument is given, the substring is
assumed to continue until the end.

 For example, the statement:
 echo(substr(“Take what you need, and leave the rest behind”,

23));
 prints the string leave the rest behind, whereas the statement:

 echo(substr(“Take what you need, and leave the rest behind”,
5, 13));
 prints what you need — a 13-character string starting at (0-based)

position 5.

 Both the start-position argument and the length argument can
be negative, and in each case the negativity has a different
meaning.

 If the start position is negative, it means that the starting
character is determined by counting backward from the end of
the string, rather than forward from the beginning.

 A negative-length argument means that the final character is
determined by counting backward from the end rather than
forward from the start position.

 Here are some examples, with positive and negative arguments:
 $alphabet_test = “abcdefghijklmnop”;

 print(“3: “ . substr($alphabet_test, 3) . “
”);
 print(“-3: “ . substr($alphabet_test, -3) . “
”);
 print(“3, 5: “ . substr($alphabet_test, 3, 5) . “
”);
 print(“3, -5: “ . substr($alphabet_test, 3, -5) . “
”);
 print(“-3, -5: “ . substr($alphabet_test, -3, -5) . “
”);
 print(“-3, 5: “ . substr($alphabet_test, -3, 5) . “
”);

 This gives us the output:
 3: defghijklmnop
 -3: nop
 3, 5: defgh
 3, -5: defghijk
 -3, -5:
 -3, 5: nop

String cleanup functions

 The functions chop(), ltrim(), and trim() are really used for
cleaning up untidy strings. They trim whitespace off the end,
the beginning, and the beginning and end, respectively, of
their single string argument.
 $original = “ More than meets the eye “;
 $chopped = chop($original);
 $ltrimmed = ltrim($original);
 $trimmed = trim($original);
 print(“The original is ‘$original’
”);
 print(“Its length is “ . strlen($original) . “
”);
 print(“The chopped version is ‘$chopped’
”);
 print(“Its length is “ . strlen($chopped) . “
”);
 print(“The ltrimmed version is ‘$ltrimmed’
”);
 print(“Its length is “ . strlen($ltrimmed) . “
”);
 print(“The trimmed version is ‘$ltrimmed’
”);
 print(“Its length is “ . strlen($trimmed) . “
”);

 In addition to spaces, these functions remove
whitespace like that denoted by the escape sequences
\n, \r, \t, and \0

String replacement

 The str_replace() function enables you to replace all
instances of a particular substring with an alternate string.

 It takes three arguments: the string to be searched for, the
string to replace it with when it is found, and the string to
perform the replacement on.
$first_edition = “Burma is similar to Rhodesia in at least one way.”;

$second_edition = str_replace(“Rhodesia”, “Zimbabwe”, $first_edition);

$third_edition = str_replace(“Burma”, “Myanmar”, $second_edition);

print($third_edition);

 This replacement will happen for all instances found of the
search string.

 str_replace() picks out portions to replace by matching to
a target string; by contrast, substr_replace() chooses a
portion to replace by its absolute position.

 The function takes up to four arguments: the string to
perform the replacement on, the string to replace it with,
the starting position for the replacement, and (optionally)
the length of the section to be replaced

 print(substr_replace(“ABCDEFG”, “-“, 2, 3));

 you are allowed to replace a substring with a string of a
different length.

 If the length argument is omitted, it is assumed that you
want to replace the entire portion of the string after the
start position.

 The substr_replace() function also takes negative
arguments for starting position and length, which are
treated exactly the same way as in the substr() function.

 It is important to remember with both str_replace and
substr_replace that the original string remains
unchanged by these operations

 The strrev() function simply returns a new string with the
characters of its input in reverse order.

 The str_repeat() function takes a string argument and an
integer argument and returns a string that is the
appropriate number of copies of the string argument
tacked together.

Case functions

 strtolower() The strtolower() function returns an all-
lowercase string. It doesn’t matter if the original is all
uppercase or mixed.
<?php
$original = “They DON’T KnoW they’re SHOUTING”;
$lower = strtolower($original);
echo $lower;
?>

 strtoupper() The strtoupper() function returns an all-
uppercase string, regardless of whether the original
was all lowercase or mixed:
<?php
$original = “make this link stand out”;
echo(“strtoupper($original)”);
?>

 ucfirst() The ucfirst() function capitalizes only the first
letter of a string:
<?php
$original = “polish is a word for which pronunciation depends on
capitalization”;
echo(ucfirst($original));
?>

 ucwords() The ucwords() function capitalizes the first
letter of each word in a string:
<?php
$original = “truth or consequences”;
$capitalized = ucwords($original);
echo “While $original is a parlor game, $capitalized is a town in New
Mexico.”;
?>

Printing and output

 PHP also offers printf() and sprintf(), which are
modeled on C functions of the same name.

<pre>

<?php

$value = 3.14159;

printf(“%f,%10f,%-010f,%2.2f\n”,

$value, $value, $value, $value);

?>

</pre>

gives us:

3.141590, 3.141590,3.141590000000000, 3.14

Learning Arrays

 PHP arrays can store data of varied types and
automatically organize it for you in a large variety of
ways.

 An array is a collection of variables indexed and
bundled into a single, easily referenced super
variable that offers an easy way to pass multiple
values between lines of code, functions, and even
pages.

What Are PHP Arrays?

 PHP arrays are associative arrays. The associative part
means that arrays store element values in association
with key values rather than in a strict linear index order.

 For example, storage is as simple as this:
 $state_location[‘San Mateo’] = ‘California’;

 which stores the element ‘California’ in the array variable
$state_location, in association with the lookup key ‘San
Mateo’. After this has been stored, you can look up the
stored value by using the key, like so:
 $state = $state_location[‘San Mateo’];

 Similarly, if you want to associate a numerical
ordering with a bunch of values, all you have to do is
use integers as your key values, as in:

 $my_array[1] = “The first thing”;

 $my_array[2] = “The second thing”; // and so on ...

Creating Arrays

 There are three main ways to create an array in a
PHP script:

 by assigning a value into one (and thereby implicitly creating
it),

 by using the array() construct, and

 by calling a function that happens to return an array as its
value.

 Direct assignment: The simplest way to create an
array is to act as though a variable is already an array
and assign a value into it, like this:

$my_array[1] = “The first thing in my array that I just made”;

 The array() construct: It creates a new array from the
specification of its elements and associated keys.

 In its simplest version, array() is called with no
arguments, which creates a new empty array.

 In its next simplest version, array() takes a comma
separated list of elements to be stored, without any
specification of keys.

 The result is that the elements are stored in the array in
the order specified and are assigned integer keys
beginning with zero.
 $fruit_basket = array(‘apple’, ‘orange’, ‘banana’, ‘pear’);

 causes the variable $fruit_basket to be assigned to an
array with four string elements, with the indices 0, 1, 2,
and 3, respectively.

 The same effect could also have been accomplished by
omitting the indices in the assignment, like so:
 $fruit_basket[] = ‘apple’;
 $fruit_basket[] = ‘orange’;

 Specifying indices using array(): array() offers us a
special syntax for specifying what the indices should be.
Instead of element values separated by commas, you
supply key/value pairs separated by commas, where the
key and value are separated by the special symbol =>.

 Consider the following statement:
 $fruit_basket = array(0 => ‘apple’, 1 => ‘orange’, 2 => ‘banana’, 3 =>

‘pear’);

 Or it can be

 $fruit_basket = array(‘red’ => ‘apple’, ‘orange’ => ‘orange’,
‘yellow’ => ‘banana’, ‘green’ => ‘pear’);

 To recover the name of the yellow fruit, for example,
we just evaluate the expression:

 $fruit_basket[‘yellow’] // will be equal to ‘banana’

 you can create an empty array by calling the array
function with no arguments. For example:

 $my_empty_array = array();

 creates an array with no elements.

 Functions returning arrays: This may be a user defined
function, or it may be a built-in function that makes an array
via methods internal to PHP.

 Many database-interaction functions, for example, return
their results in arrays that the functions create on the fly.

 Other functions exist simply to create arrays that are handy to
have as grist for later array-manipulating functions.

 One such is range(), which takes two integers as arguments
and returns an array filled with all the integers (inclusive)
between the arguments. In other words:
 $my_array = range(1,5);

 is equivalent to:

 $my_array = array(1, 2, 3, 4, 5);

Retrieving Values

 Retrieving by index: The most direct way to retrieve a
value is to use its index. If we have stored a value in
$my_array at index 5, $my_array[5] should evaluate to the
stored value.

 The list() construct: It used to assign several array
elements to variables in succession. Suppose that the
following two statements are executed:
 $fruit_basket = array(‘apple’, ‘orange’, ‘banana’);

 list($red_fruit, $orange_fruit) = $fruit_basket;

 This will assign the string ‘apple’ to the variable $red_fruit
and the string ‘orange’ to the variable $orange_fruit.

 The variables in list() will be assigned to elements of the array
in the order they were originally stored in the array.

Multidimensional Arrays

 Facilitates storing arrays of arrays!

 Extends beyond the associative array to store
multiple sets of associative arrays

<?php

$person = array(

array(“name” => “John”, “age” => 19),

array(“name” => “Mary”, “age” => 30),

array(“name” => “Aine”, “age” => 23)

);

?>

 each of the array elements store starting at an index
value of 0

 for instance:
 echo $person[0];

 echo $person[1];

 and so on and on and on!

• foreach ($person as $p) {
while (list($n, $a) = each ($p)) {

echo “Name: “.$n.”\n Age: ”.$a.”
”;

}

}

• Output:

Name: John

Age: 19

Name: Mary

Age: 30

Name: Aine

Age: 23

Inspecting Arrays

Deleting from Arrays

 Deleting an element from an array is simple, exactly
analogous to getting rid of an assigned variable.

 Just call unset(), as in the following:
 $my_array[0] = ‘wanted’;
 $my_array[1] = ‘unwanted’;
 $my_array[2] = ‘wanted again’;
 unset($my_array[1]);

 Note that this is not the same as setting the contents to an
empty value. If, instead of calling unset(), we had the
following statement:
 $my_array[1] = ‘ ’;

 at the end we would have three stored values (‘wanted’, ‘’,
‘wanted again’) in association with three keys (0, 1, and 2,
respectively).

Iteration

 Iteration constructs help us do this by letting us step or
loop through arrays, element by element or key by key.

 In addition to storing values in association with their keys,
PHP arrays silently build an ordered list of the key/value
pairs that are stored, in the order that they are stored.

 The reason for this is to support operations that iterate over
the entire contents of an array.

 Each stored key/value pair points to the next one, and one
side effect of adding the first element to an array is that a
current pointer points to the very first element, where it
will stay unless disturbed by one of the iteration functions

foreach method

foreach ($array_variable as $value_variable) {

// .. do something with the value in $value_variable

}

foreach ($array_variable as $key_var => $value_var)
{

// .. do something with $key_var and/or $value_var

}

Iterating with current() and next()

 foreach, is really only good for situations where you want to
simply loop through an array’s values.

 For more control, let’s look at current() and next().

 The current() function returns the stored value that the
current pointer points to.

 When an array is newly created with elements, the element
pointed to will always be the first element.

 The next() function first advances that pointer and then
returns the current value pointed to.

 If the next() function is called when the current pointer is
already pointing to the last stored value and, therefore, runs
off the end of the array, the function returns a false value.

 Starting over with reset()

 The reset() function gives us a way to “rewind” that pointer to
the beginning — it sets the pointer to the first key/value pair
and then returns the stored value.

 We can use it to make our printing function more robust by
replacing the call to current() with a call to reset().

 Reverse order with end() and prev():

 There are also the functions prev(), which moves the pointer
back by one, and end(), which jumps the pointer to the last
entry in the list.

 Extracting keys with key():

 The keys are also retrievable from the internal linked list of an
array by using the key() function.

 $current_key = key($city_array);

 Walking with array_walk():

 It lets you pass an arbitrary function of your own design over
an array, doing whatever your function pleases with each
key/value pair.

 The array_walk() function takes two arguments: an array to be
traversed and the name of a function to apply to each
key/value pair.

function print_value_length($array_value, array_key_ignored)

{
$the_length = strlen($array_value);

print(“The length of $array_value is $the_length
”);

}

array_walk($major_city_info, ‘print_value_length’);

Learning PHP Number Handling

 Numerical Types: PHP has only two numerical types:
integer (also known as long), and double (aka float).

 PHP does automatic conversion of numerical types.

 In situations where you want a value to be interpreted as
a particular numerical type, you can force a typecast by
prepending the type in parentheses, such as:
 (double) $my_var

 (integer) $my_var

 Or you can use the functions intval() and doubleval(),
which convert their arguments to integers and doubles,
respectively.

Arithmetic operators

 Incrementing or decrementing operators:
$count = 0;

$result = $count++;

print(“Post ++: count is $count, result is $result
”);

$count = 0;

$result = ++$count;

print(“Pre ++: count is $count, result is $result
”);

$count = 0;

$result = $count--;

print(“Post --: count is $count, result is $result
”);

$count = 0;

$result = --$count;

print(“Pre --: count is $count, result is $result
”);

 Assignment operators:
 =, +=, -=,*=,/=

 Precedence and parentheses:
 Arithmetic operators have higher precedence (that is, bind more

tightly) than comparison operators.

 Comparison operators have higher precedence than assignment
operators.

 The *, /, and % arithmetic operators have the same precedence.

 The + and – arithmetic operators have the same precedence.

 The *, /, and % operators have higher precedence than + and –.

 When arithmetic operators are of the same precedence, associativity
is from left to right (that is, a number will associate with an operator
to its left in preference to the operator on its right).

Comparison operators

Simple Mathematical Functions

Randomness

 There are two random number generators (invoked
with rand() and mt_rand(), respectively)

$length = strlen($string);

$position = mt_rand(0, $length - 1);

return($string[$position]);

Randomness

MySQL Database Integration

 A database is a collection of data. The term database

usually indicates that the collection of data is stored on a

computer.

 Databases implemented through a computer are created

within software.

 That software, commonly known as a database

application, controls how the actual data is stored nd

retrieved.

 Some database applications include Microsoft Access

and OpenOffice.org’s Base. Sometimes, databases are

stored in a central location and managed by a database

server. A database server is a database application built

with multiple users in mind.

 Most of the time when programming PHP you’ll be

accessing a database server. Some database servers

include PostgreSQL, MySQL, Microsoft’s SQL Server,

and the Oracle suite of databases.

 Database servers usually have one or more distinct

APIs for programmatically creating, accessing,

managing, searching, and replicating the data they

hold.

 It is through the API that you connect to and work with

data stored in database servers when using PHP

Maintainability and scalability

Portability

Avoiding awkward programming

Searching

Popular Databases for PHP Web

Application Development
• MySQL

• PostGreSQL

• SYBASE

• IBM-DB2

• Oracle Database

•Other Supported DB

Cubrid

DB++

dBase

filePro

FireBird/InterBase

FrontBase

Informix

Ingres

MaxDB

Mongo

mSQL

Ovrimos SQL

Paradox

SQLite

SQLite3

SQLSRV

Tokyo Tyrant

 MySQL, (officially pronounced my- S - Q - L and not
“mysequel”), is an incredibly popular and powerful
RDBMS.

 MySQL provides one of the letters in the ubiquitous
acronym “LAMP,” which is an abbreviation for Linux,
Apache, MySQL, PHP/Perl/Python. MySQL has
become so popular for several reasons.

• First, MySQL is free (as in price), although the licensing has
changed (discussed later).

• Second, MySQL is also stable, meaning that it’s not prone to
crashing even under load.

• Third, MySQL is lightweight, meaning that it doesn’t require
many resources to install or run.

• Fourth, MySQL is fast and easy to use.

• Finally, MySQL is powerful, with all of the features required for
web applications.

SQL is the language of relational

databases.

After you learn SQL, you will be able to

interact with numerous databases across

all platforms.

SQL is a standard under both the

American National Standards Institute

(ANSI) and the Equipment Managers

Council of America (ECMA).

 The basic logical structure of a SQL database is very

simple. A given SQL installation can usually contain

multiple databases — for instance, one for customer data

and one for product data.

 Each database contains a number of tables.

 Each table is made up of carefully defined columns, and

every entry can be thought of as an added record or row.

 Four basic four commands of the database are SELECT,

INSERT, UPDATE, and DELETE.

 These four SQL statements is that they manipulate only

database values, not the structure of the database itself.

 In other words, you can use these commands to add data

but not to make a database; you can get rid of every piece

of data in a database, but the shell will still be there

To make up new databases, you need to

use other commands such as DROP,

ALTER, and CREATE.

Select, Insert, Update, Delete

Create, Drop, alter,

 Setting database permissions:
• The most fundamental rule of database use is to give each user

or group only the minimum permissions necessary to do what
needs to be done.

• A typical database permissions package might be something
like:
 Web visitor: SELECT only

 Contributor: SELECT, INSERT, and maybe UPDATE

 Editor: SELECT, INSERT, UPDATE, and maybe DELETE and maybe GRANT

 Database Administrator: SELECT, INSERT, UPDATE, DELETE, GRANT, and
DROP

 DROP in particular is the nuclear bomb of SQL because
it allows you to blow away an entire table or database
with a single command.

 In many databases, including MySQL, passwords are
encrypted using a different algorithm from system
passwords

 Database usernames and passwords should not be

identical to system usernames and passwords.

 Keep database passwords outside the web area.

 It’s a good idea to separate passwords from the web

pages that use them.

 With PHP’s include()/ include_once() and

require()/require_once() functions, it’s very easy to drop

in text from another file at runtime.

 A good example is a directory above or outside of your web
document root or in a home directory.

 Taking the database variables out of PHP files is also good
for other reasons. If you have many PHP scripts using the
same database, they can all use the same password file.

 When you suspect the password has been compromised, or
when you change the password on a regular schedule, you
need only alter one script for all the files to be updated.

 Learn to make backups: The biggest part of database
security may be backing up.

 Take an hour to learn the best way to back up data in your
particular database (for example, via the mysqldump
command in MySQL), and then schedule regular backups
right away.

 Even better, with a little foresight you can also set up an
automatic database backup schedule.

 The basic command to initiate a MySQL connection is

• mysql_connect($hostname, $user, $password);

if you’re using variables, or

• mysql_connect(‘localhost’, ‘root’, ‘sesame’);

if you’re using literal strings.

 The password is optional, depending on whether this

particular database user requires one (it’s a good idea).

If not, just leave that variable off.

 The corresponding mysqli function is mysqli_connect,

which adds a fourth parameter allowing you to select a

database in the same function you use to connect.

 PHP offers two different ways to connect to MySQL

server: MySQLi (Improved MySQL) and PDO (PHP

Data Objects) extensions.

 While the PDO extension is more portable and

supports more than twelve different databases,

MySQLi extension as the name suggests supports

MySQL database only.

 MySQLi extension however provides an easier way

to connect to, and execute queries on, a MySQL

database server.

 Both PDO and MySQLi offer an object-oriented API,

but MySQLi also offers a procedural API which is

relatively easy for beginners to understand.

 In PHP you can easily do this using the
mysqli_connect() function. All communication between
PHP and the MySQL database server takes place
through this connection.

 $link = mysqli_connect("hostname", "username",
"password", "database");

 $mysqli = new mysqli("hostname", "username",
"password", "database");

 $pdo =
new PDO("mysql:host=hostname;dbname=database",
"username", "password");

 Example
 The default username for MySQL database server is

root and there is no password.

The connection to the MySQL database

server will be closed automatically as

soon as the execution of the script ends.

However, if you want to close it earlier

you can do this by simply calling the PHP

mysqli_close() function.

mysqli_close($link);

 A database query from PHP is basically a MySQL
command wrapped up in a tiny PHP function
called mysqli_query().

 This is where you use the basic SQL workhorses
of SELECT, INSERT, UPDATE, and DELETE.

 The function mysqli_query takes as arguments a
link identifier and the query string.

 It returns a TRUE (nonzero) integer value if the
query was executed successfully even if no rows
were affected.

 It returns a FALSE integer if the query was illegal
or not properly executed for some other reason.

 If your query was an INSERT, UPDATE, DELETE, CREATE

TABLE, or DROP TABLE and returned TRUE, you can now

use mysql_affected_rows to see how many rows were

changed by the query.

 This function optionally takes a link identifier, which is

only necessary if you are using multiple connections.

 It does not take the result handle as an argument! You call

the function like this, without a result handle:

 $affected_rows = mysqli_affected_rows();

 If your query was a SELECT statement, you can use

mysqli_num_rows($result) to find out how many rows were

returned by a successful SELECT.

Create DB & Table

 Insert / Multiple Insert

 Insert using Form

 It would be logical to assume that the result of a
query would be the desired data, but that is not
correct.

 The result of a PHP query is an integer representing
the success or failure or identity of the query.

 What actually happens is that a mysqli_query()
command pulls the data out of the database and
sends a receipt back to PHP reporting on the status
of the operation.

 At this point, the data exists in a purgatory that is
immediately accessible from neither MySQL nor PHP
— you can think of it as a staging area of sorts.

 The data is there, but it’s waiting for the commanding
officer to give the order to deploy.

 It requires one of the mysqli_fetch functions to make
the data fully available to PHP.

 The fetching functions are as follows:
• mysqli_fetch_row: Returns row as an enumerated array
• mysqli_fetch_object: Returns row as an object
• mysqli_fetch_array: Returns row as an associative array

• mysqli_result: Returns one cell of data
 The most general one is mysqli_fetch_row, which

can be used something like this:
$query = “SELECT ID, LastName, FirstName
FROM users WHERE Status = 1”;

$result = mysqli_query($query);
while ($name_row = mysqli_fetch_row($result)) {
print(“{$name_row[0]} {$name_row[1]}

{$name_row[2]}
\n”);

}
 This code will output the specified rows from the

database, each line containing one row

 The most useful fetching function,
mysqli_fetch_array, offers the choice of results as
an associative or an enumerated array — or both,
which is the default.

 This means you can refer to outputs by database
field name rather than number:
$query = “SELECT ID, LastName, FirstName FROM users

WHERE Status = 1”;
$result = mysql_query($query);
while ($row = mysqli_fetch_array($result)) {

echo “{$row[‘ID’]}, {$row[‘LastName’]},
{$row[‘FirstName’]}
\n”;

}

 PHP offers extensive built-in functions to help you
learn the name of the table in which your data
resides, the data type handled by a particular
column, or the number of the row into which you
have just inserted data.

 With these functions, you can effectively work with
a database about which you know very little.

 The MySQL metadata functions fall into two major
categories:
• Functions that return information about t ■■ he previous

operation only

• Functions that return information about the database
structure in general

A very commonly used example of the first
type is mysqli_insert_id(), which returns the
auto incremented ID assigned to a row of
data you just inserted.

A commonly used example of the second
type is mysqli_field_type(), which reveals
whether a particular database field’s data
must be an integer, a varchar, text, or what
have you.
• Rather than returning the MySQL type, it returns the

PHP data type.

The main error-checking function is actually
called die().

die() is not a MySQL-specific function — the
PHP manual lists it in “Miscellaneous
Functions.”

 It simply terminates the script (or a
delimited portion thereof) and returns a
string of your choice.

mysql_query(“SELECT * FROM mutual_funds
WHERE code = ‘$searchstring’“)

or die(“Please check your query and try again.”);

 Other built-in means of error-checking are error
messages. These are particularly helpful during
the development and debugging phase, and they
can be easily commented out in the final edit
before going live on a production server.

 MySQL error messages no longer appear by
default. If you want them, you have to ask for them
by using the functions mysql_errno() (which
returns a code number for each error type) or
mysql_error() (which returns the text message).

 Then you can send them to a custom error log by
using the error_log() function:
if (!mysql_select_db($bad_db)) {
print(mysql_error());
}

An example of good error checking is:
function printError($errorMesg) {

printf(“%s
\n”, $errorMesg);
}
function notify($errorMesg) {

mail(webmaster@example.com, “An Error has occurred at
example.com”, $errorMesg)

}
if ($link = mysql_connect(“host”, “user”, “pass”)) {

// Things to do if the connection is successful
} else {

printError(“Sorry for the inconvenience; but we are unable
to process your request at this time. Please check back
later”);
notify(“Problem connecting to database in $SCRIPT_NAME at
line 12 on date(‘Y-m-D’)”);

}

 the function to display the contents of a

couple of tables
• HTML Tables

Displaying column headers

Error checking

Complex queries, sub queries and joins.

Creating the sample tables
• Insert queries

 There are a few PHP-specific points to brush up on:

• You must use extra caution when using any data that comes from a

visitor’s web browser. Never use unfiltered data in a database

query.

• Always, always, always use a NAME for every data entry element

(INPUT, SELECT, TEXTAREA, and so on). These NAME attributes

will become PHP variable names — you will not be able to access

your values if you do not use a NAME attribute for each one.

• A form field NAME does not need to be the same as the

corresponding database field name.

• The VALUE can be set to data you wish to display in the form.

• Remember that you can pass hidden variables from form to form

(or page), using the HIDDEN data entry elements. This practice has

negative security implications, so don’t use it to store sensitive

data and always validate the data you receive in a HIDDEN

element.

 Self-submission refers to the process of
combining one or more forms and form handlers
in a single script, using the HTML FORM standard
to submit data to the script one or more times.

 Another situation in which self-submission is a
win occurs when you need to submit the same
form more than once. Say that you are applying
for auto insurance online, and you need to give
the particulars of three or four different cars.

 The single most important thing to remember
about self-submitting forms is: The logic comes
before the display.

To prepare your HTML forms to work
smoothly with PHP, you need to follow a few
simple rules.

Never use data that comes from the user
directly in a database call or query. This

means using the
mysqli_real_escape_string() function on
any $_POST, $_GET, and $_COOKIE values.

Remember always to name every single
form element

