
Servlet Cookies & Session
Unit I

Introduction to Cookies

• Cookies are small bits of textual information that a Web

server sends to a browser and that the browser returns

unchanged when later visiting the same Web site or domain.

• By letting the server read information it sent the client

previously, the site can provide visitors with a number of

conveniences such as presenting the site the way the visitor

previously customized it or letting identifiable visitors in

without their having to enter a password.

• Most browsers avoid caching documents associated with

cookies, so the site can return different content each time

Benefits of Cookies

• Identifying a User During an E-commerce Session

• Avoiding Username and Password(for low-security sites)

• Customizing a Site

• Focusing Advertising

• Cookies do not require any server resources since they are

stored on the client.

• Cookies are easy to implement.

• You can configure cookies to expire when the browser

session ends (session cookies) or they can exist for a

specified length of time on the client computer (persistent

cookies).

Some Problems with Cookies

• Can present a significant threat to privacy: some people

don’t like the fact that search engines can remember that

they’re the user who usually does searches on certain

topics.

• A second privacy problem occurs when sites rely on cookies

for overly sensitive data

• Sometimes clients disable cookies on their browsers in

response to security or privacy worries which will cause

problem for web applications that require them.

• Individual cookie can contain a very limited amount of

information (not more than 4 kb).

• Cookies are limited to simple string information. They cannot

store complex information.

• Cookies are easily accessible and readable if the user finds

and reopens.

• Most browsers restrict the number of cookies that can be set

by a single domain to not more than20 cookies (except

Internet Explorer). If you attempt to set more than 20

cookies, the oldest cookies are automatically deleted.

Cookies Handling

• Cookies are text files stored on the client computer and they

are kept for various information tracking purpose. Java

Servlets transparently supports HTTP cookies.

• There are three steps involved in identifying returning users:

– Server script sends a set of cookies to the browser. For

example name, age, or identification number etc.

– Browser stores this information on local machine for

future use.

– When next time browser sends any request to web server

then it sends those cookies information to the server and

server uses that information to identify the user.

• Cookies are usually set in an HTTP header

• Servlet Cookies Methods:

• public void setMaxAge(int expiry)

– This method sets how much time (in seconds) should elapse before

the cookie expires. If you don't set this, the cookie will last only for

the current session.

• public int getMaxAge()

– This method returns the maximum age of the cookie, specified in

seconds, By default, -1 indicating the cookie will persist until browser

shutdown.

• public String getName()

– This method returns the name of the cookie. The name cannot be

changed after creation.

• public void setValue(String newValue)

– This method sets the value associated with the cookie.

• public String getValue()

– This method gets the value associated with the cookie.

• public void setComment(String purpose)

– This method specifies a comment that describes a cookie's purpose.

The comment is useful if the browser presents the cookie to the user.

• public String getComment()

– This method returns the comment describing the purpose of this

cookie, or null if the cookie has no comment.

• public String getDomain()

• public void setDomain(String domainPattern)

• These methods get or set the domain to which the cookie

applies. The browser only returns cookies to the exact same

hostname that sent them. You can use setDomain method to

instruct the browser to return them to other hosts within the

same domain.

• public String getPath()

• public void setPath(String path)

• These methods get or set the path to which the cookie applies.

• someCookie.setPath("/") specifies that all pages on the server

should receive the cookie. The path specified must include the

current page; that is, you may specify a more general path than

the default, but not a more specific one.

• public boolean getSecure()

• public void setSecure(boolean secureFlag)

• This pair of methods gets or sets the boolean value

indicating whether the cookie should only be sent over

encrypted (i.e., SSL) connections. The default is false;

the cookie should apply to all connections.

• Setting Cookies with Servlet:

(1) Creating a Cookie object: You call the Cookie constructor

with a cookie name and a cookie value, both of which are

strings.

• Cookie cookie = new Cookie("key","value");

• Keep in mind, neither the name nor the value should contain

white space or any of the following characters:

• [] () = , " / ? @ : ;

(2) Setting the maximum age: You use setMaxAge to specify

how long (in seconds) the cookie should be valid. Following

would set up a cookie for 24 hours.

• cookie.setMaxAge(60*60*24);

• (3) Sending the Cookie into the HTTP response

headers: You useresponse.addCookie to add cookies in

the HTTP response header as follows:

• response.addCookie(cookie);

• Delete Cookies with Servlet:

• To delete cookies is very simple. If you want to delete a

cookie then you simply need to follow up following three

steps:

– Read an already exsiting cookie and store it in Cookie object.

– Set cookie age as zero using setMaxAge() method to delete an

existing cookie.

– Add this cookie back into response header.

for (int i = 0; i < cookies.length; i++){

cookie = cookies[i];

if((cookie.getName()).compareTo("first_name") == 0) {

cookie.setMaxAge(0);

response.addCookie(cookie);

out.print("Deleted cookie : " + cookie.getName());

}

Servlets - Session Tracking

• Need for Session Tracking:

– HTTP is a “stateless” protocol: each time a client

retrieves a Web page, it opens a separate connection to

the Web server, and the server does not automatically

maintain contextual information about a client.

– Even with servers that support persistent (keep-alive)

HTTP connections and keep a socket open for multiple

client requests that occur close together in time, there is

no built-in support for maintaining contextual information.

This lack of context causes a number of difficulties.

• There are three typical solutions to this problem: cookies,

URL-rewriting, and hidden form fields.

• Hidden Form Fields:

• A web server can send a hidden HTML form field along with

a unique session ID as follows:

• <input type="hidden" name="sessionid" value="12345">

• Each time when web browser sends request back, then

session_id value can be used to keep the track of different

web browsers.

• This could be an effective way of keeping track of the

session but clicking on a regular (<A HREF...>) hypertext

link does not result in a form submission, so hidden form

fields also cannot support general session tracking.

• URL Rewriting:

• You can append some extra data on the end of each URL

that identifies the session, and the server can associate that

session identifier with data it has stored about that session.

• For example, with http://abc.com/file.htm;sessionid=12345,

the session identifier is attached as sessionid=12345 which

can be accessed at the web server to identify the client.

• URL rewriting is a better way to maintain sessions and

works for the browsers when they don't support cookies but

here drawback is that you would have generate every URL

dynamically to assign a session ID though page is simple

static HTML page.

• If the user leaves the session and comes back via a

bookmark or link, the session information can be lost

HttpSession
• The HttpSession Object:

• Servlet provides HttpSession Interface which provides a way

to identify a user across more than one page request or visit

to a Web site and to store information about that user.

• The servlet container uses this interface to create a session

between an HTTP client and an HTTP server. The session

persists for a specified time period, across more than one

connection or page request from the user.

• You would get HttpSession object by calling the public

method getSession() of HttpServletRequest, as below:

• HttpSession session = request.getSession();

• You need to call request.getSession() before you send any

document content to the client.

• The important methods available through HttpSession

object:

• public Object getAttribute(String name)

• public Enumeration getAttributeNames()

• public long getCreationTime()

• public String getId()

• public long getLastAccessedTime()

• public int getMaxInactiveInterval()

• public void invalidate()

• public boolean isNew()

• public void removeAttribute(String name)

• public void setAttribute(String name, Object value)

• public void setMaxInactiveInterval(int interval)

Deleting Session Data
• Remove a particular attribute: You can call public void

removeAttribute(String name) method to delete the value

associated with a particular key.

• Delete the whole session: You can call public void

invalidate()method to discard an entire session.

• Setting Session timeout: You can call public void

setMaxInactiveInterval(int interval) method to set the timeout

for a session individually.

• Log the user out: The servers that support servlets 2.4, you

can calllogout to log the client out of the Web server and

invalidate all sessions belonging to all the users.

• web.xml Configuration: If you are using Tomcat, apart

from the above mentioned methods, you can configure

session time out in web.xml file as follows.

<session-config>

<session-timeout>15</session-timeout>

</session-config>

JDBC

Introduction
• JDBC provides a standard library for accessing relational

databases. Using the JDBC API, you can access a wide

variety of different SQL databases with exactly the same

Java syntax.

• It is important to note that although JDBC standardizes the

mechanism for connecting to databases, the syntax for

sending queries and committing transactions, and the data

structure representing the result, it does not attempt to

standardize the SQL syntax.

• So, you can use any SQL extensions your database vendor

supports. However, since most queries follow standard SQL

syntax, using JDBC lets you change database hosts, ports,

and even database vendors with minimal changes in your

code.

• Officially, JDBC is not an acronym and thus does not stand

for anything. Unofficially, “Java Database Connectivity” is

commonly used.

Basic Steps in Using JDBC

• There are seven standard steps in querying databases:

• 1. Load the JDBC driver.

• 2. Define the connection URL.

• 3. Establish the connection.

• 4. Create a statement object.

• 5. Execute a query or update.

• 6. Process the results.

• 7. Close the connection.

• Here are some details of the process.

DriverManager

Driver

Connection

Statement

ResultSet

Execute Query

Close Connection

1. Load the Driver

• The driver is the piece of software that knows how to talk to

the actual database server.

• To load the driver, all you need to do is to load the

appropriate class; a static block in the class itself

automatically makes a driver instance and registers it with

the JDBC driver manager.

• Use Class.forName. This method takes a string represent

ing a fully qualified class name (i.e., one that includes

package names) and loads the corresponding class.

• This call could throw a ClassNotFound- Exception, so

should be inside a try/catch block.

try {

Class.forName("connect.microsoft.MicrosoftDriver");

Class.forName("oracle.jdbc.driver.OracleDriver");

Class.forName("com.sybase.jdbc.SybDriver");

} catch(ClassNotFoundException cnfe) {

System.err.println("Error loading driver: " + cnfe);

}

• For an up-to-date list of JDBC drivers, see

http://java.sun.com/products/jdbc/drivers.html

• Most JDBC driver vendors distribute their drivers inside JAR

files. So, be sure to include the path to the JAR file in your

CLASSPATH setting.

http://java.sun.com/products/jdbc/drivers.html

2. Define the Connection URL

• Once you have loaded the JDBC driver, you need to specify

the location of the database server. URLs referring to

databases use the jdbc: protocol and have the server host,

port, and database name (or reference) embedded within

the URL.

String host = "dbhost.yourcompany.com";

String dbName = "someName";

int port = 1234;

String oracleURL = "jdbc:oracle:thin:@" + host +":" + port + ":" +

dbName;

String sybaseURL = "jdbc:sybase:Tds:" + host +":" + port + ":" +

"?SERVICENAME=" + dbName;

3. Establish the Connection

• To make the actual network connection, pass the URL, the

database username, and the password to the getConnection

method of the Driver-Manager class, as illustrated in the

following example.

• Note that getConnection throws an SQLException, so you

need to use a try/catch block.

String username = "jay_debesee";

String password = "secret";

Connection connection =

DriverManager.getConnection(oracleURL, username, password);

• An optional part of this step is to look up information about

the database by using the getMetaData method of

Connection.

• This method returns a DatabaseMetaData object which has

methods to let you discover the name and version of the

database itself (getDatabaseProductName,

getDatabaseProductVersion)

• or of the JDBC driver (getDriverName, get-DriverVersion).

DatabaseMetaData dbMetaData=connection.getMetaData();

String productName=dbMetaData.getDatabaseProductName();

System.out.println("Database: " + productName);

String productVersion=dbMetaData.getDatabaseProductVersion();

System.out.println("Version: " + productVersion);

• Other useful methods in the Connection class include

prepareStatement, prepare-call, rollback, commit, close, and

isClosed.

4. Create a Statement

• A Statement object is used to send queries and commands

to the database and is created from the Connection as

follows:

• Statement statement = connection.createStatement();

5. Execute a Query

• Once you have a Statement object, you can use it to send

SQL queries by using the executeQuery method, which

returns an object of type Result-Set. Here is an example:

String query = "SELECT col1, col2, col3 FROM sometable";

ResultSet resultSet = statement.executeQuery(query);

• To modify the database, use executeUpdate instead of

executeQuery, and supply a string that uses UPDATE,

INSERT, or DELETE.

• Other useful methods in the Statement class include

execute and setQueryTimeout.

• You can also create parameterized queries where values

are supplied to a precompiled fixed-format query.

6. Process the Results
• The simplest way to handle the results is to process them

one row at a time, using the ResultSet’s next method to

move through the table a row at a time.

• Within a row, ResultSet provides various getXxx methods

that take a column index or column name as an argument

and return the result as a variety of different Java types.

• For instance, use getInt if the value should be an integer,

getString for a String, and so on.

• The first column in a ResultSet row has index 1, not 0.

while(resultSet.next()) {

System.out.println(results.getString(1) + " " +

results.getString(2) + " " +

results.getString(3));

}

• other useful methods in the ResultSet class include

findColumn (get the index of the named column), wasNull

(was the last getXxx result SQL NULL?

• Alternatively, for strings you can simply compare the return

value to null), and getMetaData (retrieve information about

the ResultSet in a ResultSetMetaData object).

• Useful ResultSetMetaData methods include

getColumnCount (the number of columns), getColumn-

Name(colNumber) (a column name, indexed starting at 1),

getColumnType (an int to compare against entries in

java.sql.Types), isReadOnly (is entry a read-only value?),

isSearchable (can it be used in a WHERE clause?),

isNullable (is a null value permitted?), and several others

that give details on the type and precision of the column.

7. Close the Connection

• To close the connection explicitly, you would do:

• connection.close();

Basic Example
import java.sql.*;

class JDBCDemoOr{

public static void main(String args[]){

try{

System.out.println("test"); //step1 load the driver class

Class.forName("oracle.jdbc.driver.OracleDriver"); //step2 create the con obj

Connection

con=DriverManager.getConnection("jdbc:oracle:thin:@192.168.9.251:152

1:xe","kirtan","kirtan");

System.out.println(con); //step3 create the statement object

Statement stmt=con.createStatement(); //step4 execute query

ResultSet rs=stmt.executeQuery("select * from emp");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

//step5 close the connection object

con.close();

}catch(Exception e){ System.out.println(e);}

}

JDBC - Statements, PreparedStatement

and CallableStatement

Interfaces Recommended Use

Statement Use the for general-purpose access to your

database. Useful when you are using static

SQL statements at runtime. The Statement

interface cannot accept parameters.

PreparedStatement Use the when you plan to use the SQL

statements many times. The

PreparedStatement interface accepts input

parameters at runtime.

CallableStatement Use the when you want to access the database

stored procedures. The CallableStatement

interface can also accept runtime input

parameters.

• The Statement Objects

– Before you can use a Statement object to execute a SQL

statement, you need to create one using the Connection

object's createStatement() method.

– Statement stmt = conn.createStatement();

– Once you've created a Statement object, you can then

use it to execute an SQL statement with one of its three

execute methods.

– boolean execute (String SQL): Returns a boolean value

of true if a ResultSet object can be retrieved; otherwise, it

returns false. Use this method to execute SQL DDL

statements or when you need to use truly dynamic SQL.

– int executeUpdate (String SQL): Returns the number of

rows affected by the execution of the SQL statement.

Use this method to execute SQL statements for which

you expect to get a number of rows affected - for

example, an INSERT, UPDATE, or DELETE statement.

– ResultSet executeQuery (String SQL): Returns a

ResultSet object. Use this method when you expect to

get a result set, as you would with a SELECT statement.

• The PreparedStatement Objects

– This statement gives you the flexibility of suppl ying

arguments dynamically.

String SQL = "Update Employees SET age = ? WHERE id = ?";

PreparedStatement pstmt = conn.prepareStatement(SQL);

– All parameters in JDBC are represented by the ? symbol,

which is known as the parameter marker. You must supply

values for every parameter before executing the SQL

statement.

– The setXXX() methods bind values to the parameters,

where XXX represents the Java data type of the value you

wish to bind to the input parameter. If you forget to supply

the values, you will receive an SQLException.

– Each parameter marker is referred by its ordinal position.

The first marker represents position 1, the next position 2,

and so forth.

– All of the Statement object's methods for interacting with

the database (a) execute(), (b) executeQuery(), and (c)

executeUpdate() also work with the PreparedStatement

object.

• The CallableStatement Objects:

– This would be used to execute a call to a database stored

procedure.

– Suppose, you need to execute the following Oracle

stored procedure.

CREATE OR REPLACE PROCEDURE getEmpName

(EMP_ID IN NUMBER, EMP_FIRST OUT VARCHAR) AS

BEGIN

SELECT first INTO EMP_FIRST

FROM Employees

WHERE ID = EMP_ID;

END;

String SQL = "{call getEmpName (?, ?)}";

CallableStatement cstmt = conn.prepareCall (SQL);

//Bind IN parameter first, then bind OUT parameter

int empID = 102;

stmt.setInt(1, empID); // This would set ID as 102

// Because second parameter is OUT so register it

stmt.registerOutParameter(2, java.sql.Types.VARCHAR);

//Use execute method to run stored procedure.

System.out.println("Executing stored procedure...");

stmt.execute();

Transaction Management in

JDBC
• Transaction represents a single unit of work.

• The ACID properties describes the transaction management

well. ACID stands for Atomicity, Consistency, isolation and

durability.

– Atomicity means either all successful or none.

– Consistency ensures bringing the database from one

consistent state to another consistent state.

– Isolation ensures that transaction is isolated from other

transaction.

– Durability means once a transaction has been committed, it

will remain so, even in the event of errors, power loss etc.

• Advantage of Transaction Mangaement:

• fast performance It makes the performance fast because

database is hit at the time of commit.

• In JDBC, Connection interface provides

methods to manage transaction.

Method Description

void setAutoCommit
(boolean status)

It is true bydefault means each transaction
is committed bydefault.

void commit() commits the transaction.

void rollback() cancels the transaction.

JDBC Driver

• JDBC Driver is a software component that enables

java application to interact with the database.There

are 4 types of JDBC drivers:

– JDBC-ODBC bridge driver

– Native-API driver (partially java driver)

– Network Protocol driver (fully java driver)

– Thin driver (fully java driver)

• JDBC-ODBC bridge driver
– The JDBC-ODBC bridge driver uses ODBC driver to connect

to the database. The JDBC-ODBC bridge driver converts

JDBC method calls into the ODBC function calls. This is now

discouraged because of thin driver.

– Advantages:

• easy to use.

• can be easily connected to any database.

– Disadvantages:

• Performance degraded because JDBC method call is

converted into the ODBC function calls.

• The ODBC driver needs to be installed on the client

machine.

• Native-API driver
– The Native API driver uses the client-side libraries of the

database. The driver converts JDBC method calls into native

calls of the database API. It is not written entirely in java.

– Advantage:

• performance upgraded than JDBC-ODBC bridge driver.

– Disadvantage:

• The Native driver needs to be installed on the each client

machine.

• The Vendor client library needs to be installed on client

machine.

• Network Protocol driver

– The Network Protocol driver uses middleware (application

server) that converts JDBC calls directly or indirectly into the

vendor-specific database protocol. It is fully written in java.

– Advantage:

• No client side library is required because of application

server that can perform many tasks like auditing, load

balancing, logging etc.

– Disadvantages:

• Network support is required on client machine.

• Requires database-specific coding to be done in the middle

tier.

• Maintenance of Network Protocol driver becomes costly

because it requires database-specific coding to be done in

the middle tier.

• Thin driver

– The thin driver converts JDBC calls directly into

the vendor-specific database protocol. That is

why it is known as thin driver. It is fully written in

Java language.

– Advantage:

• Better performance than all other drivers.

• No software is required at client side or server side.

– Disadvantage:

• Drivers depends on the Database.

