
Introduction to Operating System

Unit 1

Unit - 1

Computer System Overview

1.Basic Elements

2.Instruction Execution

3.Interrupts

4.Memory Hierarchy

5. Cache Memory

Operating system overview

Objectives and functions

Evolution of Operating System.

• A program that acts as an intermediary
between a user of a computer and the
computer hardware.

• Operating system goals:
– Execute user programs and make solving user

problems easier.

– Make the computer system convenient to use.

• Use the computer hardware in an efficient
manner.

• Exploits the hardware resources of one or
more processors

• Provides a set of services to system users

• Manages secondary memory and I/O devices

What is an Operating System?

– Processor Registers

– Instruction Execution

– Interrupts

– The Memory Hierarchy

– Cache Memory

– I/O Communication Techniques

1.Basic Elements

• Processor

• Main Memory

• I/O Modules

• System Bus

A Computer’s

Basic Elements

• Controls operation, performs data

processing

• Two internal registers

– Memory address resister (MAR)

– Memory buffer register (MBR)

• I/O address register

• I/O buffer register

Processor

• Volatile

– Data is typically lost when power is removed

• Referred to as real memory or primary

memory

• Consists of a set of locations defined by

sequentially numbers addresses

– Containing either data or instructions

Main Memory

• Moves data between the computer and the

external environment such as:

– Storage (e.g. hard drive)

– Communications equipment

– Terminals

• Specified by an I/O Address Register

– (I/OAR)

I/O Modules

• Communication among processors, main

memory, and I/O modules

System Bus

Top-Level View

• Faster and smaller than main memory

• User-visible registers

– Enable programmer to minimize main

memory references by optimizing register use

• Control and status registers

– Used by processor to control operating of the

processor

– Used by privileged OS routines to control the

execution of programs

Processor Registers

• May be referenced by machine language

– Available to all programs – application

programs and system programs

• Types of registers typically available are:

– data,

– address,

– condition code registers

User-Visible Registers

• Program counter (PC)

– Contains the address of an instruction to be

fetched

• Instruction register (IR)

– Contains the instruction most recently fetched

• Program status word (PSW)

– Contains status information..contains

conditional codes

Control and

Status Registers

• Data

– Often general purpose

– But some restrictions may apply

• Address

– Index Register:- adding a index to a base

value to get EA

– Segment pointer-Memory is divided into

segments, reference to a particular segment

– Stack pointer-register that points to the top of

stack.

Data and

Address Registers

• Usually part of the control register

– Also called flags

• Bits set by processor hardware as a result

of operations

– Read only, intended for feedback regarding

the results of instruction execution.

Condition codes

• • A program consists of a set of

instructions stored in memory

• • Two steps –

• Processor reads (fetches) instructions

from memory –

• Processor executes each instruction

2.Instruction Execution

Basic Instruction Cycle

• The processor fetches the instruction from

memory

• Program counter (PC) holds address of

the instruction to be fetched next

– PC is incremented after each fetch

Instruction Fetch

and Execute

• Fetched instruction loaded into instruction

register

• Categories

– Processor-memory, -data from processor to

memory

– processor-I/O,

– Data processing,

– Control

Instruction Register

Characteristics of a

Hypothetical Machine

Example of

Program Execution

• Io module

• Can exchange data directly with the

processor

• DMA-Exchange data without going to the

processor.

IO FUNCTION

• Interrupt the normal sequencing of the

processor

• Provided to improve processor utilization

– Most I/O devices are slower than the

processor

– Processor must pause to wait for device

3.Interrupts

Interrupts

• Interrupt the normal sequencing of the

processor

• Provided to improve processor utilization
• most I/O devices are slower than the processor

• processor must pause to wait for device

• wasteful use of the processor

Common Classes

of Interrupts

Flow of Control

Without Interrupts

Interrupts:

Short I/O Wait

Transfer of Control via Interrupts

Instruction Cycle With Interrupts

Program Timing:

Short I/O Wait

Program Timing:

Long I/O wait

Simple

Interrupt

Processing

Multiple Interrupts

An interrupt occurs while
another interrupt is being

processed

• e.g. receiving data from a
communications line and
printing results at the
same time

Two approaches:

• disable interrupts while an
interrupt is being
processed

• use a priority scheme

Transfer of control

with multiple interrupts

a.User

program

Interrupt handler x

Interrupt handler ya.Sequential interrupt processing

b.User

program
Interrupt handler x

Interrupt handler yb.Nested interrupts

• Processor has more than one program to

execute

• The sequence the programs are executed

depend on their relative priority and

whether they are waiting for I/O

• After an interrupt handler completes,

control may not return to the program that

was executing at the time of the interrupt

Multiprogramming

• Three characteristics of memory

• Cost

• Capacity

• Access time

• Major constraints in memory
– Amount

– Speed

– Expense

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access speed

4.Memory Hierarchy

• Going down the

hierarchy

– Decreasing cost per bit

– Increasing capacity

– Increasing access time

– Decreasing frequency of

access to the memory

by the processor

The Memory Hierarchy

• H is defined as the fraction of all memory

accesses that are found in the faster

memory.(cache)

• Principle (Locality of reference)

• Decreasing the frequency of access of the

memory by the processor.

Hit ratio

Secondar
y Memory

Also referred to as
auxiliary memory

• External

• Nonvolatile

• Used to store program
and data files

• Invisible to the OS

• Interacts with other memory management hardware

• Processor must access memory at least once per

instruction cycle

• Processor execution is limited by memory cycle time

• Exploit the principle of locality with a small, fast memory

• Contains a copy of a portion of main memory

• Processor first checks cache

– If not found, a block of memory is read into cache

• Because of locality of reference, it is likely that many of the

future memory references will be to other bytes in the block

Cache

and

Main

Memory

Cache/Main-Memory Structure

Cache Read Operation

• Main categories are:

– Cache size

– Block size

– Mapping function

– Replacement algorithm

– Write policy

Cache Design Issues

• Cache size

– Small caches have significant impact on

performance

• Block size

– The unit of data exchanged between cache

and main memory

– Larger block size means more hits

– But too large reduces chance of reuse.

Size issues

• Determines which cache location the block

will occupy

• Two constraints:

– When one block read in, another may need

replaced

– Complexity of mapping function increases

circuitry costs for searching.

Mapping function

• Chooses which block to replace when a

new block is to be loaded into the cache.

• Ideally replacing a block that isn’t likely to

be needed again

– Impossible to guarantee

• Effective strategy is to replace a block that

has been used less than others

– Least Recently Used (LRU)

Replacement Algorithm

• Dictates when the memory write operation

takes place

• Can occur every time the block is updated

• Can occur when the block is replaced

– Minimize write operations

– Leave main memory in an obsolete state

Write policy

Operating System

• A program that controls the execution of

application programs

• An interface between applications and

hardware

Main objectives of an OS:

• Convenience

• Efficiency

• Ability to evolve

• Computer Hardware-Software Structure

– Layered organization

• OS services to users

The OS as a User/Computer Interface

• Program development

• Program execution

• Access I/O devices

• Controlled access to files

• System access

• Error detection and response

• Accounting

Key Interfaces

• Instruction set architecture (ISA)

• Application binary interface (ABI)

• Application programming interface (API)

• A computer is a set of resources for

moving, storing, & processing data

• The OS is responsible for managing

these resources

• The OS exercises its control

through software

The Operating System as a

Resource Manager

• Functions in the same way as ordinary computer software

• Program, or suite of programs, executed by the processor

• Frequently relinquishes control and must depend on the
processor to allow it to regain control

Operating

System

as

Resource

Manager

Evolution of Operating Systems

 A major OS will evolve over time for a

number of reasons:

Hardware upgrades

New types of hardware

New services

Fixes

Evolution of

Operating Systems

 Stages include:

Serial
Processing

Simple
Batch
Systems

Multiprogrammed
Batch Systems

Time Sharing
Systems

Serial Processing

Earliest Computers: Problems:

• No operating
system

• programmers
interacted directly
with the computer
hardware

• Computers ran from
a console with
display lights, toggle
switches, some form
of input device, and
a printer

• Scheduling:
– most installations

used a hardcopy
sign-up sheet to
reserve computer
time

– time allocations
could run short
or long, resulting
in wasted
computer time

– Setup time

– a considerable

Simple Batch Systems

• Early computers were very expensive

– important to maximize processor utilization

• Monitor

– user no longer has direct access to processor

– job is submitted to computer operator who batches

them together and places them on an input device

– program branches back to the monitor when finished

• Monitor controls the sequence

of events

• Resident Monitor is software

always in memory

• Monitor reads in job and gives

control

• Job returns control to monitor

• Processor executes instruction from the memory

containing the monitor

• Executes the instructions in the user program until it

encounters an ending or error condition

• “control is passed to a job” means processor is

fetching and executing instructions in a user program

• “control is returned to the monitor” means that the

processor is fetching and executing instructions from

the monitor program

Job Control Language

(JCL)

Special type of programming language
used to provide instructions to the monitor

what compiler to use

what data to use

• while the user program is executing, it must not alter the memory area
containing the monitor

Memory protection for monitor

• prevents a job from monopolizing the system

Timer

• can only be executed by the monitor

Privileged instructions

• gives OS more flexibility in controlling user programs

Interrupts

Modes of Operation

User Mode

• user program executes in user
mode

• certain areas of memory are
protected from user access

• certain instructions may not be
executed

Kernel Mode

• monitor executes in kernel mode

• privileged instructions may be
executed

• protected areas of memory may be
accessed

Simple Batch System Overhead

• Processor time alternates between execution of user

programs and execution of the monitor

• Sacrifices:

– some main memory is now given over to the monitor

– some processor time is consumed by the monitor

• Despite overhead, the simple batch system improves

utilization of the computer. (How?)

Multiprogrammed

Batch Systems

• Processor is
often idle

• even with
automatic
job
sequencin
g

• I/O
devices
are slow
compared
to
processor

• The processor spends a certain amount of time

executing, until it reaches an I/O instruction; it must then

wait until that I/O instruction concludes before proceeding

• There must be enough memory to hold the OS (resident

monitor) and one user program

• When one job needs to wait for I/O, the processor can switch

to the other job, which is likely not waiting for I/O

• Multiprogramming

• also known as multitasking

• memory is expanded to hold three, four, or more
programs and switch among all of them

• Can be used to handle multiple interactive
jobs

• Processor time is shared among multiple
users

• Multiple users simultaneously access the
system through terminals, with the OS
interleaving the execution of each user
program in a short burst or quantum of
computation

Table 2.3 Batch Multiprogramming versus Time Sharing

Compatible Time-Sharing Systems

CTSS Time Slicing
• One of the first time-sharing operating systems

– Developed at MIT by a group known as Project
MAC

– Ran on a computer with 32,000 36-bit words of
main memory, with the resident monitor
consuming 5000 of that

– To simplify both the monitor and memory
management a program was always loaded to
start at the location of the 5000th word

– System clock generates interrupts at a rate of

approximately one every 0.2 seconds

– At each interrupt OS regained control and

could assign processor to another user

– At regular time intervals the current user would

be preempted and another user loaded in

– Old user programs and data were written out to

disk

– Old user program code and data were restored

in main memory when that program was next

given a turn

