
Unit IV

MEMORY

Memory management requirements

Partitioning

Paging and Segmentation

Virtual memory

Hardware and control structures,

operating system software

Roadmap

• Basic requirements of Memory

Management

• Memory Partitioning

• Basic blocks of memory management

– Paging

– Segmentation

The need for memory management

• Memory is cheap today, and getting cheaper

– But applications are demanding more and more

memory, there is never enough!

• Memory Management, involves swapping blocks

of data from secondary storage.

• Memory I/O is slow compared to a CPU

– The OS must cleverly time the swapping to maximise

the CPU’s efficiency

Memory Management

Memory needs to be allocated to ensure a

reasonable supply of ready processes to

consume available processor time

Memory Management Requirements

• Relocation

• Protection

• Sharing

• Logical organisation

• Physical organisation

Requirements: Relocation

• The programmer does not know where the

program will be placed in memory when it

is executed,

– it may be swapped to disk and return to main

memory at a different location (relocated)

• Memory references must be translated to

the actual physical memory address

Memory Management Terms

Term Description

Frame Fixed-length block of main

memory.

Page Fixed-length block of data in

secondary memory (e.g. on disk).

Segment Variable-length block of data that

resides in secondary memory.

Table 7.1 Memory Management Terms

Addressing

Requirements: Protection

• Processes should not be able to reference

memory locations in another process

without permission

• Impossible to check absolute addresses at

compile time

• Must be checked at run time

Requirements: Sharing

• Allow several processes to access the

same portion of memory

• Better to allow each process access to the

same copy of the program rather than

have their own separate copy

Requirements: Logical Organization

• Memory is organized linearly (usually)

• Programs are written in modules

– Modules can be written and compiled

independently

• Different degrees of protection given to

modules (read-only, execute-only)

• Share modules among processes

• Segmentation helps here

Requirements: Physical Organization

• Cannot leave the programmer with the
responsibility to manage memory

• Memory available for a program plus its
data may be insufficient

– Overlaying allows various modules to be
assigned the same region of memory but is
time consuming to program

• Programmer does not know how much
space will be available

Partitioning

• An early method of managing memory

– Pre-virtual memory

– Not used much now

• But, it will clarify the later discussion of

virtual memory if we look first at

partitioning

– Virtual Memory has evolved from the

partitioning methods

Types of Partitioning

• Fixed Partitioning

• Dynamic Partitioning

• Simple Paging

• Simple Segmentation

• Virtual Memory Paging

• Virtual Memory Segmentation

Fixed Partitioning

• Equal-size partitions (see fig 7.3a)

– Any process whose size is less than

or equal to the partition size can be

loaded into an available partition

• The operating system can swap a

process out of a partition

– If none are in a ready or running

state

Fixed Partitioning Problems

• A program may not fit in a partition.

– The programmer must design the program

with overlays

• Main memory use is inefficient.

– Any program, no matter how small, occupies

an entire partition.

– This is results in internal fragmentation.

Solution – Unequal Size Partitions

• Lessens both problems

– but doesn’t solve completely

• In Fig 7.3b,

– Programs up to 16M can be

accommodated without overlay

– Smaller programs can be placed in

smaller partitions, reducing internal

fragmentation

Placement Algorithm

• Equal-size

– Placement is trivial (no options)

• Unequal-size

– Can assign each process to the smallest

partition within which it will fit

– Queue for each partition

– Processes are assigned in such a way as to

minimize wasted memory within a partition

Fixed Partitioning

Remaining Problems with Fixed

Partitions
• The number of active processes is limited

by the system

– I.E limited by the pre-determined number of

partitions

• A large number of very small process will

not use the space efficiently

– In either fixed or variable length partition

methods

Dynamic Partitioning

• Partitions are of variable length and

number

• Process is allocated exactly as much

memory as required

Dynamic Partitioning Example

• External Fragmentation

• Memory external to all
processes is fragmented

• Can resolve using
compaction

– OS moves processes so
that they are contiguous

– Time consuming and
wastes CPU time

OS (8M)

P1

(20M)

P2

(14M)

P3

(18M)

Empty

(56M)

Empty (4M)

P4(8M)

Empty (6M)

P2

(14M)

Empty (6M)

Refer to Figure 7.4

Dynamic Partitioning

• Operating system must decide which free
block to allocate to a process

• Best-fit algorithm

– Chooses the block that is closest in size to the
request

– Worst performer overall

– Since smallest block is found for process, the
smallest amount of fragmentation is left

– Memory compaction must be done more often

Dynamic Partitioning

• First-fit algorithm

– Scans memory form the beginning and

chooses the first available block that is large

enough

– Fastest

– May have many process loaded in the front

end of memory that must be searched over

when trying to find a free block

Dynamic Partitioning

• Next-fit

– Scans memory from the location of the last

placement

– More often allocate a block of memory at the

end of memory where the largest block is

found

– The largest block of memory is broken up into

smaller blocks

– Compaction is required to obtain a large block

at the end of memory

Allocation

Buddy System

• Entire space available is treated as a

single block of 2U

• If a request of size s where 2U-1 < s <= 2U

– entire block is allocated

• Otherwise block is split into two equal

buddies

– Process continues until smallest block greater

than or equal to s is generated

Example of Buddy System

Tree Representation of Buddy System

Relocation

• When program loaded into memory the

actual (absolute) memory locations are

determined

• A process may occupy different partitions

which means different absolute memory

locations during execution

– Swapping

– Compaction

Addresses

• Logical

– Reference to a memory location independent
of the current assignment of data to memory.

• Relative

– Address expressed as a location relative to
some known point.

• Physical or Absolute

– The absolute address or actual location in
main memory.

Relocation

Registers Used during Execution

• Base register

– Starting address for the process

• Bounds register

– Ending location of the process

• These values are set when the process is

loaded or when the process is swapped in

Registers Used during Execution

• The value of the base register is added to

a relative address to produce an absolute

address

• The resulting address is compared with

the value in the bounds register

• If the address is not within bounds, an

interrupt is generated to the operating

system

Paging

• Partition memory into small equal fixed-

size chunks and divide each process into

the same size chunks

• The chunks of a process are called pages

• The chunks of memory are called frames

Paging

• Operating system maintains a page table

for each process

– Contains the frame location for each page in

the process

– Memory address consist of a page number

and offset within the page

Processes and Frames

A.0

A.1

A.2

A.3

B.0

B.1

B.2

C.0

C.1

C.2

C.3

D.0

D.1

D.2

D.3

D.4

Page Table

Segmentation

• A program can be subdivided into

segments

– Segments may vary in length

– There is a maximum segment length

• Addressing consist of two parts

– a segment number and

– an offset

• Segmentation is similar to dynamic

partitioning

Logical Addresses

Paging

Segmentation

Chapter 8

Virtual Memory

Operating Systems:

Internals and Design Principles,

6/E

William Stallings

Dave Bremer

Otago Polytechnic, N.Z.

©2008, Prentice Hall

Roadmap

• Hardware and Control Structures

• Operating System Software

• UNIX and Solaris Memory Management

• Linux Memory Management

• Windows Memory Management

Terminology

Key points in

Memory Management

1) Memory references are logical addresses

dynamically translated into physical

addresses at run time

– A process may be swapped in and out of main

memory occupying different regions at

different times during execution

2) A process may be broken up into pieces

that do not need to located contiguously in

main memory

Breakthrough in

Memory Management

• If both of those two characteristics are

present,

– then it is not necessary that all of the pages or

all of the segments of a process be in main

memory during execution.

• If the next instruction, and the next data

location are in memory then execution can

proceed

– at least for a time

Execution of a Process

• Operating system brings into main

memory a few pieces of the program

• Resident set - portion of process that is in

main memory

• An interrupt is generated when an address

is needed that is not in main memory

• Operating system places the process in a

blocking state

Execution of a Process

• Piece of process that contains the logical

address is brought into main memory

– Operating system issues a disk I/O Read

request

– Another process is dispatched to run while the

disk I/O takes place

– An interrupt is issued when disk I/O complete

which causes the operating system to place

the affected process in the Ready state

Implications of

this new strategy

• More processes may be maintained in

main memory

– Only load in some of the pieces of each

process

– With so many processes in main memory, it is

very likely a process will be in the Ready state

at any particular time

• A process may be larger than all of main

memory

Real and

Virtual Memory

• Real memory

– Main memory, the actual RAM

• Virtual memory

– Memory on disk

– Allows for effective multiprogramming and

relieves the user of tight constraints of main

memory

Thrashing

• A state in which the system spends most

of its time swapping pieces rather than

executing instructions.

• To avoid this, the operating system tries to

guess which pieces are least likely to be used in

the near future.

• The guess is based on recent history

Principle of Locality

• Program and data references within a
process tend to cluster

• Only a few pieces of a process will be
needed over a short period of time

• Therefore it is possible to make intelligent
guesses about which pieces will be
needed in the future

• This suggests that virtual memory may
work efficiently

A Processes Performance

in VM Environment

• Note that during

the lifetime of the

process,

references are

confined to a

subset of pages.

Support Needed for

Virtual Memory

• Hardware must support paging and

segmentation

• Operating system must be able to manage

the movement of pages and/or segments

between secondary memory and main

memory

Paging

• Each process has its own page table

• Each page table entry contains the frame
number of the corresponding page in main
memory

• Two extra bits are needed to indicate:

– whether the page is in main memory or not

– Whether the contents of the page has been
altered since it was last loaded

(see next slide)

Paging Table

Address Translation

Page Tables

• Page tables are also stored in virtual

memory

• When a process is running, part of its

page table is in main memory

Two-Level

Hierarchical Page Table

Address Translation for Hierarchical page

table

Page tables

grow proportionally

• A drawback of the type of page tables just

discussed is that their size is proportional

to that of the virtual address space.

• An alternative is Inverted Page Tables

Inverted Page Table

• Used on PowerPC, UltraSPARC, and IA-

64 architecture

• Page number portion of a virtual address

is mapped into a hash value

• Hash value points to inverted page table

• Fixed proportion of real memory is

required for the tables regardless of the

number of processes

Inverted Page Table

Each entry in the page table includes:

• Page number

• Process identifier

– The process that owns this page.

• Control bits

– includes flags, such as valid, referenced, etc

• Chain pointer

– the index value of the next entry in the chain.

Inverted Page Table

Translation Lookaside

Buffer

• Each virtual memory reference can cause
two physical memory accesses

– One to fetch the page table

– One to fetch the data

• To overcome this problem a high-speed
cache is set up for page table entries

– Called a Translation Lookaside Buffer (TLB)

– Contains page table entries that have been
most recently used

TLB Operation

• Given a virtual address,

– processor examines the TLB

• If page table entry is present (TLB hit),

– the frame number is retrieved and the real
address is formed

• If page table entry is not found in the TLB
(TLB miss),

– the page number is used to index the process
page table

Looking into the

Process Page Table

• First checks if page is already in main

memory

– If not in main memory a page fault is issued

• The TLB is updated to include the new

page entry

Translation Lookaside

Buffer

TLB operation

Associative Mapping

• As the TLB only contains some of the

page table entries we cannot simply index

into the TLB based on the page number

– Each TLB entry must include the page

number as well as the complete page table

entry

• The process is able to simultaneously

query numerous TLB entries to determine

if there is a page number match

Translation Lookaside

Buffer

TLB and

Cache Operation

Page Size

• Smaller page size, less amount of internal

fragmentation

• But Smaller page size, more pages

required per process

– More pages per process means larger page

tables

• Larger page tables means large portion of

page tables in virtual memory

Page Size

• Secondary memory is designed to

efficiently transfer large blocks of data so a

large page size is better

Further complications

to Page Size

• Small page size, large number of pages
will be found in main memory

• As time goes on during execution, the
pages in memory will all contain portions
of the process near recent references.
Page faults low.

• Increased page size causes pages to
contain locations further from any recent
reference. Page faults rise.

Page Size

Example Page Size

Segmentation

• Segmentation allows the programmer to
view memory as consisting of multiple
address spaces or segments.

– May be unequal, dynamic size

– Simplifies handling of growing data structures

– Allows programs to be altered and recompiled
independently

– Lends itself to sharing data among processes

– Lends itself to protection

Segment Organization

• Starting address corresponding segment

in main memory

• Each entry contains the length of the

segment

• A bit is needed to determine if segment is

already in main memory

• Another bit is needed to determine if the

segment has been modified since it was

loaded in main memory

Segment Table Entries

Address Translation in Segmentation

Combined Paging and Segmentation

• Paging is transparent to the programmer

• Segmentation is visible to the programmer

• Each segment is broken into fixed-size

pages

Combined Paging and Segmentation

Address Translation

Protection and sharing

• Segmentation lends itself to the

implementation of protection and sharing

policies.

• As each entry has a base address and

length, inadvertent memory access can be

controlled

• Sharing can be achieved by segments

referencing multiple processes

Protection Relationships

Roadmap

• Hardware and Control Structures

• Operating System Software

• UNIX and Solaris Memory Management

• Linux Memory Management

• Windows Memory Management

Memory Management

Decisions

• Whether or not to use virtual memory

techniques

• The use of paging or segmentation or both

• The algorithms employed for various

aspects of memory management

Key Design Elements

• Key aim: Minimise page faults

– No definitive best policy

Fetch Policy

• Determines when a page should be

brought into memory

• Two main types:

– Demand Paging

– Prepaging

Demand Paging

and Prepaging

• Demand paging

– only brings pages into main memory when a
reference is made to a location on the page

– Many page faults when process first started

• Prepaging

– brings in more pages than needed

– More efficient to bring in pages that reside
contiguously on the disk

– Don’t confuse with “swapping”

Placement Policy

• Determines where in real memory a

process piece is to reside

• Important in a segmentation system

• Paging or combined paging with

segmentation hardware performs address

translation

Replacement Policy

• When all of the frames in main memory

are occupied and it is necessary to bring in

a new page, the replacement policy

determines which page currently in

memory is to be replaced.

But…

• Which page is replaced?

• Page removed should be the page least

likely to be referenced in the near future

– How is that determined?

– Principal of locality again

• Most policies predict the future behavior

on the basis of past behavior

Replacement Policy:

Frame Locking

• Frame Locking

– If frame is locked, it may not be replaced

– Kernel of the operating system

– Key control structures

– I/O buffers

– Associate a lock bit with each frame

http://gaia.ecs.csus.edu/~zhangd/oscal/PagingApplet.html
http://gaia.ecs.csus.edu/~zhangd/oscal/PagingApplet.html

Basic Replacement

Algorithms

• There are certain basic algorithms that are

used for the selection of a page to replace,

they include

– Optimal

– Least recently used (LRU)

– First-in-first-out (FIFO)

– Clock

• Examples

Examples

• An example of the implementation of these

policies will use a page address stream

formed by executing the program is

– 2 3 2 1 5 2 4 5 3 2 5 2

• Which means that the first page

referenced is 2,

– the second page referenced is 3,

– And so on.

Optimal policy

• Selects for replacement that page for

which the time to the next reference is the

longest

• But Impossible to have perfect knowledge

of future events

Optimal Policy

Example

• The optimal policy produces three page

faults after the frame allocation has been

filled.

Least Recently

Used (LRU)

• Replaces the page that has not been
referenced for the longest time

• By the principle of locality, this should be
the page least likely to be referenced in
the near future

• Difficult to implement

– One approach is to tag each page with the
time of last reference.

– This requires a great deal of overhead.

LRU Example

• The LRU policy does nearly as well as the

optimal policy.

– In this example, there are four page faults

First-in, first-out (FIFO)

• Treats page frames allocated to a process

as a circular buffer

• Pages are removed in round-robin style

– Simplest replacement policy to implement

• Page that has been in memory the longest

is replaced

– But, these pages may be needed again very

soon if it hasn’t truly fallen out of use

FIFO Example

• The FIFO policy results in six page faults.

– Note that LRU recognizes that pages 2 and 5

are referenced more frequently than other

pages, whereas FIFO does not.

Clock Policy

• Uses and additional bit called a “use bit”

• When a page is first loaded in memory or

referenced, the use bit is set to 1

• When it is time to replace a page, the OS

scans the set flipping all 1’s to 0

• The first frame encountered with the use

bit already set to 0 is replaced.

http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm
http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm

Clock Policy Example

• Note that the clock policy is adept at

protecting frames 2 and 5 from

replacement.

Page Buffering

• LRU and Clock policies both involve
complexity and overhead

– Also, replacing a modified page is more costly
than unmodified as needs written to
secondary memory

• Solution: Replaced page is added to one
of two lists

– Free page list if page has not been modified

– Modified page list

Replacement Policy

and Cache Size

• Main memory size is getting larger and the

locality of applications is decreasing.

– So, cache sizes have been increasing

• With large caches, replacement of pages

can have a performance impact

– improve performance by supplementing the

page replacement policy with a with a policy

for page placement in the page buffer

Resident Set

Management

• The OS must decide how many pages to

bring into main memory

– The smaller the amount of memory allocated

to each process, the more processes that can

reside in memory.

– Small number of pages loaded increases

page faults.

– Beyond a certain size, further allocations of

pages will not affect the page fault rate.

Resident Set Size

• Fixed-allocation

– Gives a process a fixed number of pages

within which to execute

– When a page fault occurs, one of the pages of

that process must be replaced

• Variable-allocation

– Number of pages allocated to a process

varies over the lifetime of the process

Replacement Scope

• The scope of a replacement strategy can

be categorized as global or local.

– Both types are activated by a page fault when

there are no free page frames.

– A local replacement policy chooses only

among the resident pages of the process that

generated the page fault

– A global replacement policy considers all

unlocked pages in main memory

Fixed Allocation,

Local Scope

• Decide ahead of time the amount of

allocation to give a process

• If allocation is too small, there will be a

high page fault rate

• If allocation is too large there will be too

few programs in main memory

– Increased processor idle time or

– Increased swapping.

Variable Allocation, Global Scope

• Easiest to implement

– Adopted by many operating systems

• Operating system keeps list of free frames

• Free frame is added to resident set of

process when a page fault occurs

• If no free frame, replaces one from

another process

– Therein lies the difficulty … which to replace.

Variable Allocation,

Local Scope

• When new process added, allocate

number of page frames based on

application type, program request, or other

criteria

• When page fault occurs, select page from

among the resident set of the process that

suffers the fault

• Reevaluate allocation from time to time

Resident Set

Management Summary

Cleaning Policy

• A cleaning policy is concerned with

determining when a modified page should

be written out to secondary memory.

• Demand cleaning

– A page is written out only when it has been

selected for replacement

• Precleaning

– Pages are written out in batches

Cleaning Policy

• Best approach uses page buffering

• Replaced pages are placed in two lists

– Modified and unmodified

• Pages in the modified list are periodically

written out in batches

• Pages in the unmodified list are either

reclaimed if referenced again or lost when

its frame is assigned to another page

