Unit - 1
Computer System Overview
1.Basic Elements
2.1nstruction Execution
3.Interrupts
4.Memory Hierarchy
5. Cache Memory

Operating system overview
Objectives and functions
Evolution of Operating System.

A program that acts as an intermediary
between a user of a computer and the
computer hardware.

Operating system goals:

— Execute user programs and make solving user
problems easier.

— Make the computer system convenient to use.

Use the computer hardware in an efficient
manner.

Exploits the hardware resources of one or
more pProcessors

Provides a set of services to system users

NMananac carnndarys maoamaoryv/ and /0O doviiecoac

1.Basic Elements

— Processor Registers

— Instruction Execution

— Interrupts

— The Memory Hierarchy

— Cache Memory

— /O Communication Techniques

Processor
Main Memory

/O Modules
System Bus

Controls operation, performs data
processing

Two Internal registers
— Memory address resister (MAR)
— Memory buffer register (MBR)

/O address register
/O buffer register

» Volatile
— Data is typically lost when power is removed

* Referred to as real memory or primary
memory

« Consists of a set of locations defined by
sequentially numbers addresses

— Containing either data or instructions

* Moves data between the computer and the
external environment such as:

— Storage (e.g. hard drive)
— Communications equipment
— Terminals

« Specified by an I/O Address Register
— (I/OAR)

« Communication among processors, main
memory, and I/O modules

CPU Main Memory

" 0
System o 1
-
o - -
PC MAR Bus —_— .
nstruction .
Instruction ®
Instruction
IR MBR -
L]
I/O AR ¢
\/‘ Data
Execution
unit I/0 BR Data
Data
Data
-
1/0 Module : n-2
-1
: PC = Program counter
Buffers IR = Instruction register
MAR = Memory address register

MBR = Memory buffer register
I'O AR = Input/output address register
I'O BR = Input/output buffer register

Figure 1.1 Computer Components: Top-Level View

* Faster and smaller than main memory

« User-visible registers

— Enable programmer to minimize main
memory references by optimizing register use

« Control and status registers

— Used by processor to control operating of the
processor

— Used by privileged OS routines to control the
execution of programs

* May be referenced by machine language

— Avallable to all programs — application
programs and system programs

» Types of registers typically available are:
— data,
— address,
— condition code registers

* Program counter (PC)

— Contains the address of an instruction to be
fetched

* Instruction register (IR)
— Contains the instruction most recently fetched

* Program status word (PSW)

— Contains status information..contains
conditional codes

* Data
— Often general purpose
— But some restrictions may apply

e Address

— Index Register:- adding a index to a base
value to get EA

— Segment pointer-Memory is divided into
segments, reference to a particular segment

— Stack pointer-register that points to the top of
stack.

« Usually part of the control register
— Also called flags

 Bits set by processor hardware as a result
of operations

— Read only, intended for feedback regarding
the results of instruction execution.

2.Instruction Execution

» + A program consists of a set of
Instructions stored in memory

* » Two steps —

* Processor reads (fetches) instructions
from memory —

* Processor executes each instruction

Fetch Stage Execute Stage

Fetch Next Execute
START Instruction Instruction

Figure 1.2 Basic Instruction Cycle

* The processor fetches the instruction from
memory

* Program counter (PC) holds address of
the instruction to be fetched next

— PC is incremented after each fetch

 Fetched instruction loaded into instruction
register
« Categories

— Processor-memory, -data from processor to
memory

— processor-1/0,
— Data processing,
— Control

15

Opcode I Address

{a) Instruction format

15

I MMagnitude

(b)) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being execuited
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 ILoad AC from memory

0010 Store AC to memory
0101 = Add to AC from memory

(d) Parxtial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Fetch Stagce Execute Staose

MIeryrnon v CIL Registers ML erynonrw P Registers
3OO0 1 o9 4 O = 0o o | PO IOl = 4 O 3 o 1| PC
JIO1L|l S © 4 1 1 S FZO11 S 90 940 1 o O 0 3| A
JIozZ2l =2 9 94 1 1 9@ 4 O]IR I0Z21Z2 9 4 1 1 o9 4 O] IR
coqn[0_ o0 3 oa0[O_ OO0 =
Q91O O O 2= SA41 |10 O O 22
Srtep 1 Srtep 2

MIemuor s CEPLU Registenrs MNIerynonrw CPLU Registers
SO0 1 9 4 O =S 0 1] > JIOO11I 9 4 0 S sl
JIO1ll s 9 4 1 Dy 0 O S| Al 3011ls 9 4 1 0 O 0O 5 | A
Sozf=Z o = 1] ‘wls 5 o a1 r | o2l == = 1 (S 941
o400 o 0O 3 o400 o O = 3 4.2 =35
94110 O O = oq1flo o o 2 ——"

Step 3 Step 4

MIeryrnorw CEPL Registers ML erynonw CPU Registers
3OO0 1 S A4 O = o =z | P I0OI1 9 4 O 3 0O S| PO
FIO1L|l S © 4 1 0 O O S| aacC)] S30l11ls 90 4 1 oD O 0 S5 | A
JIoz2l =2 9 4 1] 2 9 4 1 TR I021Z2 9 4 1 =2 9 4 1| IR
coao[D_O_ 0O = cao[0_O_0O =
41O O O = =N

Step S5 Step O

Figure 1. <4 Example of Programm FExecutiomn
(contents of mMmemmory and registers in hexadecimmal)

|0 module

« Can exchange data directly with the
Drocessor

 DMA-Exchange data without going to the
Drocessor.

3.Interrupts

* Interrupt the normal sequencing of the
processor

* Provided to improve processor utilization

— Most I/O devices are slower than the
processor

— Processor must pause to wait for device

Interrupts

* Interrupt the normal sequencing of the
processor

* Provided to improve processor utilization
* most I/O devices are slower than the processor
* processor must pause to wait for device
 wasteful use of the processor

Table 1.1 Classes of Interrupts

Program (Generated bv some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference cutside a user's allowed
Mmemory space.

Tmmer (Generated by a timer within the processor. This allows the operating svstem
to perform certain functions on a regular basis.

O Generated by an [/O controller, to signal normal completion of an operation
or to signal a varietv of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

Program Program
— E .é '-"I —
H ;'j" .,.

@ : ._#fi @
A A N A o

v ; Command

__ f i
S &
: T
B A
@
E.." &
WRITE

(a) No interrupts

User
Program
— :
A
["'-;: .i
| ;A
% i“l"’. .
WRITE .- i
— i ¥
: L
PP
X Loif
E'-,‘-:':"l*-._
PR T
LA
P .
¥ '."51."'
WRITE ; A0
[E *‘.'
i'-!:r‘l-
*

v

WEITE

. Pﬂéam

I'o

'O
Command

(b) Intermupts; short I'O wait

User Program Interrupt Handler

-

[t

]]
L L
L L
Intermupt — '
occurs here i+1 -
]
L
M
Figure 1.6 Transfer of Control via Interrupts

Instruction Cycle With Interrupts

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

Figure 1.7 Instruction Cycle with Interrupts

Time

ol

Processor Lo
wait operation

®®‘@

Processor Lo
wait operation

®‘@

(a) Without interrupts
(circled numbers refer
to mumbers in Figure 1.5a)

SON
0N
B et
©
@
Ee-
O

(circled numbers refer
to numbers in Figure 1.5b)

Figure 1.8 Program Timing: Short I'O Wait

D
@

S &
Processor I-"IO_ @
operation
Processor
® -
- - -
(4 -
o
Processor o | operation
B operation Processor
wait
(5 =
@ (b) With interrupts

(circled numbers refer
to numbers in Figure 1.5¢)
(a) Without intermupts
{circled numbers refer
to numbers in Figure 1.5a)

Figure 1.9 Program Timing: Long 'O Wait

Software

Hardware

Device controller or
other system hardware
issues an interrupt

v
Save remainder of
process state
information

Processor finishes
execution of current

instruction

Process interrupt

Processor signals
acknowledgment
of interrupt

Restore process state
information

Processor pushes PSW
and PC onto control
stack

Restore old PSW
and PC

Processor loads new
PC value based on

interrupt

(

Figure 1.10 Simple Interrupt Processing

Multiple Interrupts

An interrupt occurs while

another interrupt is being Two approaches:
processed
 e.g. receiving data from a « disable interrupts while an
communications line and Interrupt is being
printing results at the processed

same time * use a priority scheme

Interrupt handler x

a.User
program
a.Sequential interrupt processing Interrupt handler y
b.User Interrupt handler x
program

b.Nested interrupts Interrupt handlery

 Processor has more than one program to
execute

* The seguence the programs are executed
depend on their relative priority and
whether they are waiting for 1/O

« After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt

4.Memory Hierarchy

* Three characteristics of memory
* Cost

« Capacity

» Access time

* Major constraints in memory

— Amount

— Speed

— Expense
» Faster access time, greater cost per bit
» Greater capacity, smaller cost per bit

« Greater capacity, slower access speed

* Going down the
hierarchy
— Decreasing cost per bit
— Increasing capacity
— Increasing access time

— Decreasing frequency of
access to the memory
by the processor

Figure 1.14 The Memory Hierarchy

* H Is defined as the fraction of all memory
accesses that are found In the faster
memory.(cache)

* Principle (Locality of reference)

* Decreasing the frequency of access of the
memory by the processor.

Also referred to as
auxiliary memory

 External
 Nonvolatile

» Used to store program
and data files

5.Cache Memory @

Cache Principles @

Word Transfer

~AA

Block Transfer

(\k-"'\

Slow

CPU Cache
Fast
(a) Single cache
Level 1 Level 2
CRU (L1) cache (L2) cache

Fastest

Fast

Less
fast

Main Memory
Level3 |F—»{ Main
(L3) cache |lg—] Memory
Slow

(b) Three-level cache organization

Cache/Main-Memory Structure

Linge Memory
Number Tag Block address
pi T T | o!'" T 1
1 :____i ___________________ : 1I ________ 1
R = o __ |
I | b) | 1
N | | 1
: : : 3, |
| l . | l |
o : | | |
L . | I I
B
C-1 L\ I | |
|
_____ Block Length ' |
* (K Words) -+ : '
I * :
(a) Cache I . !
| » '
I I
I I
| |
| |
[4
[
| |
| |
I I
| |
|
I I
! I
n I |
2'-1 :_________|
Word
Length

Figure 1.17 Cache/Main-Memory Structure

EBlock
(K words)

Block

START

RA -read address

slot for main
memory block
block Deliver RA word
into eache slot Lty

Figure 1.18 Cache Read Operation

« Main categories are:
— Cache size
— Block size
— Mapping function
— Replacement algorithm
— Write policy

« Cache size

— Small caches have significant impact on
performance

* Block size

— The unit of data exchanged between cache
and main memory

— Larger block size means more hits
— But too large reduces chance of reuse.

 Determines which cache location the block
will occupy

« Two constraints:

— When one block read in, another may need
replaced

— Complexity of mapping function increases
circuitry costs for searching.

* Chooses which block to replace when a
new block is to be loaded into the cache.

* |deally replacing a block that isn't likely to
be needed again
— Impossible to guarantee

 Effective strategy Is to replace a block that
has been used less than others

— Least Recently Used (LRU)

* Dictates when the memory write operation
takes place

« Can occur every time the block is updated

« Can occur when the block is replaced

— Minimize write operations
— Leave main memory in an obsolete state

Operating System

Main objectives of an OS:

 Convenience
 Efficiency
* Ability to evolve

The OS as a User/Computer Interface

« Computer Hardware-Software Structure
— Layered organization

e (OS services to users

Computer Hardware and Software
Infrastructure

Application programs

Application
programming interface
Application

binary interface

Libraries/utilities Software

Operating system
Instruction Set
Architecture

Execution hardware

I —— Memory

System interconnect ;

yst (m) translation > Heirdswaiie
I/O devices Main

AL memo
networking y §

Figure 2.1 Computer Hardware and Software Infrastructure

Operating System Services

Key Interfaces

* Instruction set architecture (ISA)
» Application binary interface (ABI)
* Application programming interface (API)

Ny, A
AP iaqp
___ —

Operating System
as Software

Computer System

Memory

Operating
System
Software

Programs
and Data

Processor

1/'O Controller

I/O Devices

Printers,
keyboards,

'O Controller/

1'O Controller

digital camera,
Q)

Processor

Storage

05

ngrams

Data

Figure 2.2 The Operating System as Resource Manager

Evolution of Operating Systems

New types of hardware

New services

Evolution of
Operating Systems

'\D Processing

Earliest Computers: Problems:

* Scheduling:

— most installations
used a hardcopy

* No operating
system
* programmers

interacted directly sign-up sheet to
with the computer reserve computer
hardware time
» Computers ran from — time allocations
a console with could run short
- - or long, resulting
display lights, toggle n wasted
switches, some form computer time

of input device, and _ Setup time

Simple Batch Systems

Monitor Point of View

Monitor <

Interrupt
processing

Device
drivers

Job
sequencing

Control language

interpreter
Boundary -
User
program
area
Figure 2.3 Memory Layout for a

Resident Monitor

* Processor executes instruction from the memory
containing the monitor

« Executes the instructions in the user program until it
encounters an ending or error condition

« “control is passed to a job” means processor Is
fetching and executing instructions in a user program

« “control is returned to the monitor” means that the
processor is fetching and executing instructions from
the monitor program

JOD CLontrol Language
(JCL)

Special type of programming language
used to provide instructions to the monitor

Desirable Hardware
Features

Memory protection for monitor

* while the user program is executing, it must not alter the memory area
containing the monitor

* prevents a job from monopolizing the system

Privileged instructions

« can only be executed by the monitor

* gives OS more flexibility in controlling user programs

Modes of Operation

User Mode

* USEer program executes in user
mode

* certain areas of memory are
protected from user access

e certain instructions may not be
executed

Kernel Mode

* monitor executes in kernel mode
« privileged instructions may be
executed

 protected areas of memory may be
accessed

Simple Batch System Overhead

* Processor time alternates between execution of user
programs and execution of the monitor

« Sacrifices:
— some main memory is now given over to the monitor
— some processor time is consumed by the monitor

* Despite overhead, the simple batch system improves
utilization of the computer. (How?)

Multiprogrammed
Batch Systems

Read one record from file 15 ps

Execute 100 mstructions L s
Write one record to file 15 us
TOTAL 31 ps

Percent CPU Utilization = % =0032=32%

Figure 2.4 System Utilization Example

Program A

Uniprogramming

Run Wait Run

Wait

(a) Uniprogramming

Multiprogramming

Program A Run Wait Rumn Wait

Program B Wait| Run Wait Run Wait

Combined A B Wait A B Wait
Time >

i(b) Multiprogramming with two programs

Multiprogramming

Program A Run Wait Run Wait

Program B Wait| Bun Wait Run Wait

Program C Wait Run Wait Run Wait

Combined R:“ R;“ Rg“ Wait R:“ R;“ RE“ Wait
Time >

(c) Multiprogramming with three programs

« Multiprogramming
« also known as multitasking

 memory is expanded to hold three, four, or more
programs and switch among all of them

ﬂF' u .
A A ,-,__@r',, arinn ,@\ '!\::LL Arm e
- Il Ww o' U 0GAld 00 BN W V) Y N U O U

—

* Can be used to handle multiple interactive
jobs

* Processor time is shared among multiple
users

* Multiple users simultaneously access the
system through terminals, with the OS
interleaving the execution of each user
program in a short burst or quantum of
computation

Batch Multiprogramming
vs. Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language Commands entered at the
operating system commands provided with the | terminal
job

Table 2.3 Batch Multiprogramming versus Time Sharing

Compatible Time-Sharing Systems

CTSS

One of the first time-sharing operating systems

Developed at MIT by a group known as Project
MAC

Ran on a computer with 32,000 36-bit words of
main memory, with the resident monitor
consuming 5000 of that

To simplify both the monitor and memory
management a program was always loaded to
start at the location of the 5000 word

Time Slicing

System clock generates interrupts at a rate of
approximately one every 0.2 seconds

At each interrupt OS regained control and
could assign processor to another user

At regular time intervals the current user would
be preempted and another user loaded in

Old user programs and data were written out to
disk

Old user program code and data were restored
in main memory when that program was next
given a turn

