
Unit III
CONCURRENCY AND SCHEDULING

Principles of Concurrency

Mutual Exclusion

Semaphores

Monitors

Readers/Writers problem.

Deadlocks –

Prevention

Avoidance

Detection

Scheduling

Types of Scheduling

Scheduling algorithms.

Roadmap

• Principals of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

• Readers/Writers Problem

Multiple Processes

• Central to the design of modern Operating
Systems is managing multiple processes
– Multiprogramming(multiple processes within a

uniprocessor system)

– Multiprocessing(multiple processes within a
multiprocessor)

– Distributed Processing(multiple processes
executing on multiple ,distributed processing)

• Big Issue is Concurrency
– Managing the interaction of all of these processes

Concurrency
Concurrency arises in:

• Multiple applications

– (processing time)Sharing time

• Structured applications

– Extension of modular design(structured
programming)

• Operating system structure

– OS themselves implemented as a set of
processes or threads

Key Terms

Interleaving and

Overlapping Processes

• Earlier (Ch2) we saw that processes may

be interleaved on uniprocessors

Interleaving and

Overlapping Processes

• And not only interleaved but overlapped

on multi-processors

Difficulties of

Concurrency

• Sharing of global resources

• Optimally managing the allocation of

resources

• Difficult to locate programming errors as

results are not deterministic and

reproducible.

A Simple Example

void echo()

{

chin = getchar();

chout = chin;

putchar(chout);

}

A Simple Example:

On a Multiprocessor

Process P1 Process P2

. .

chin = getchar(); .

. chin = getchar();

chout = chin; chout = chin;

putchar(chout); .

. putchar(chout);

. .

Enforce Single Access

• If we enforce a rule that only one process

may enter the function at a time then:

• P1 & P2 run on separate processors

• P1 enters echo first,

– P2 tries to enter but is blocked – P2 suspends

• P1 completes execution

– P2 resumes and executes echo

Race Condition

• A race condition occurs when

– Multiple processes or threads read and write

data items

– They do so in a way where the final result

depends on the order of execution of the

processes.

• The output depends on who finishes the

race last.

Operating System

Concerns

• What design and management issues are
raised by the existence of concurrency?

• The OS must
– Keep track of various processes(PCB)

– Allocate and de-allocate resources(PROCESSOR
TIME,MEMORY,FILES,I/O DEVICES)

– Protect the data and resources against
interference by other processes.

– Ensure that the processes and outputs are
independent of the processing speed

Process Interaction

Competition among

Processes for Resources

Three main control problems:

• Need for Mutual Exclusion

– Critical sections

• Deadlock

• Starvation

Requirements for

Mutual Exclusion

• Only one process at a time is allowed in

the critical section for a resource

• A process that halts in its noncritical

section must do so without interfering with

other processes

• No deadlock or starvation

Requirements for

Mutual Exclusion

• A process must not be delayed access to

a critical section when there is no other

process using it

• No assumptions are made about relative

process speeds or number of processes

• A process remains inside its critical section

for a finite time only

Roadmap

• Principals of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

• Readers/Writers Problem

Disabling Interrupts

• Uniprocessors only allow interleaving

• Interrupt Disabling

– A process runs until it invokes an operating

system service or until it is interrupted

– Disabling interrupts guarantees mutual

exclusion

– Will not work in multiprocessor architecture

Pseudo-Code

while (true) {

/* disable interrupts */;

/* critical section */;

/* enable interrupts */;

/* remainder */;

}

Special Machine

Instructions

• Compare&Swap Instruction

– also called a “compare and exchange

instruction”

• Exchange Instruction

• COMPARE is made between a memory

value and a test value, if the values are

same ,a swap occurs.

Compare&Swap

Instruction

int compare_and_swap (int *word,

int testval, int newval)

{

int oldval;

oldval = *word;

if (oldval == testval) *word = newval;

return oldval;

}

Mutual Exclusion (fig 5.2)

Exchange instruction

void exchange (int register, int

memory)

{

int temp;

temp = memory;

memory = register;

register = temp;

}

Exchange Instruction

(fig 5.2)

Hardware Mutual

Exclusion: Advantages

• Applicable to any number of processes on

either a single processor or multiple

processors sharing main memory

• It is simple and therefore easy to verify

• It can be used to support multiple critical

sections

Hardware Mutual

Exclusion: Disadvantages

• Busy-waiting consumes processor time

• Starvation is possible when a process

leaves a critical section and more than one

process is waiting.

– Some process could indefinitely be denied

access.

• Deadlock is possible

Roadmap

• Principals of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

• Readers/Writers Problem

Semaphore

• Semaphore:

– An integer value used for signalling among

processes.

• Only three operations may be performed

on a semaphore, all of which are atomic:

– initialize,

– Decrement (semWait)

– increment. (semSignal)

Semaphore Primitives

Binary Semaphore

Primitives

Strong/Weak

Semaphore

• A queue is used to hold processes waiting

on the semaphore

– In what order are processes removed from

the queue?

• Strong Semaphores use FIFO

• Weak Semaphores don’t specify the

order of removal from the queue

Example of Strong

Semaphore Mechanism

Example of Semaphore Mechanism

Mutual Exclusion Using Semaphores

Processes Using

Semaphore

Producer/Consumer

Problem

• General Situation:

– One or more producers are generating data and

placing these in a buffer

– A single consumer is taking items out of the buffer

one at time

– Only one producer or consumer may access the

buffer at any one time

• The Problem:

– Ensure that the Producer can’t add data into full buffer

and consumer can’t remove data from empty buffer

Producer/Consumer Animation

http://gaia.ecs.csus.edu/~zhangd/oscal/ProducerConsumer/ProducerConsumer.html
http://gaia.ecs.csus.edu/~zhangd/oscal/ProducerConsumer/ProducerConsumer.html

Functions

Producer Consumer

while (true) {

/* produce item v

*/

b[in] = v;

in++;

}

while (true) {

while (in <= out)

/*do nothing */;

w = b[out];

out++;

/* consume item w

*/

}

• Assume an infinite buffer b with a linear array of

elements

Buffer

Incorrect Solution

Possible Scenario

Correct Solution

Semaphores

Bounded Buffer

Semaphores

Functions in a

Bounded Buffer

Producer Consumer

while (true) {

/* produce item v

*/

while ((in + 1) % n

== out) /* do

nothing */;

b[in] = v;

in = (in + 1) % n

while (true) {

while (in == out)

/* do

nothing */;

w = b[out];

out = (out + 1)

% n;

/* consume item

• .

Demonstration

Animations

• Producer/Consumer

– Illustrates the operation of a producer-consumer

buffer.

• Bounded-Buffer Problem Using Semaphores

– Demonstrates the bounded-buffer consumer/producer

problem using semaphores.

http://gaia.ecs.csus.edu/~zhangd/oscal/ProducerConsumer/ProducerConsumer.html
http://gaia.ecs.csus.edu/~zhangd/oscal/semaphore/semaphore.html

Roadmap

• Principals of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

• Readers/Writers Problem

Monitors

• The monitor is a programming-language

construct that provides equivalent

functionality to that of semaphores and

that is easier to control.

• Implemented in a number of programming

languages, including

– Concurrent Pascal, Pascal-Plus,

– Modula-2, Modula-3, and Java.

Chief characteristics

• Local data variables are accessible only

by the monitor

• Process enters monitor by invoking one of

its procedures

• Only one process may be executing in the

monitor at a time

Synchronization

• Synchronisation achieved by condition

variables within a monitor

– only accessible by the monitor.

• Monitor Functions:

–Cwait(c): Suspend execution of the calling

process on condition c

–Csignal(c) Resume execution of some

process blocked after a cwait on the same

condition

Structure of a Monitor

Bounded Buffer Solution

Using Monitor

Solution Using Monitor

Bounded

Buffer Monitor

Roadmap

• Principals of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

• Readers/Writers Problem

Process Interaction

• When processes interact with one another,
two fundamental requirements must be
satisfied:

– synchronization and

– communication.

• Message Passing is one solution to the
second requirement

– Added bonus: It works with shared memory
and with distributed systems

Message Passing

• The actual function of message passing is

normally provided in the form of a pair of

primitives:

• send (destination, message)

• receive (source, message)

Synchronization

• Communication requires synchronization

– Sender must send before receiver can receive

• What happens to a process after it issues

a send or receive primitive?

– Sender and receiver may or may not be

blocking (waiting for message)

Blocking send,

Blocking receive

• Both sender and receiver are blocked until

message is delivered

• Known as a rendezvous

• Allows for tight synchronization between

processes.

Non-blocking Send

• More natural for many concurrent

programming tasks.

• Nonblocking send, blocking receive

– Sender continues on

– Receiver is blocked until the requested

message arrives

• Nonblocking send, nonblocking receive

– Neither party is required to wait

Addressing

• Sendin process need to be able to specify

which process should receive the

message

– Direct addressing

– Indirect Addressing

Direct Addressing

• Send primitive includes a specific identifier

of the destination process

• Receive primitive could know ahead of

time which process a message is

expected

• Receive primitive could use source

parameter to return a value when the

receive operation has been performed

Indirect addressing

• Messages are sent to a shared data

structure consisting of queues

• Queues are called mailboxes

• One process sends a message to the

mailbox and the other process picks up

the message from the mailbox

Indirect Process Communication

General Message Format

Mutual Exclusion Using Messages

Producer/Consumer

Messages

Roadmap

• Principals of Concurrency

• Mutual Exclusion: Hardware Support

• Semaphores

• Monitors

• Message Passing

• Readers/Writers Problem

Readers/Writers Problem

• A data area is shared among many

processes

– Some processes only read the data area,

some only write to the area

• Conditions to satisfy:

1. Multiple readers may read the file at once.

2. Only one writer at a time may write

3. If a writer is writing to the file, no reader may

read it.

interaction of readers and

writers.

http://gaia.ecs.csus.edu/~zhangd/oscal/ReaderWriter/ReaderWriter.html
http://gaia.ecs.csus.edu/~zhangd/oscal/ReaderWriter/ReaderWriter.html

Readers have Priority

Writers have Priority

Writers have Priority

Message Passing

Message Passing

Deadlock

• Permanent blocking of a set of processes

that either compete for system resources

or communicate with each other

• No efficient solution

• Involve conflicting needs for resources by

two or more processes

Deadlock

Deadlock

Deadlock

Reusable Resources

• Used by only one process at a time and

not depleted by that use

• Processes obtain resources that they later

release for reuse by other processes

Reusable Resources

• Processors, I/O channels, main and

secondary memory, devices, and data

structures such as files, databases, and

semaphores

• Deadlock occurs if each process holds

one resource and requests the other

Reusable Resources

Reusable Resources

• Space is available for allocation of

200Kbytes, and the following sequence of

events occur

• Deadlock occurs if both processes

progress to their second request

P1

. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2

. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

Consumable Resources

• Created (produced) and destroyed

(consumed)

• Interrupts, signals, messages, and

information in I/O buffers

• Deadlock may occur if a Receive message

is blocking

• May take a rare combination of events to

cause deadlock

Example of Deadlock

• Deadlock occurs if receives blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);

Resource Allocation Graphs

• Directed graph that depicts a state of the

system of resources and processes

Conditions for Deadlock

• Mutual exclusion

– Only one process may use a resource at a

time

• Hold-and-wait

– A process may hold allocated resources while

awaiting assignment of others

Conditions for Deadlock

• No preemption

– No resource can be forcibly removed form a

process holding it

• Circular wait

– A closed chain of processes exists, such that

each process holds at least one resource

needed by the next process in the chain

Resource Allocation Graphs

Resource Allocation Graphs

Possibility of Deadlock

• Mutual Exclusion

• No preemption

• Hold and wait

Existence of Deadlock

• Mutual Exclusion

• No preemption

• Hold and wait

• Circular wait

Deadlock Prevention

• Mutual Exclusion

– Must be supported by the OS

• Hold and Wait

– Require a process request all of its required

resources at one time

Deadlock Prevention

• No Preemption

– Process must release resource and request

again

– OS may preempt a process to require it

releases its resources

• Circular Wait

– Define a linear ordering of resource types

Deadlock Avoidance

• A decision is made dynamically whether

the current resource allocation request

will, if granted, potentially lead to a

deadlock

• Requires knowledge of future process

requests

Two Approaches to

Deadlock Avoidance

• Do not start a process if its demands might

lead to deadlock

• Do not grant an incremental resource

request to a process if this allocation might

lead to deadlock

Resource Allocation Denial

• Referred to as the banker’s algorithm

• State of the system is the current

allocation of resources to process

• Safe state is where there is at least one

sequence that does not result in deadlock

• Unsafe state is a state that is not safe

Determination of a Safe State

Determination of a Safe State

Determination of a Safe State

Determination of a Safe State

Determination of an Unsafe State

Deadlock Avoidance Logic

Deadlock Avoidance Logic

Deadlock Avoidance

• Maximum resource requirement must be

stated in advance

• Processes under consideration must be

independent; no synchronization

requirements

• There must be a fixed number of

resources to allocate

• No process may exit while holding

resources

Deadlock Detection

Strategies Once Deadlock Detected

• Abort all deadlocked processes

• Back up each deadlocked process to

some previously defined checkpoint, and

restart all process

– Original deadlock may occur

Strategies Once Deadlock Detected

• Successively abort deadlocked processes

until deadlock no longer exists

• Successively preempt resources until

deadlock no longer exists

Advantages and Disadvantages

Dining Philosophers Problem

Dining Philosophers Problem

Dining Philosophers Problem

Dining Philosophers Problem

Dining Philosophers Problem

UNIX Concurrency Mechanisms

• Pipes

• Messages

• Shared memory

• Semaphores

• Signals

UNIX Signals

Linux Kernel Concurrency Mechanism

• Includes all the mechanisms found in

UNIX

• Atomic operations execute without

interruption and without interference

Linux Atomic Operations

Linux Atomic Operations

Linux Spinlocks

Linux Semaphores

Linux Memory Barrier Operations

Solaris Thread Synchronization Primitives

• Mutual exclusion (mutex) locks

• Semaphores

• Multiple readers, single writer

(readers/writer) locks

• Condition variables

Solaris Synchronization Data Structures

Windows Synchronization Objects

Chapter 9

Uniprocessor Scheduling

Operating Systems:

Internals and Design Principles,

6/E

William Stallings

Dave Bremer

Otago Polytechnic, N.Z.

©2008, Prentice Hall

Roadmap

• Types of Processor Scheduling

• Scheduling Algorithms

• Traditional UNIX Scheduling

Scheduling

• An OS must allocate resources amongst

competing processes.

• The resource provided by a processor is

execution time

– The resource is allocated by means of a

schedule

Overall Aim

of Scheduling

• The aim of processor scheduling is to

assign processes to be executed by the

processor over time,

– in a way that meets system objectives, such

as response time, throughput, and processor

efficiency.

Scheduling Objectives

• The scheduling function should

– Share time fairly among processes

– Prevent starvation of a process

– Use the processor efficiently

– Have low overhead

– Prioritise processes when necessary (e.g. real

time deadlines)

Types of Scheduling

Two Suspend States

• Remember this diagram from Chapter 3

Scheduling and

Process State Transitions

Nesting of

Scheduling Functions

Queuing Diagram

Long-Term Scheduling

• Determines which programs are admitted

to the system for processing

– May be first-come-first-served

– Or according to criteria such as priority, I/O

requirements or expected execution time

• Controls the degree of multiprogramming

• More processes, smaller percentage of

time each process is executed

Medium-Term

Scheduling

• Part of the swapping function

• Swapping-in decisions are based on the

need to manage the degree of

multiprogramming

Short-Term Scheduling

• Known as the dispatcher

• Executes most frequently

• Invoked when an event occurs

– Clock interrupts

– I/O interrupts

– Operating system calls

– Signals

Roadmap

• Types of Processor Scheduling

• Scheduling Algorithms

• Traditional UNIX Scheduling

Aim of Short

Term Scheduling

• Main objective is to allocate processor

time to optimize certain aspects of system

behaviour.

• A set of criteria is needed to evaluate the

scheduling policy.

Short-Term Scheduling

Criteria: User vs System

• We can differentiate between user and

system criteria

• User-oriented

– Response Time

• Elapsed time between the submission of a request

until there is output.

• System-oriented

– Effective and efficient utilization of the

processor

Short-Term Scheduling

Criteria: Performance

• We could differentiate between

performance related criteria, and those

unrelated to performance

• Performance-related

– Quantitative, easily measured

– E.g. response time and throughput

• Non-performance related

– Qualitative

– Hard to measure

Interdependent

Scheduling Criteria

Interdependent

Scheduling Criteria cont.

Priorities

• Scheduler will always choose a process of

higher priority over one of lower priority

• Have multiple ready queues to represent

each level of priority

Priority Queuing

Starvation

• Problem:

– Lower-priority may suffer starvation if there is

a steady supply of high priority processes.

• Solution

– Allow a process to change its priority based

on its age or execution history

Alternative Scheduling

Policies

Selection Function

• Determines which process is selected for

execution

• If based on execution characteristics then

important quantities are:

• w = time spent in system so far, waiting

• e = time spent in execution so far

• s = total service time required by the process,

including e;

Decision Mode

• Specifies the instants in time at which the

selection function is exercised.

• Two categories:

– Nonpreemptive

– Preemptive

Nonpreemptive vs

Premeptive

• Non-preemptive

– Once a process is in the running state, it will

continue until it terminates or blocks itself for

I/O

• Preemptive

– Currently running process may be interrupted

and moved to ready state by the OS

– Preemption may occur when new process

arrives, on an interrupt, or periodically.

Process Scheduling

Example

• Example set of

processes,

consider each a

batch job

– Service time represents total execution time

http://gaia.ecs.csus.edu/~zhangd/oscal/pscheduling.html
http://gaia.ecs.csus.edu/~zhangd/oscal/pscheduling.html

First-Come-

First-Served

• Each process joins the Ready queue

• When the current process ceases to

execute, the longest process in the Ready

queue is selected

First-Come-

First-Served

• A short process may have to wait a very

long time before it can execute

• Favors CPU-bound processes

– I/O processes have to wait until CPU-bound

process completes

Round Robin

• Uses preemption based on a clock

– also known as time slicing, because each

process is given a slice of time before being

preempted.

Round Robin

• Clock interrupt is generated at periodic

intervals

• When an interrupt occurs, the currently

running process is placed in the ready

queue

– Next ready job is selected

Effect of Size of

Preemption Time Quantum

Effect of Size of

Preemption Time Quantum

‘Virtual Round Robin’

Shortest Process Next

• Nonpreemptive policy

• Process with shortest expected processing

time is selected next

• Short process jumps ahead of longer

processes

Shortest Process Next

• Predictability of longer processes is

reduced

• If estimated time for process not correct,

the operating system may abort it

• Possibility of starvation for longer

processes

Calculating

Program ‘Burst’

• Where:

– Ti = processor execution

time for the ith instance of

this process

– Si = predicted value for

the ith instance

– S1 = predicted value for

first instance; not

calculated

Exponential Averaging

• A common technique for predicting a

future value on the basis of a time series

of past values is exponential averaging

Exponential Smoothing Coefficients

Use Of Exponential

Averaging

Use Of

Exponential Averaging

Shortest Remaining

Time

• Preemptive version of shortest process

next policy

• Must estimate processing time and choose

the shortest

Highest Response

Ratio Next

• Choose next process with the greatest

ratio

Feedback Scheduling

• Penalize jobs that

have been running

longer

• Don’t know

remaining time

process needs to

execute

Feedback Performance

• Variations exist, simple version pre-empts

periodically, similar to round robin

– But can lead to starvation

Performance

Comparison

• Any scheduling discipline that chooses the

next item to be served independent of

service time obeys the relationship:

Formulas

Overall Normalized

Response Time

Normalized Response

Time for Shorter Process

Normalized Response

Time for Longer Processes

Normalized

Turnaround Time

Fair-Share Scheduling

• User’s application runs as a collection of

processes (threads)

• User is concerned about the performance

of the application

• Need to make scheduling decisions based

on process sets

Fair-Share Scheduler

