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» Central to the design of modern Operating>* ", ..
Systems Is managing multiple processes

— Multiprogramming(multiple processes within a
uniprocessor system)

— Multiprocessing(multiple processes within a
multiprocessor)

— Distributed Processing(multiple processes
executing on multiple ,distributed processing)

* Big Issue is Concurrency
— Managing the interaction of all of these processes




Concurrency
Concurrency arises in:
* Multiple applications
— (processing time)Sharing time
« Structured applications

— Extension of modular design(structured
programming)

* Operating system structure

— OS themselves implemented as a set of
processes or threads



Key Terms

Table 5.1 Some Key Terms Related to Concurrency

atomic operation

critical section

deadlock

livelock

mutual exclusion

race condiion

siarvation

A sequence of one or more statements that appears to be indivisible; that is,
no other process can see an intermediate state or interrupt the operation.

A section of code within a process that requires access to shared resources
and that must not be executed while another process is in a corresponding
section of code.

A situation in which two or more processes are unable to proceed because
each is waiting for one of the others to do something.

A situation in which two or more processes continuously change their states

inresponse to changes in the other processies) without doing any useful
work.

The requirement that when one process is in a critical section that accesses
shared resources, no other process mayv be in a critical section that accesses
anv of those shared resources.

A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their
execution.

A situation in which a runnable process is overlooked indefinitely bv the
scheduler; although it is able to proceed, it is never chosen.




Interleaving and S
Overlapping Processes )

« Earlier (Ch2) we saw that processes may
be interleaved on uniprocessors

Time >
Process 1 C e ]
Process 2 = e ]
Process 3 | ————— | ]

(a) Interleaving (mmitiprogramming, one processor)

Emmm Blocked 1 Running

Figure 2.12 Multiprogramming and Multiprocessing
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Interleaving and ‘;,t)".
Overlapping Processes % T

Ly

>

* And not only interleaved but overlapped
on multi-processors

Time >
Process 1 (O | | S | ]
Process 2 [ | S | ]

Process 3 S ]

(b) Interleaving and overlapping (multiprocessing; two processors)

@ Blocked " Running

Figure 2.12 Multiprogramming and Multiprocessing



Difficulties of
Concurrency >

« Sharing of global resources

* Optimally managing the allocation of
resources

* Difficult to locate programming errors as
results are not deterministic and
reproducible.



A Simple Example

void echo()

{
chin = getchar();
chout = chin;
putchar(chout);

}



A Simple Example:
On a Multiprocessor

Process P1
chin = getchar();

chout = chin;
putchar(chout);

Process P2 "%

chin = getchar();
chout = chin;

putchar(chout);



Enforce Single Access %8 |
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« If we enforce a rule that only one process”  »
may enter the function at a time then:
 P1 & P2 run on separate processors

* P1 enters echo first,
— P2 tries to enter but is blocked — P2 suspends

* P1 completes execution
— P2 resumes and executes echo



Race Condition %8

)
* Arace condition occurs when i
— Multiple processes or threads read and write

data items

— They do so in a way where the final result
depends on the order of execution of the
processes.

* The output depends on who finishes the
race last.
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* What design and management issues are *% ',

raised by the existence of concurrency?

e The OS must

— Keep track of various processes(PCB)

— Allocate and de-allocate resources(PROCESSOR
TIME,MEMORY,FILES,I/O DEVICES)

— Protect the data and resources against
Interference by other processes.

— Ensure that the processes and outputs are
Independent of the processing speed



Process Interaction

Table 5.2

Process Interaction

Degree of Awareness Relationship Influence That One Potential Control
Process Has on the Problems
Other
Processes unaware of Competition * Results of one * Mutual exclusion
each other pProcess hlrdependent * Deadlock (renewable
of the action of others resource)
* Timing of process * Starvation
may be affected
Processes indirectly Cooperation by sharing * Results of one * Mutual exclusion

aware of each other (e.g.,
shared object)

process may depend
on information
obtained from others

* Timing of process
may be affected

* Deadlock {renewable
resource )

® Starvation

#* Data coherence

Processes directly aware
of each other (have com-
munication primitives
available to them)

Cooperation by commu-
nication

* Results of one
process may depend
on information
obtained from others

* Timing of process
may be affected

* Deadlock {consum-
able resource)

® Starvation




Competition among
Processes for Resources

Three main control problems:

* Need for Mutual Exclusion
— Critical sections

 Deadlock
e Starvation
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Requirements for A })
Mutual Exclusion a7

-'l.,’ ) "9",‘) :
« Only one process at a time is allowed in"**

the critical section for a resource

* A process that halts in its noncritical
section must do so without interfering with
other processes

* No deadlock or starvation
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Requirements for r ASR

Mutual Exclusion > :
o o"?r‘,‘ :
« A process must not be delayed access’to”  »
a critical section when there is no other

process using it

* No assumptions are made about relative
process speeds or number of processes

* A process remains inside its critical section
for a finite time only
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Disabling Interrupts 5

* Uniprocessors only allow interleaving "~

* Interrupt Disabling

— A process runs until it invokes an operating
system service or until it is interrupted

— Disabling interrupts guarantees mutual
exclusion

— Will not work in multiprocessor architecture



Pseudo-Code

while (true) {

/*
/*
/*
/*

disable interrupts */;
critical section */;
enable interrupts */;

remainder */;



Special Machine
Instructions 3

 Compare&Swap Instruction

— also called a “compare and exchange
instruction”

» Exchange Instruction

« COMPARE Is made between a memory
value and a test value, If the values are
same ,a swap occurs.



Compare&Swap
Instruction

1nt compare and swap (int *word,

int testval, int newval)

int oldval;
oldval = *word;
1f (oldval == testval) *word = newval;

return oldval;



Mutual Exclusion (fig 5.2)

/* program mutualexclusion */

const int n = /* number of processes */;

int bolt;
void P(int i)
{

while (true) |
while (compare_and swap(bolt, 0,

/* do nothing */;
/* critical section */:

bolt = Q;
/* remainder */;

1)

¥
vold main()

{
bolt = 0;
parbegin (F(1), P(2), ... ,P(n}));

(a) Compare and swap instruction



Exchange

Instruction

vold exchange (1nt regilister,

memory)

int temp;

temp = memory;

memory =

reglster

reglister;

= Lemp;

int



Exchange Instruction
(fig 5.2)

/* program mutualexclusion #*/

int beolt;
void Pi{int 1)
{
int keyi = 1;
while (true) [
do exchange (keyi, bolt)

while (keyvi != 0);
/* critical section */;
bolt = Q;

/* remainder */;
}
}

volid main()
{
bolt = Q;

parbegin (P(1), P2},

int const n = /* number of processes**/;

-, P(m));

(b) Exchange instruction



Hardware Mutual U

Exclusion: Advantages e’
2 0
* Applicable to any number of processes on
either a single processor or multiple

processors sharing main memory
* |t is simple and therefore easy to verify

* It can be used to support multiple critical
sections



Hardware Mutual  AJR
Exclusion: Disadvantages >

= 9 e 4\ &)

%9)) :
* Busy-waiting consumes processor time ** , »

« Starvation is possible when a process
leaves a critical section and more than one

process Is waiting.

— Some process could indefinitely be denied
access.

« Deadlock is possible
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Semaphore %
« Semaphore: i
— An Integer value used for signalling among

processes.

* Only three operations may be performed
on a semaphore, all of which are atomic:
— Initialize,

— Decrement (semWait)
—Increment. (semSignal)



Semaphore Primitives

struct semaphore {
int count;
queueType queus;
bi
vold semWalt (semaphore s)
{
s.count--;
if (s.count < 0) {
/* place this process
/* block this process
t
t
vold semSignal (semaphore s)
{
s.count++4;
if (s.count <= 0) {
/* remove a process P
/* place process P on
}
t

in s.gueue */;

from s.queue */;
ready list */;

Figure 5.3 A Definition of Semaphore Primitives



Binary Semaphore
Primitives

struct binary semaphore {
enum {zero, one} value;
queueType queus;
bi
void semWaitB(binary semaphore s)
{
if (s.value == one)
s.value = zero;
else {
/* place this process in s.queue */;
/* block this process */;
}
}
void semSignalB(semaphore s)
{
if (s.queue 1s empty())
s.value = one;
else {
/* remove a process P from s.queue */;
/* place process P on ready list */;
}
}

Figure 5.4 A Definition of Binary Semaphore Primitives



Strong/Weak pr AGL

Y D
Semaphore >

FY. )7 <)
D’)Q :
* A queue Is used to hold processes waiting - »
on the semaphore

— In what order are processes removed from
the queue?

« Strong Semaphores use FIFO

 Weak Semaphores don’t specify the
order of removal from the queue



Example of Strong
Semaphore Mechanism
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Example of Semaphore Mechanism > 2,
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Figure 5.5 Example of Semaphore Mechanism



Mutual Exclusion Using Semaphores

/* program mutualexclusion */

const int n = /* number of processes */;
semaphore s = 1;
vold P(int 1)

while (true)
semWait(s);

/* critical section */;
semSignal(s);
/* remainder */
t
t
vold main()
{
parbegin (P(1l), F(2), . . ., B(n));
t

Figure 5.6 Mutual Exclusion Using Semaphores



Processes Using
Semaphore

Juene for Value of
semaphore lock  semaphore lock A B C
Critical
I region
L |
. MNormal
e semWaitlock) | _— 1 xecution
(= L® Lt
0
Y 1 Blocked on
e semWait(lock) | : semaphore
. ]
B 1 : 4 lock
I semWaii(lock)
 EEEm 0 i P HE
C B - 1
Y - I
sembignal{locky 1 I
e~ ———g———
C 1 !
|
|
|
semSignal(lock) |
D 1
sem Signalilock)
| ¥ |

Note that normal
Execution can
proceed in parallel
butt that crivical
regions are serialized.

Figure 5.7 Processes Accessing Shared Data Protected by a Semaphore



Producer/Consumer o y

Problem >
LN B3 ]

 General Situation: 3’ \

— One or more producers are generating data and
placing these in a buffer

— A single consumer is taking items out of the buffer
one at time

— Only one producer or consumer may access the
buffer at any one time

« The Problem:

— Ensure that the Producer can’t add data into full buffer
and consumer can’t remove data from empty buffer

Producer/Consumer Animation -


http://gaia.ecs.csus.edu/~zhangd/oscal/ProducerConsumer/ProducerConsumer.html
http://gaia.ecs.csus.edu/~zhangd/oscal/ProducerConsumer/ProducerConsumer.html

. S O
Functions »»’na
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« Assume an infinite buffer b with a linear array of
elements

Producer consumer

while (true) { while (true) {
/* produce item v while (in <= out)
*/ /*do nothing */;
b[in] = v; w = b[out];
In++; out++;

} /* consume item w

*/



Buffer 3 &)

out in

MNote: shaded area indicates portion of buffer that 15 occupied

Figure 5.8 Infinite Buffer for the Producer/Consumer Problem



Incorrect Solution '3

) v’
L
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/* program producerconsumer */ e L
int n; y W ¢
binary semaphore s = 1, delay = 0; '
void producer/()
{
while (true) {
produce();
gsemWaitB(s);
append() ;
n++;

if (n==1) semSignalB(delav);
semSignalB(s);

t
t
void consumer()
{
semWaitB(delay);
while (true) {
semWaitB(s);
take();
n--;
semSignalB(s);
consume( ) ;
if (n==0) semWaitB(delay);
t
t
void main{)
{
n = 0;

parbegin (producer, consumer);




Possible Scenario

Table 5.4 Possible Scenario for the Program of Figure 5.9 ’ n
Producer Consumer 5 n Dielay
1 1 1] 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0
4 if (n==1)
(semSignal Bidelay)) 0 1 1
5 semSignalBis) 1 1 1
f semWailtB{delay) 1 1 0
7 semWaitB(s) 0 1 0
G n-- 0 ] 1]
9 semSignalB(s) 1 ] 0
10 semWaitB(s) 0 0 0
11 n++ 0 1 0
12 if (n==1)
(semSignal B{delay)) 0 1 1
13 semSignalB(s) 1 1 1
14 if (n==00) (semWaitB(delay)) 1 1 1
15 semWaitB(s) 0 1 1
16 n-- 0 ] 1
17 semSignalB(s) 1 0 1
18 if (n==0) (semWaitB(delay)) 1 0 0
19 semWaitB(s) 0 0 0
20 n-- 0 -1 0
21 semiSignlaB(s) 1 -1 0

AT E Whita araas ramracant tha criticasl ceaction cantrallad By camianhore o



Correct Solution

/* program producerconsumer */

int n;

binary semaphore s = 1, delay = 0;

void producer()

{

while (true)

produce (
semWaitB
append()
n++;

1
)i
(s);

if (n==1) semSignalB(delay);

semSignalB(s);

t
t
void consumer()
{
int m; /* a local variable */
semWaitB(delay);
while (true) {
semWaitB(s);
take();
n--—;
m = n;
semSignalB(s);
consume( ) ;
if (m==0) semWaitB(delay);
t
t
void main()
{
n = 0;

parbegin (producer, consumer);




Semaphores

{

}
{

}
{
'

/* program producerconsumer */
semaphore n = 0, 8 = 1;
void producer()

while (true)

{
produce()
semWalit(s
append();
semSignal (s);
semSignal (n);

) ;

void consumer()

while (true) {
1

semWait(n);
semWait(s);
take();
semSignal (s);
consume{ ) ;

void main()

parbegin (producer, consumer);

Figure 5.11 A Solution to the Infinite-Buffer Producer/Consumer Problem

Using Semaphores



Bounded Buffer

Block on: Unblock on:
Producer: insert in full buffer Consumer: 1tem nserted
Consumer: remove from empty buffer Producer: item removed

BLIT | B[2] | B[3] | B[4] | B[5] s s s @ bl 7]

! |

Ot In

(a)

BI1] | B[2] | B[2] | B[4] | B[5] e o o o | hln]

]

In Ot
(b

Figure 5,12 Finite Circular Buffer for the
Producer/Consumer Problem



Semaphores ' % 9
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/* program boundedbuffer */ - ]’3;) '
const int sizeofbuffer = /* buffer size */; y
semaphore s = 1, n= 0, e= sizeofbuffer;
void producer()
{
while (true) {
produce();
semWait(e);
semWait(s);

append() ;
semSignal(s);
semSignal(n);

t
}
void consumer()
{
while (true) {
semWait(n);
semWait(s);
take();
semSignal(s);
semSignal(e);
consume( ) ;
t
}
void main()
{

parbegin (producer, consumer);

}




Functions in a ’,*;"":’;gi
Bounded Buffer 3P
7Y S € “

Producer consumer

while (true) { while (true) {
/* produce item v while (in == out)
*/ /* do
while ((in + 1) % n nothing */;
== out) /* do w = b[out];
nothing */; out = (out + 1)
b[in] = v; % n;

N = (in + 1) % n /* ~rAanc<iiMme 1ftem



Demonstration "f’:";; )
Animations >’
. <Y
» Producer/Consumer '*rg”", ?
— lllustrates the operation of a producer-consumer

buffer.

« Bounded-Buffer Problem Using Semaphores

— Demonstrates the bounded-buffer consumer/producer
problem using semaphores.



http://gaia.ecs.csus.edu/~zhangd/oscal/ProducerConsumer/ProducerConsumer.html
http://gaia.ecs.csus.edu/~zhangd/oscal/semaphore/semaphore.html
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Monitors %
-'l.,b ) 9") :
» The monitor is a programming-language ™ . »
construct that provides equivalent
functionality to that of semaphores and
that Is easier to control.

* Implemented in a number of programming
languages, including
— Concurrent Pascal, Pascal-Plus,
— Modula-2, Modula-3, and Java.
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Chief characteristics oo
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* Local data variables are accessible only"™
oy the monitor

* Process enters monitor by invoking one of
Its procedures

* Only one process may be executing Iin the
monitor at a time




Synchronization % > 2

) Q <

« Synchronisation achieved by condltlon o
variables within a monitor

— only accessible by the monitor.
* Monitor Functions:

—Cwait(c): suspend execution of the calling
process on condition ¢

—CSig naI(c) Resume execution of some

process blocked after a cwait on the same
condition



Structure of a Monitor

monitor waiting area

quene of
entering
processes

|!| MONITOR

Entrance
:Iil:

condition cl

.

>

I

cwait(cl)

]

local data

condition variables

Procedure 1

{-—F

condition ¢n

cwalt{cn)

urgent queue

[ ] | [ ] | ]

!

cgignal

p—— ] | [ —]

Procedure &

initialization code

:Iil:l
Exit



Bounded Buffer Solution

| | | | .) ] \-1
Using Monitor >.7
9 "‘lg)
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(W
/* program producerconsumer */
monitor boundedbuffer;
char buffer [N]; /* space for N items */
int nextin, nextout; /* buffer pointers */
int count: /* number of items in buffer */
cond notfull, notempty; /* condition wvariables for synchronization */
void append (char x)
{
if (count == N) cwait(notfull); /* buffer i1s full; avoid overflow */
buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;
/* one more item in buffer */
csignal (notempty) ; /* resume any waiting consumer */
}
void take (char x)
{
if (count == 0) cwait(notempty); /* buffer is empty; avoid underflow */
¥ = buffer[nextout];
nextout = (nextout + 1) % N;
count=-; /* one fewer item in buffer */
csignal (notfull); /* resume any waliting producer */
}
{ /* monitor body */
nextin = 0; nextout = 0; count = 0; /* buffer initially empty */
}




Solution Using Monitor

void producer()

{
char x;
while (true) {
produce(x);
append(x);
}
}
void consumer()
{
char x;
while (true) {
take(x);
consume (X) ;
}
1
void main()
{

parbegin (producer, consumer);

}




Bounded
Buffer Monitor

) : }
) ' &
) 7 )

I\

",')/‘ |

volid append (char x)

{
while(count == N) cwait(notfull);
buffer[nextin] = x;
nextin = (nextin + 1) % N;
count++;
cnotify(notempty);

}

void take (char x)

{
while(count == 0) cwait(notempty);
X = buffer[nextout];
nextout = (nextout + 1) % N;
count--;
cnotify(notfull);

}

/* buffer is full; avoid overflow */

/* one more item in buffer */

/* notify any waiting consumer */

/* buffer is empty; avoid underflow */

/* one fewer item in buffer */
/* notify any waiting producer */

Figure 5.17 Bounded Buffer Monitor Code for Mesa Monitor
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Process Interaction %8
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* When processes interact with one another, ', .,

two fundamental requirements must be
satisfied:

— synchronization and
— communication.

Message Passing is one solution to the
second requirement

— Added bonus: It works with shared memory
and with distributed systems

!



Message Passing %Y ~y
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« The actual function of message passingis -
normally provided in the form of a pair of
primitives:
. send (destination, message)

. receive (source, message)



. SRy
Synchronization '

A3 )7 '<Y
s YR :
« Communication requires synchronizatic)h’z”
— Sender must send before receiver can receive
* What happens to a process after it issues
a send or receive primitive?

— Sender and receiver may or may not be
blocking (waiting for message)



. > gy
Blocking send, A )-
Blocking receive >Q”

AN

. Both sender and receiver are blocked until .
message Is delivered

« Known as a rendezvous

 Allows for tight synchronization between
processes.



Non-blocking Send

* More natural for many concurrent
programming tasks.
* Nonblocking send, blocking receive

— Sender continues on

— Receilver is blocked until the requested
message arrives

* Nonblocking send, nonblocking receive
— Neither party Is required to wait



Addressing o i

« Sendin process need to be able to spéblfy

which process should receive the
message

— Direct addressing
— Indirect Addressing

9



Direct Addressing SN

. ";9"‘) 'i

. Send primitive includes a specific identifier . »
of the destination process

* Recelve primitive could know ahead of
time which process a message Is
expecteo

* Recelve primitive could use source
parameter to return a value when the
receive operation has been performed
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Indirect addressing ' H 9
AL . 9N
 Messages are sentto a shared data "
structure consisting of queues
* Queues are called mailboxes

* One process sends a message to the
mailbox and the other process picks up
the message from the mailbox

|
;



Indirect Process Communication 2, @,

S] s——pi \lailbox R;

(a) One to one (b) Many to one

e . . ,‘
S1 Mailbox | . » Mailbox |
> L d

Rm S N Rm

(d) Many to many
(¢) One to many d : )

Figure 5.18 Indirect Process Communication



General Message Format

Message Type
Destination ID
Header Source ID
Message Length

Control Information

Body Message Contents

Figure 5.19 General Message Format



oYy N

. B

Mutual Exclusion Using Messages > ?,

)

|

e
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/* program mutualexclusion */

const int n = /* number of processes */;
void P(int 1)
{

message msqg;
while (true) {
receive (box, msqg);

/* critical section */;
send (box, msqg);
/* remainder x/
}
} 1
void main()
{
create mailbox (box);
send (box, null);
parbegin (P(1l), P(2), . . ., P(Nn));
}

Figure 5.20 Mutual Exclusion Using Messages



Producer/Consumer
Messages

const int
capacity = /* buffering capacity */ ;
null =/* empty message */ ;
int i;
void producer()
{ message pmsg;
while (true) {
receive (mayproduce, pmsqg);
pmsg = produce();
send (mayconsume, pmsqg);
1
}

void consumer()
{ message cmsg;
while (true) {
recelve (mayconsume, cmsqg);
consume (cmsqg);
send (mayproduce, null);

}
}

void main()
{
create mailbox (mayproduce);
create mailbox (mayconsume);
for (int 1 = 1; 1 <= capacity; 1i++) send (mayproduce,
parbegin (producer, consumer);

null);
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Readers/Writers Problem S5 e
ﬁ}w) ‘ "?; 3 ]
 Adata area is shared among many % .,
processes

— Some processes only read the data area,
some only write to the area

« Conditions to satisfy:
1. Multiple readers may read the file at once.
2. Only one writer at a time may write
3. If a writer is writing to the file, no reader may

read It.
Interaction of readers and
writers.


http://gaia.ecs.csus.edu/~zhangd/oscal/ReaderWriter/ReaderWriter.html
http://gaia.ecs.csus.edu/~zhangd/oscal/ReaderWriter/ReaderWriter.html

Readers have Priority

int readcount;
semaphore x = 1, wsem =
void reader()
{
while (true) {
semWait (x);
readcount++;
if (readcount == 1)
semSignal (x);
READUNIT( ) ;
semWalit (x);
readcount--;
if (readcount == 0)
semSignal (x);
}
t
void writer()
{
while (true) {
semWait (wsem);
WRITEUNTIT( ) ;
semSignal (wsem);

}
}

void main()

{

readcount = 0;

/* program readersandwriters */

1;

semWait (wsem);

semSignal (wsem);

parbegin (reader, writer);




Writers have Priority

/" program readersandwriters ™/
int readcount, writecount;
semaphore x =1, y =1, z = 1, wsem = 1, rsem =
void reader()
{
while (true) {
semWait (z);
semWalt (rsem);
semWalt (x);
readcount++;
if (readcount == 1) semWait
semSignal (x);
semSignal (rsem);
semSignal (z);
READUNIT();
semWalit (x);
readcount--;
if (readcount == 0) semSignal (wsem);
semSignal (x);

}

1;

(wsem) ;




Writers have Priority

void writer ()
{
while (true) {
semWalit (y);
writecount++;
if (writecount == 1)
semSignal (y);
semWalt (wsem);
WRITEUNIT( ) ;
semSignal (wsem);
semWalit (y);
writecount--;
if (writecount == 0)
semSignal (y);
}
}
void main()
{
readcount = writecount = 0;
parbegin (reader, writer);

semWalt (rsem);

semSignal (rsem);




Message Passing

vold reader(int i)

{

message IMsg;
while (true) {
rmsg = 1i;

send (readrequest, rmsg);
receive (mbox[i], rmsg);

READUNIT ();
rmsg = i

send (finished, rmsg);

}
}
void writer(int i)
{
message rmsdg;
while(true) /{
rmsg = j;

send (writerequest, rmsg);

receive (mbox[]j], rmsqg);
WRITEUNIT ()

rmsg = Jj;

send (finished, rmsqg):;

void

{

controller()

while

{

if

}

(true)

(count > 0) {

if (!empty (finished)) {
receive (finished, msqg);
count++;

}

else if (!empty (writerequest)) {
receive (writerequest, msg);
writer id = msg.id;

count = count — 100:

}

else if (!empty (readrequest)) {
receive (readrequest, msqg);
count——:
send (msg.id, "OK");

}

(count == 0) {

send (writer id, "OEK"):
receive (finished, msg);
count = 1003

while (count < 0) {

receive (finished, msqg);
count++:




Message Passing

void controller()
{
while (true)
{
if (count > 0) {
if (!empty (finished)) {
receive (finished, msqg);
count++;
}
else if (!'empty (writerequest))
receive (writerequest, msg);
writer id = msg.id;
count = count — 100:
}
else if (!empty (readrequest))
receive (readrequest, msqg);
count-——;
send (msg.id, "OK");
}

}

if (count == 0) {
send (writer id, "OEK"):
receive (finished, msg);
count = 1003

¥

while (count < 0) {
receive (finished, msqg);
count++:

{

{

. 7 )
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* Permanent blocking of a set of processes”
that either compete for system resources
or communicate with each other

 No efficient solution

* Involve conflicting needs for resources by
two or more processes



Deadlock X
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T

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock
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% =both P and Q want resource A

|

=hoth P and Q want resource B Require d

|

I:' = deadlock-inevitable region B Required
_.v = possible progress path of P and Q.

Horzental portion of path indicates P is executing and ) 1s waiting.
Wertical portion of path indicates Q) is executing and P is waiting.

Figure 6.2 Example of Deadlock



Deadlock

Progress
of Q
A

Release

A

A Release

Required B

Get A

\\\\

B
Required

wam B ‘\

\
N

GetB

Progress

=hoth P and Q want resource A

<] _ .
Q =hboth P and Q want resource B

Figure 6.3

Get A Release A GetBE Release B of P

\_,-Y-\}L,—Y-\J

A Required B Required

_h = possible progress path of Pand Q.

Horizontal portion of path indicates P1s executing and Q is waiting.
ertical portion of path indicates () is executing and P 1s waiting.

Example of No Deadlock [BACO03]
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» Used by only one process at a time and i
not depleted by that use

* Processes obtain resources that they later
release for reuse by other processes



Reusable Resources ..

* Processors, I/O channels, main and
secondary memory, devices, and data
structures such as files, databases, and
semaphores

* Deadlock occurs If each process holds
one resource and requests the other



Reusable Resources

Process P

Step  Action

Pq Request (D)

P, Lock (D)

P, Request (1)

P; Lock (T)

P, Perform function
P Unlock (D)

Pe Unlock (T)

» G
» .,’ D
Y
VS ?: ,‘)
> D ¥
Process Q d
Step  Action
a, Request (T)
q, Lock (T)
q, Request (D)
a; Lock (D)
q, Perform function
Qs Unlock (T)
P Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources
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« Space Is available for allocation of
200Kbytes, and the following sequence of
events occur

P1 P2
Request 80 Kbhytes; Request 70 Kbytes;
Request 60 Kbytes; Request 80 Kbytes;
* Déaurucruccurs If bo T PTUCTSSTS

progress to their second request



Consumable Resources V33

* Created (produced) and destroyed
(consumed)

* Interrupts, signals, messages, and
Information in 1/O buffers

* Deadlock may occur if a Recelve message
IS blocking

 May take a rare combination of events to
cause deadlock



Example of Deadlock

* Deadlock occurs if receives blocking

Receive(P2);

P1

Send(P2, M1);

Receive(P1);

P2

Send(P1, M2);
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Resource Allocation Graphs "% 9
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* Directed graph that depicts a state of the™ 5
system of resources and processes

R Held b
PI e 5@ Ra Pl ! ® Ra

(a) Resouce is requested (b) Resource is held



Conditions for Deadlock %

 Mutual exclusion &'
— Only one process may use a resource at a
time
 Hold-and-walit

— A process may hold allocated resources while
awaiting assignment of others



Conditions for Deadlock 5

* No preemption e

— No resource can be forcibly removed form a
process holding it

 Circular walt

— A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain



Pl

P2 Pl P2

Rb

(e) Circular wait (d) No deadlock



Resource Allocation Graphs

Pl

Ra

Rb

Re

2" 208
"75'> )
Sl
».) P
TS S
>
P4
A
&
Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b



Possiblility of Deadlock

 Mutual Exclusion
* No preemption
 Hold and wait



Existence of Deadlock

* Mutual Exclusion
* No preemption

* Hold and walit

» Circular wait



Deadlock Prevention %8

 Mutual Exclusion e
— Must be supported by the OS

 Hold and Walit

— Require a process request all of its required
resources at one time



Deadlock Prevention %8

* No Preemption e

— Process must release resource and request
again

— OS may preempt a process to require it
releases Iits resources

 Circular Wait
— Define a linear ordering of resource types
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Deadlock Avoidance %o

> 9 * )
9
* A decision is made dynamically Whether e
the current resource allocation request
will, If granted, potentially lead to a

deadlock

* Requires knowledge of future process
requests



Two Approaches to o TG

: S @
Deadlock Avolidance >

Ty )7 <)

S8 N
* Do not start a process If its demands might  »
ead to deadlock

* Do not grant an incremental resource

request to a process If this allocation might
lead to deadlock
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Resource Allocation Denial R
: ’ <
» Referred to as the banker’s algorithm %

« State of the system Is the current
allocation of resources to process

o Safe state I1s where there Is at least one
sequence that does not result in deadlock

 Unsafe state Is a state that Is not safe

.Y

|
;



Determination of a Safe State

Pl

P3
P4

Rl R2 E3 Rl R2 R3
3 2 2 Pl 1 0 0 Pl
6 | 3 P2 b 1 2 P2
3 | 4 P3 2 1 1 P3
4 2 2 P4 0 0 2 P4

Claim matrix C Allocation matrix A
Rl R2 R3 Rl R2 E3

[ 9 [ 3 | & | Lo [ 1 [ 1 |

Resource vector B

(a) Initial state

Available vector V

S
, ) |
) (o Q)
~l
= ‘)
s ¢
& ol
»
Rl R2 R3
2 2 2
0 0 1
] 0 3
4 2 0
C-A
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P3
P4

Determination of a Safe State

R1 R2 R3 R1 R2 R3
3 2 2 P1 1 0 0 P1
0 0 0 P2 0 0 0 P2
3 1 4 P3 2 1 1 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matix A
R1 R2 R3 Rl R2 R3
9 3 f 6 2 3

Resource vector R Available vector V

(b} P2 runs to completion

>
' )
» ” )
| -
) > &
Y7 <)
s
Ve
™ '
Rl R2 B3
2 2 2
0 0 0
1 0 3
4 2 ]
C-A




Determination of a Safe State

R1 R2 R3 R1 R2 R3
Pl 0 0 0 P1 0 0 0 P1
P2 0 0 0 P2 0 0 0 P2
P3 3 1 4 P3 2 1 1 P3
P4 4 2 2 P4 0 0 2 P4
Claim mamix C Allocation matnx A
Rl R2 R3 Rl R2 R3
9 3 f i 2 3
Resource vector R Available vector V

(c) P1 runs to completion

=] = S| S




Pl

P3
P4

Determination of a Safe State

R1 R2 R3 R1 R2 R3
0 0 0 Pl 0 0 0 P1
0 0 0 P2 0 0 0 P2
0 0 0 P3 0 0 0 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 Rl R2 R3
s 1 3 1T 6] [9 [ 3 [ %]

Resource vector R

(d) P3 runs to completion

Available vector V

jes

S e T o T

Fal ) )




Determination of an Unsafe State

Rl R2 R3 R1 R2 R3 R1 R2 R3
Pl 3 2 2 P1 1 0 0 P1 2 2 2
P2 6 1 3 P2 3 1 1 P2 1 0 2
P3 3 1 4 P3 2 | 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
g 3 6 1 | A
esource vector R Available vector V
ia) Initial state
Rl R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 2 0 1 P1 1 2 1
P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 | 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 0 1 1
Resource vector R Avwailable vector V

(b) P1 requests one unit each of R1 and R3



Deadlock Avoidance Logic

struct state {
int resourcefm];
int available[m];
int claim[n][m];
int alloc[n]im];

(a) global data structures

if (alloc [i,*] + reguest [*] > claim [i,*])

else if (regquest [*] > available [*])
< suspend process >;

else |
< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = awvailable [*] - reguest [*] =;
}

if (safe (newstate))
< carry out allocation >;
else |
< restore original state >;
< suspend process =;

< error >; /* total request > claim*/

/* simulate alloc #/

(b) resource alloc algorithm



Deadlock Avoidance Logic

boolean safe (state 5) {
int currentavail[m];
process rest[<number of processes>]:
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {
<find a process Pk in rest such that
claim [k,*] — alleoc [k,*] <= currentavail;=
if (found) { /* simulate execution
currentavail = currentavail + alloc [k,*];
rest = rest - {Pr};

}

else possible = false;
}
return (rest == null);

of Py * /

(c) test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic



Deadlock Avoidance N
T3 ) <Y
. . -’ ?"'a §
* Maximum resource requirement must be™
stated In advance

* Processes under consideration must be
iIndependent; no synchronization
requirements

e There must be a fixed number of
resources to allocate

* No process may exit while holding
resources
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P3
P4

Deadlock Detection

RI R2Z R3 R4 RS
o1 ]100|1 Pl
o0 101 P2
00001 P3
1101101 P4

Request matrix Q

=

Rl R2 R3 R4 RS RI R2 R3 R4 RS
101|110 2 |1 1 2 |1
1 110100 Resource vector
0O[0 0|10
000010 RI R2 R3 R4 RS

Allocation matrix A O (0| 0] 0 1

Allocation vector

Figure 6.10 Example for Deadlock Detection
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Strategies Once Deadlock Detected
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) 9
» Abort all deadlocked processes ey
» Back up each deadlocked process to
some previously defined checkpoint, and

restart all process
— Original deadlock may occur
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Strategies Once Deadlock Detected >, @
5 : ”‘) :
» Successively abort deadlocked processes . »
until deadlock no longer exists

* Successively preempt resources until
deadlock no longer exists



Advantages and Disadvantages

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance
Approaches for Operating Systems [ISLOS0]

computation snce
problemis solved in
system design

Resource Allocation Major
Approach . Different Schemes Major Advantages .
PH Policy L E Disadvantages
*Inefficient
“Works well for *Delaysprocess
. processesthat performa | imtiation
Eequesting all resources at | *. .
- single burst of activity *Future resource
+No presmption requirements must
necessary beknown by
processes
T e 'C-on];f' e;]ient when
: : applied to resources
Prevention | undercommuits : PP *Preempts more
Preemption whose state canbe
[eSOUICEes oftenthannecessary
saved andrestored -
easily
*Feasible to enforce via
compile-time checks .
P . *Disallows
: *Needs no nun-time :
Fesource ordening incremettal

resource reque st

*Future resource
Midway between that . . requirements must
Avoidance | ofdetection and Manipulateto findatleast | +No preemption heqknnwn by 08
- one safe path necessary :
prevention *Processes canbe
blocked forlong
penods
Very liberal; *Never delays process
Detection requestedresources Invole penodically to test | utiation *Inherent preemption
are granted where fordeadlock *Facilitates online losses
possible handling




Dining Philosophers Problem

Figure 6.11 Dining Arrangement for Philosophers



Dining Philosophers Problem

/* program diningphilosophers #/
semaphore fork [5] = {1};
int i;
void philosopher (int 1)
{
while (true) {
think();
wait (fork[i]);
wait (fork [(i+l) mod 5]);
eat();
signal (fork [(i+1) mod 5]);
signal (fork[i]);
}
}

void main()

{

(2)

parbegin (philosopher (0), philosopher (1), philosopher

philosopher (3), philosopher (4));

Figure 6.12 A First Solution to the Dining Philosophers Problem



Dining Philosophers Problem %9

/* program diningphilosophers */
semaphore fork[5] = {1};

semaphore room = {4};
int 1i;

void philosopher (int 1)
{

while (true) {
think();
walt (room);
walt (fork[i1]):
walt (fork [(1i+1) mod 5]);
eat();
signal (fork [{(i+1l) mod 5]);
signal (fork([i]);
signal (room);

}
}
void main()
{
parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem



Dining Philosophers Problem

{

F
{

monitor dining contreller;
cond ForkReady[5];
beoeolean fork[G5] = {true};

void get forks(int pid) /* pid is the

int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)
cwalit (ForkReady[left]); /* queune
fork(left) = false;
/*grant the right fork*/
if (!fork(right)
cwait (ForkReady(right); /* queune
fork(right) = false:

void release forks(int pid)

int left = pid;

philosopher

/* condition variable for synchronization
/* availability status of each fork

id number

on condition wvariable

on condition wvariable

int right = (++pid) % 5;

/*release the left fork*/

if (empty(ForkReady[left]) /*no one is waiting for
fork(left) = true;

else /* awaken a process waiting on

csignal (ForkReady[left]);

/*release the right fork*/

if (empty(ForkReady[right]) /*no one 1is
fork({right) = true;

waiting for

else /* awaken a process waiting on

csignal (ForkReady[right]);

this fork

this fork

this fork

this fork

* /
* /

*/

*/

* /

* /

* /

* /

*/
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void philosopher[k=0 to 4] /* the five philosopher clients */
{
while (true) {
<think>;
get forks(k); /* client requests two forks via monitor */
<eat spaghetti>;
release forks(k); /* client releases forks wia the monitor */
¥
¥

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor



UNIX Concurrency Mechanisms

* Pipes
 Messages

« Shared memory
« Semaphores

« Signals



UNIX Signals

o

Value Name Description eV )

01 SIGHUP Hang up; sent to process when kemel assumes that the
user of that process is doing no useful work

02 SIGINT Interrupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL Illegal instruction

03 SIGTEAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT 10T instruction

o7 SIGEMT EMT instruction

D8 SIGEPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGBUS Bus error

11 SIGSEGY Segmentation violation; process attempts to access
location outside its virtual address space

12 SIGSYS Bad argument to svstem call

13 sSIGPTPE Write on a pipe that has no readers attached to it

14 SIGALEM Alarm clock; issued when a process wishes to receive a
signal after a period of time

15 SIGTERM Software termination

16 SIGUSE1 User-defined signal 1

17 SIGUSE2 User-defined signal 2

12 SIGCHLD Death of a child

19 SIGPWER Power failure
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Linux Kernel Concurrency Mechanism . » 7, &
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* Includes all the mechanisms found in " **
UNIX

« Atomic operations execute without
interruption and without interference



Linux Atomic Operations >

. B

Table 6.3 Linux Atomic Operations

Atomic Integer Operations

ATOMIC IWIT {int 1)

At declaration: initialize an atomic t toi

int atomic readiatomic t *®w)

Read integer value of v

wold atomic ==t (atomic t *v, 1nt 1)

~et the value of v to integer i

wold atomic add{int i, atomnic t *v)

Additov

wold atomic =ub{int i, atonic t *v)

Subtract 1 from v

volid atomic inc{atomic t %%

Addltovw

woid atomic dec(atomic t *®w)

Subtract 1 from v

int atomic =ub and test{int 1, atomic_t
*®77

msubtract 1 from v; return 1 if the result is zero;
return 0 otherwise

int atomic_add negativel(int 1. atomic_t
*v}

Addito v; return 1 if the result is negative;
return 0 otherwise (used for implementing
semaphores)

int atomic dec and test{atomic t *w)

subtract 1 from v; return 1 if the result is zero:
return O otherwise

int atomic_inc and test{atomic t *wv)

Add ] tov;return 1 if the result 1s zero; return
0 otherwise




Linux Atomic Operations Y

Atomic Bitmap Operations

vold =et_bit{int nr. woid *addr)

Set bit nr in the bitmap pointed to by addr

wold clear bit{int nr. woid ®addzr)

Clear bit nr in the bitmap pointed to by addr

vold changse bit{int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test_and ==t bit({int nr, woid *addr)

~et bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and clesr bit{int nr, woid *addr)

Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and change bit{int nr . woid
*5ddzr)

Invert bit nr in the bitmap pointed to by addr;
return the old bit value

int test_hbit{int nr. woid *®addr)

Retumn the value of bit nr in the bitmap pointed
to bvaddr




Linux Spinlocks
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vold =pin_ lock{spinlocl t *#1ocl)

Acquires the specified lock, spinning if
needed until it is available

vold =pin_ lock irgi=pinlocl_t *#1locl)

Like spin_lock, but also disables
interrupts on the local processor

woid =pin_lock irg=zawe(=pinlock t *=1locl,

un=igned long flags)

Like spin_lock irg, but also saves the
current interrupt state in flags

woid =pinh_lock bhi=pinlock t =*=1locl)

Like spin_lock, but also disables the

execution of all bottom halves

vold =pin unlocki{spinlock t *®1lock)

Feleases given lock

wvold =pin_unlocl_i1rgi{spinlocl_t *#1lock)

Feleases given lock and enables local
interrupts

wvold =pin_unlocl_i1rgrestorei{spinloclk_t
#]ocl, unsigned long flags)

EFeleases given lock and restores local
interrupts to given previous state

woid =pin_unloclk_bhispinlock_t *=1ock)

Feleases given lock and enables bottom
halwves

woid =pinh_lock _init({spinlock _t *#1ock)

Initializes given spinlock

int =pin trvlockispinlock t *®]lock)

Tries to acquire specified lock; retums
nonzero if lock is currentlv held and zero
otherwise

int =pin i= lockedi{=pinloclk t *#1locl)

Eetums nonzero if lock is currently held
and zero otherwise




Linux Semaphores

Traditional Semaphores

wold sema_init{struct =emaphore
*=zem, int count)

Initializes the dvnamically created semaphore to
the given count

vold init MUTEXE({=truct =emaphore
®=em )

Initializes the dvnamically created semaphore with

a count of 1 (initially unlocked)

vold init MUTEX LOCEED{=truct
zEnaphore *=smn )

Initializes the dynamically created semaphore with
a count of O (initially locked)

vold down{=truct =semaphore *zemn)

Attempts to acquire the given semaphore, entering
uninterruptible sleep if semaphore is unavailable

int down_interruptible{=struct
zemnaphore *=emn)

Attempts to acquire the given semaphore, entering
interruptible sleep if semaphore is unavailable;

returns -EINTR value if a signal other than the

result of an up operation is received.

int down trvloclk{struct =emaphore
®¥ZE )

Attempts to acquire the given semaphore, and
returns a nonzere value if semaphore is
unavailable

vold up({=struct semaphore *semn)

Releases the given semaphore

Reader-W

riter Semaphores

wvold init_rw=em(struct
rw_semaphore, *rvscsm)

Initalizes the dynamically created semaphore with
acount of 1

vold down_read(struct rw_semaphore.
¥ WZEN )

Down operation for readers

vold up read(struct rw_s=emaphore.
¥TWZEN )

Up operation for readers

vold down_writel(struct
rw_seEmaphore. *rvssm)

Down operation for writers

wold up _write(struct rw_=semaphore.
¥TWZEN )

Up operation for writers




Linux Memory Barrier Operations

Table 6.6 Linux Memory Barrier Operations

rmhb () Prevents loads from being reordered across the barrier
vk () Prevents stores from being reordered across the barmier
mh () Prevents loads and stores from being reordered across the barrier

Barrier(]

Prevents the compiler from reordering loads or stores across the barrier

smp_rmhb (]

On SMP, provides a rmb () and on UP provides a barrier ()

smp_wmhb [ ]

On SMP, provides a wmb [ ) and on UP provides a harrier ()

smp_mhb[ )

On SMP, provides amb () and on UP provides a harrier()

SMP = symmetric multiprocessor

UP =uniprocessor
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* Mutual exclusion (mutex) locks i
« Semaphores

* Multiple readers, single writer
(readers/writer) locks

 Condition variables
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4

)/?

Type (1 octet) 4 ﬂ
owner (3 octets) wlock (1 octet)

waiters (2 octets)

lock (1 octet)

waiters (2 octets) union (4 octets)
(statistic pointer or
type specific info (4 octets) number of write requests)

(possibly a turnstile id,

lock type filler,
or statistics pointer)

thread owner (4 octets)

(a) MUTEX lock

(c) Reader/writer lock

Type (1 octet)
wlock (1 octet)

waiters (2 octets) | waiters (2 octets) I

count (4 octets) (d) Condition variable

(b) Semaphore

Figure 6.15 Solaris Synchronization Data Structures
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within a process

. . Set to Signaled State Effect on Waiting
Ohject Tyvpe Definition "
J P When Threads

Notification An announcement that a
svstem event has Thread sets the event All released

Ewvent -
occurred

Svnchronization An announcement that a

i system event has Thread sets the event One thread released
occurred.
A mechanism that
provides mutual Owming thread or other

Mutex exclusion capabilities; thread releases the One thread released
equivalent to a binary mutex
semaphore
A counter that regulates Semaphore count drops

Semaphore the number of threads P P5 | All released

to zero
that can use a resource
. . A counter that records Set time arrives or time

Waitable timer : . . All released

the passage of time interval expires
. Aninstance of an , .

File - . . I/O operation completes | All released
opened file or IO device
A program invocation,
including the address

Process space and resources Last thread terminates All released
required to run the
program
An executable entity .

Thread ’ Thread terminates All released

Note.: Shaded rows correspond to objects that exist for the sole purpose of synchronization.
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* Types of Processor Scheduling
« Scheduling Algorithms
 Traditional UNIX Scheduling
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 An OS must allocate resources amongst™
competing processes.

* The resource provided by a processor Is
execution time

— The resource is allocated by means of a
schedule



Overall Aim
of Scheduling >R

* The aim of processor schedulingisto "**
assign processes to be executed by the
processor over time,

—In a way that meets system objectives, such

as response time, throughput, and processor
efficiency.



Scheduling Objectives , WY,

* The scheduling function should i
— Share time fairly among processes
— Prevent starvation of a process
— Use the processor efficiently
— Have low overhead

— Prioritise processes when necessary (e.g. real
time deadlines)



Types of Scheduling LN

Table 9.1 Types of Scheduling

Long-term scheduling

Medium-term scheduling

Short-term scheduling

/O scheduling

The decision to add to the pool of processes to be executed

The decision to add to the number of processes that are partially or
fully in main memory

The decision as to which available process will be executed by the
processor

The decision as to which process's pending I/O request shall be
handled by an available I/O device
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Process State Transitions > Q!
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Figure 9.1 Scheduling and Process State Transitions



Nesting of
Scheduling Functions
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Long-Term Scheduling N e
S8 __‘9!.&) __
. Determines which programs are admitted”  »
to the system for processing
— May be first-come-first-served
— Or according to criteria such as priority, 1/0O
requirements or expected execution time
« Controls the degree of multiprogramming

* More processes, smaller percentage of
time each process Is executed



Medium-Term | "'
Scheduling e’
 Part of the swapping function it

« Swapping-in decisions are based on the
need to manage the degree of
multiprogramming



Short-Term Scheduling

 Known as the dispatcher
* Executes most frequently

* Invoked when an event occurs
— Clock interrupts
— 1/O Interrupts
— Operating system calls
— Signals
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Aim of Short v AR
: 20 D

Term Scheduling >R
o?y
« Main objective iIs to allocate processor  “*

time to optimize certain aspects of system

behaviour.

A set of criteria Is needed to evaluate the
scheduling policy.

.
.a



Short-Term Scheduling ') )
Criteria: User vs System >

_ | L Y, N
 We can differentiate between user and % -, »

system criteria

 User-oriented

— Response Time

 Elapsed time between the submission of a request
until there is output.

« System-oriented

— Effective and efficient utilization of the
processor



Short-Term Scheduling
Criteria; Performance

 \WWe could differentiate between

performance related criteria, and those
unrelated to performance

* Performance-related
— Quantitative, easily measured
— E.g. response time and throughput

* Non-performance related
— Qualitative
— Hard to measure



Interdependent p A

Scheduling Criteria >R’

User Oriented, Performance Related

Turparound time This is the interval of ime between the submission of a process and its completion.
Includes actual execution ime plus time spent waiting for resources, incuding the processor. This is an
appropriate measure for a batch job.

Response time For an interactive process, this is the ime from the submission of a request until the

response begins to be received. Often a process can begin producing some output to the user while
continuing to process the request. Thus, thisis a better measure than turnaround time from the user's point

of view. The scheduling discipline should attempt to achieve low response ime and to maximize the
number of interactive users receiving acceptable response time.

Deadlines When process completion deadlines can be specified, the scheduling discipline should
subordinate other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should runin about the same amount of ime and at about the same cost
regardless of the load onthe svstem. A wide variation in response time or turnaround time 1s distracting to
users. It mav signal a wide swing in svstem workloads or the need for svstem muning to cure instabilities.




Scheduling Criteria cont. 2

Interdependent v

Svstem Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed
per unit of ime. Thisis a measure of how much workis being performed. This clearlv depends on the
average length of a process but is also influenced by the scheduling policy, which may affect utilization.

Processorutilization This is the percentage of time that the processar is busy. For an expensive shared
svstem, this is a significant criterion. In single-user systems and in some other systems, such as real-time
systems, this criterion is less important than some of the others.

Syvstem Oriented, Other

Fairness Inthe absence of guidance from the user or other svstem-supplied guidance, processes should
be treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor
higher-priority processes.

Balancing resources The scheduling policy should keep the resources of the svstem busy. Processes
that will underutilize stressed resources should be favored. This criterion alsoinvalves medium-term and
long-term scheduling.




Priorities W > '

» Scheduler will always choose a proceé's Gf
higher priority over one of lower priority

 Have multiple ready queues to represent
each level of priority



Priority Queuing
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Starvation %8

* Problem: e

— Lower-priority may suffer starvation if there is
a steady supply of high priority processes.

e Solution

— Allow a process to change its priority based
on its age or execution history



Alternative Scheduling
Policies

Table 9.3 Characteristics of Various Scheduling Policies
FCFS Hound SPN SRT HRRN | Feedback
robin
Selection ; L max(w + s)

Ainction max|w| constant min|s] minfs —¢| B (see text)
Decision Non- Preem.puve Non- Preemptive Non- Prcem.puve
mode reemplive artime reemplive (atarrival) reemplive \BEte

¢ P P quantum) P P P P quantum)
Throughput Not l_\“lay beJow High High High Not
g if quantum :
emphasized ! emphasized
is too small
May be
h:iga l;“ if Provides Provides
e 5% good good Provides Provides
R : thereisa \
esponse large response response good good Not
time R : time for time for response response emphasized
variance in ’ -
short short time time
s processes processes
execution L4
times
Overhead Minimum Minimum Canbe high | Canbe high | Canbehigh | Can be high
Penalizes
short . 3 ;
Effect on processes; Fair Tealizes Fenalues Good balance ne fam_r
X : long long I/O bound
processes penalizes treatment SN SRS e
VO bound P P P
~ processes
Starvation No No Possible Possible No Possible
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Selection Function "%

PR
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* Determines which process is selected for”
execution

* |f based on execution characteristics then
Important quantities are:
e W = time spent in system so far, waiting
e e =time spent in execution so far

e s =total service time required by the process,
including e;



Decision Mode e

.
» Specifies the instants in time at which the” % 5
selection function is exercised.
* Two categories:
— Nonpreemptive

— Preemptive



Nonpreemptive vs . '
Premeptive >Q’
» Non-preemptive i

— Once a process is in the running state, it will

continue until it terminates or blocks itself for
/0O

* Preemptive

— Currently running process may be interrupted
and moved to ready state by the OS

— Preemption may occur when new process
arrives, on an interrupt, or periodically.



Process Scheduling

Example
.,
o Example set Of Table 9.4 Process Scheduling Example
consider each a . - Z
batch job C 2 y
D 6 5
E 8 2

— Service time represents total execution time


http://gaia.ecs.csus.edu/~zhangd/oscal/pscheduling.html
http://gaia.ecs.csus.edu/~zhangd/oscal/pscheduling.html
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First-Come- "') )
First-Served w e ;;
. Sut

» A short process may have to wait a very -~
long time before it can execute

* Favors CPU-bound processes

— 1/O processes have to wait until CPU-bound
process completes



Round Robin 08 Y

» Uses preemption based on a clock

— also known as time slicing, because each
process Is given a slice of time before being
preempted.

Al T e
Round-Robin B! : I : I : I : :
(RR),g=1 ctovoro ! Lo Lo Lo
| ) 2 N N [ [ T B | [ [ I
I Co oo
ol : ot o
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Round Robin e

‘o

| | B -

* Clock interrupt is generated at periodic” **
Intervals

* \When an interrupt occurs, the currently
running process Is placed in the ready
gueue

— Next ready job is selected

.
.a



Effect of Size of
Preemption Time Quantum

Time

Process allocated Interaction
lime quantum complete

! !

< >4 >
Response time q-5
5

< 4
Quantum

q

(a) Time quantum greater than typical interaction

1o ¥
y sq Q
4 ") % ) g ')'
4 ? ’;



Effect of Size of S O
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Figure 9.6 Effect of Size of Preemption Time Quantum
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Shortest Process Next %o

)

A9 b?'. L U
* Nonpreemptive policy adih -

* Process with shortest expected processing
time Is selected next

« Short process jumps ahead of longer
processes

||||||||||||||||
Shortest Process o T e e e
T T T S I T R
T e e T R

A
B
Next (SPN) C
D
E




Shortest Process Next 08

» Predictability of longer processes is
reduced

* If estimated time for process not correct,
the operating system may abort it

* Possibility of starvation for longer
processes



Calculating P AR
( ’ FRSCY
Program "Burst e

A S
)»’§ !

 Where:

— T, = processor execution
time for the ith instance of
| » this process
Sps1=— 2 T; — S, = predicted value for
the ith instance
— S, = predicted value for

first Instance: not
calculated
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Exponential Averaging 59

Y. ) <)
R o

« A common technigue for predicting a
future value on the basis of a time series
of past values Is exponential averaging

Spay=al, + (1 —a)s,



Exponential Smoothing Coeﬁicientg;; Y B

Coefficient Value

0.8
0.7
0.6
0.5
04
0.3
0.2
0.1
0.0

. Gl

Y

7. )7> “
SO | .
’) , g)/‘) ’
. y "
[ Ja=02
[ Ja=o0s
B --os
W —‘IJ_H_‘I_HHI l_ﬂl |—H| ﬁ|_|| [1, [ b
1 2 3 - 5 6 7 8 9 10

Age of Observation

Figure 9.8 Exponential Smoothing Coefficients



Use Of Exponential o T )

Averaging " %
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Exponential Averaging >
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Shortest Remaining b

Time >Q’

- . 1IN

* Preemptive version of shortest process % 4
next policy

* Must estimate processing time and choose
the shortest

. . s *;k 1 | 1 | : 1 1 1 : : : : :
Shortest Remaining B 1 1 Lo T T T T
Time (SRT) Ci 1 1 o I R
| | | | 1 | 1 | | | 1 1 |
DI | | | 1 1 | 1 | | 1 1 |
EL o0 . oo



Highest Response
Ratio Next

* Choose next process with the greatest
ratio

time spent waiting + expected service time

Ratio = : ,
expected service time

| | | | | | | | | | | | | | | | |
l__bi : : : : : | | | | | | | |
Highest Response B! 1 1 R
Ratio Next (HRRN) Cr oo T T L

A :
E | | | | | | | | | | | | | |
| | | | | | | | | | | | | 1




Feedback Scheduling
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Figure 9.10 Feedback Scheduling
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Feedback Performance
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 Variations exist, simple version pre-empts” . 4

periodically, similar to round robin

— But can lead to starvation
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Performance e
Comparison >

next item to be served independent of
service time obeys the relationship:

/ 4 1

T, 1—p

where
I', = turnaround time or residence time; total time in system, waiting plus exe-
cution
I, = average service time; average time spent in Running state

p = processor utilization



Formulas

Table 9.6 Formulas for Single-Server Quenes with Two Priority Categories

Assumptions: 1. Poisson arrival rate.
2. DPriority | items are serviced before priority 2 items.
3. First-come-first-served dispatching for items of equal priority.
4. Noitem is interrupted while being served.
5. Noitems leave the queue (lost calls delayed).
(a) General formulas
A=kt ks
P1=MT5: P2 =I5
P=P1T P
L=4r,+27,
AT A
IL=27T,+21,
A A
b) No interrupts; exponential service times (c) Preemptive-resume quening discipline;
exponential service times
T, +p,7,
L,=I,+ AT, bl
- Ty=Ty+ ﬁ
— T H1
= )
1=p Lo=In+ P+ |
1-p lu —




Overall Normalized
Response Time
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Normalized Response
Time for Shorter Process

Normalized response time (/T )
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Figure 9.12 Normalized Response Time for Shorter Processes
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Normalized Response
Time for Longer Processes
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Figure 9.13 Normalized Response Time for Longer Processes
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Normalized
Turnaround Time
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Figure 9.14 Simulation Results for Normalized Turnaround Time
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Figure 9.15 Simulation Results for Waiting Time



Fair-Share Scheduling ‘N ', D
o
99 :
» User’s application runs as a collectlon of ¥
processes (threads)

* User Is concerned about the performance
of the application

* Need to make scheduling decisions based
ON process sets




Fair-Share Scheduler

Process A Process B Process C
Process  Croup Process  CGroup Process  Group
Time CPU CPU CPU CPU CPU CPU
N Prionty  count count  Priority  count count Prionty  count count
1
N &0 0 Q &0 G 0 &0 0 0
1 1
2 2
1 60 60
%0 30 30 &0 Y ] 60 0 G
1 1 1
2 1 2
. &0 60 =
- T4 15 15 S0 30 30 75 0 30
& 16
17 17
1 73 75
- 96 37 37 74 15 15 &7 0 15
16 1 15
17 2 17
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TR 18 18 Bl 7 37 93 30 E7)
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fi-] TR
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Colored rectangle represents eXecuiing process

Figure 9.16 Example of Fair Share Scheduler —Three Processes, Two Groups



