
Java Server Pages
Unit II

1

Introduction
• JavaServer Pages (JSP) technology enables you to mix

regular, static HTML with dynamically generated content

from servlets.

• You simply write the regular HTML in the normal manner,

using familiar Web-page-building tools. You then enclose

the code for the dynamic parts in special tags, most of which

start with <% and end with %>.

• For Example:

• Thanks for ordering <I><%= request.getParameter("title") %></I>

• Separating the static HTML from the dynamic content

provides a number of benefits over servlets alone, and the

approach used in JavaServer Pages offers several

advantages over competing technologies such as ASP,

PHP, or ColdFusion. 2

• JSP is widely supported and thus doesn’t lock you into a

particular operating system or Web server and that JSP

gives you full access to servlet and Java technology for the

dynamic part, rather than requiring you to use an unfamiliar

and weaker special-purpose language.

• The process of making JavaServer Pages accessible on the

Web is much simpler than that for servlets.

• Assuming you have a Web server that supports JSP, you

give your file a .jsp extension and simply install it in any

place you could put a normal Web page: no compiling, no

packages, and no user CLASSPATH settings.

3

• Although what you write often looks more like a regular

HTML file than a servlet, behind the scenes, the JSP page is

automatically converted to a normal servlet, with the static

HTML simply being printed to the output stream associated

with the servlet’s service method.

• If you make an error in the dynamic portion of your JSP

page, the system may not be able to properly translate it into

a servlet. If your page has such a fatal translation-time error,

the server will present an HTML error page describing the

problem to the client.

4

• Aside from the regular HTML, there are three main types of

JSP constructs that you embed in a page:

– scripting elements,

– directives, and

– actions.

• Scripting elements let you specify Java code that will

become part of the resultant servlet,

• directives let you control the overall structure of the

servlet,and

• actions let you specify existing components that should be

used and otherwise control the behavior of the JSP engine.

5

Scripting Elements
• JSP scripting elements let you insert code into the servlet

that will be generated from the JSP page. There are three

forms:

1. Expressions of the form <%= expression %>, which are

evaluated and inserted into the servlet’s output

2. Scriptlets of the form <% code %>, which are inserted into

the servlet’s _jspService method (called by service)

3. Declarations of the form <%! code %>, which are inserted

into the body of the servlet class, outside of any existing

methods

6

Template Text
• In many cases, a large percentage of your JSP page just consists

of static HTML, known as template text.

• In almost all respects, this HTML looks just like normal HTML,

follows all the same syntax rules, and is simply “passed through”

to the client by the servlet created to handle the page.

• There are two minor exceptions to the “template text is passed

straight through” rule.

• First, if you want to have <% in the output, you need to put <\% in

the template text.

• Second, if you want a comment to appear in the JSP page but not

in the resultant document, use

`<%-- JSP Comment --%>

• HTML comments of the form

<!-- HTML Comment -->

are passed through to the resultant HTML normally. 7

JSP Expressions
• A JSP expression is used to insert values directly into the

output. It has the following form:

<%= Java Expression %>

• The expression is evaluated, converted to a string, and

inserted in the page.

• This evaluation is performed at run time (when the page is

requested) and thus has full access to information about the

request.

• For example, the following shows the date/time that the

page was requested:

Current time: <%= new java.util.Date() %>

8

Cont..
• Predefined Variables: To simplify these expressions, you

can use a number of predefined variables.

• request, the HttpServletRequest

• response, the HttpServletResponse

• session, the HttpSession associated with the request

• out, the PrintWriter (a buffered version called JspWriter)

used to send output to the client

• Here is an example:

• Your hostname: <%= request.getRemoteHost() %>

9

• Example:

<HTML>

<HEAD>

<TITLE>JSP Expressions</TITLE>

</HEAD>

<BODY>

<H2>JSP Expressions</H2>

Current time: <%= new java.util.Date() %>

Your hostname: <%= request.getRemoteHost()
%>

Your session ID: <%= session.getId() %>

The <CODE>testParam</CODE> form parameter:

<%= request.getParameter("testParam") %>

</BODY>

</HTML> 10

JSP Scriptlets
• If you want to do something more complex than insert a simple

expression, JSP scriptlets let you insert arbitrary code into the

servlet’s _jspService method (which is called by service).

• Scriptlets have the following form:

• <% Java Code %>

• Scriptlets have access to the same automatically defined

variables as Expressions So, for example, if you want output to

appear in the resultant page, you would use the out variable,

as in the following example.

<%

String queryData = request.getQueryString();

out.println("Attached GET data: " + queryData);

%>
11

• Setting response headers and status codes, invoking side

effects such as writing to the server log or updating a

database, or executing code that contains loops,

conditionals, or other complex constructs.

• <% response.setContentType("text/plain"); %>

• It is important to note that you can set response headers or

status codes at various places within a JSP page, even

though this capability appears to violate the rule that this

type of response data needs to be specified before any

document content is sent to the client.

12

<HTML>

<HEAD>

<TITLE>JSP: Scriptlets</TITLE>

</HEAD>

<%

String bgColor = request.getParameter("COLOR");

if (bgColor == CYAN)

bgColor = "WHITE";

%>

<BODY BGCOLOR="<%= bgColor %>" >

<H1>Example Scriptlet: Sets background color</H1>

</BODY>

</HTML>

13

JSP Declarations
• A JSP declaration lets you define methods or fields that get inserted into

the main body of the servlet class.

• (outside of the _jspService method that is called by service to process
the request).

• A declaration has the following form:

• <%! Java Code %>

• Since declarations do not generate any output, they are normally used in
conjunction with JSP expressions or scriptlets.

<%! int data=50; %>

<%= "Value of the variable is:"+data %>

<%!

int cube(int n){

return n*n*n*;

}

%>

<%= "Cube of 3 is:"+cube(3) %>
14

Difference between JSP Scriptlet tag

and Declaration tag

Jsp Scriptlet Tag Jsp Declaration Tag

The jsp scriptlet tag can only
declare variables not methods.

The jsp declaration tag can
declare variables as well as
methods.

The declaration of scriptlet tag
is placed inside the
_jspService() method.

The declaration of jsp
declaration tag is placed
outside the _jspService()
method.

15

Predefined Variables
• To simplify code in JSP expressions and scriptlets, you are

supplied with eight automatically defined variables,

sometimes called implicit objects.

• Since JSP declarations result in code that appears outside

of the _jspService method, these variables are not

accessible in declarations.

• The available variables are request, response, out, session,

application, config, pageContext, and page.

16

Object Type

out JspWriter

request HttpServletRequest

response HttpServletResponse

config ServletConfig

application ServletContext

session HttpSession

pageContext PageContext

page Object

exception Throwable
17

JSP Directives
• The jsp directives are messages that tells the web

container how to translate a JSP page into the

corresponding servlet.

• There are three types of directives:

– page directive

– include directive

– taglib directive

• Syntax is:

<%@ directive attribute="value" %>

<%@ directive attribute1="value1"

attribute2="value2"

...

attributeN="valueN" %> 18

• The page directive lets you control the structure of the

servlet by importing classes, customizing the servlet

superclass, setting the content type, and the like. A page

directive can be placed anywhere within the document.

• The second directive, include, lets you insert a file into the

servlet class at the time the JSP file is translated into a

servlet. An include directive should be placed in the

document at the point at which you want the file to be

inserted.

• JSP 1.1 introduces a third directive, taglib, which can be

used to define custom markup tags.

19

JSP page directive
• The page directive defines attributes that apply to an entire

JSP page.

• Syntax of JSP page directive

• <%@ page attribute="value" %>

• The page directive lets you define one or more of the

following case-sensitive attributes:

20

• Attributes of JSP page directive
– import

– contentType

– extends

– info

– buffer

– language

– isELIgnored

– isThreadSafe

– autoFlush

– session

– pageEncoding

– errorPage

– isErrorPage 21

• import: The import attribute is used to import class,

interface or all the members of a package. It is similar to

import keyword in java class or interface.

• <%@ page import="java.util.Date" %>

• <%@ page import="package.class1,...,package.classN" %>

• If you don’t explicitly specify any classes to import, the

servlet imports java.lang.*, javax.servlet.*, javax.servlet.jsp.*,

javax.servlet.http.*, and possibly some number of server-

specific entries.

• The import attribute is the only page attribute that is allowed

to appear multiple times within the same document.

• Although page directives can appear anywhere within the

document, it is traditional to place import statements either

near the top of the document or just before the first place

that the referenced package is used. 22

• contentType: The contentType attribute defines the

MIME(Multipurpose Internet Mail Extension) type of the

HTTP response. The default value is "text/html;charset=ISO-

8859-1".

• The contentType attribute sets the Content-Type response

header, indicating the MIME type of the document being

sent to the client.

• Use of the contentType attribute takes one of the following

two forms:

• <%@ page contentType="MIME-Type" %>

• <%@ page contentType="MIME-Type; charset=Character-

Set" %>

• Unlike regular servlets, where the default MIME type is

text/plain, the default for JSP pages is text/html 23

• extends: The extends attribute defines the parent class that

will be inherited by the generated servlet.It is rarely used.

• info: This attribute simply sets the information of the JSP

page which is retrieved later by using getServletInfo()

method of Servlet interface.

• <%@ page info="composed by abc" %>

• Today is: <%= new java.util.Date() %>

• The web container will create a method getServletInfo() in

the resulting servlet.For example:

• public String getServletInfo() {

• return "composed by Sonoo Jaiswal";

• }

24

• buffer: The buffer attribute sets the buffer size in kilobytes

to handle output generated by the JSP page. The default

size of the buffer is 8Kb.

• <%@ page buffer="16kb" %>

• language: The language attribute specifies the scripting

language used in the JSP page. The default value is "java".

• isELIgnored: We can ignore the Expression Language (EL)

in jsp by the isELIgnored attribute. By default its value is

false i.e. Expression Language is enabled by default.

• <%@ page isELIgnored="true" %>//Now EL will be ignored

• errorPage:

• The errorPage attribute is used to define the error page, if

exception occurs in the current page, it will be redirected to

the error page
25

• <%@ page errorPage="myerrorpage.jsp" %>

• isErrorPage: The isErrorPage attribute is used to

declare that the current page is the error page.

• <%@ page isErrorPage="true" %>

• Sorry an exception occured!

• The exception is: <%= exception %>

• The exception object can only be used in the error

page.

26

• The isThreadSafe Attribute: The isThreadSafe attribute

controls whether or not the servlet that results from the JSP

page will implement the SingleThreadModel interface.

• Use of the isThreadSafe attribute takes one of the following

two forms:

• <%@ page isThreadSafe="true" %> <%!-- Default --%>

• <%@ page isThreadSafe="false" %>

• With normal servlets, simultaneous user requests result in

multiple threads concurrently accessing the service method

of the same servlet instance.

27

• The session Attribute: The session attribute controls whether

or not the page participates in HTTP sessions.

• Use of this attribute takes one of the following two forms:

– <%@ page session="true" %> <%-- Default --%>

– <%@ page session="false" %>

• A value of true indicates that the predefined variable session (of

type HttpSession) should be bound to the existing session if one

exists; otherwise, a new session should be created and bound to

session.

• A value of false means that no sessions will be used

automatically and attempts to access the variable session will

result in errors at the time the JSP page is translated into a

servlet.
28

• The autoflush Attribute: controls whether the output buffer

should be automatically flushed when it is full or whether an

exception should be raised when the buffer overflows.

• Use of this attribute takes one of the following two forms:

• <%@ page autoflush="true" %> <%-- Default --%>

• <%@ page autoflush="false" %>

29

Jsp Include Directive
• The include directive is used to include the contents of any

resource it may be jsp file, html file or text file.

• This directive tells the container to merge the content of

other external files with the current JSP during the

translation phase. You may code include directives

anywhere in your JSP page.

• A good example of include directive is including a common

header and footer with multiple pages of content.

• It is used for Code Reusability.

• Syntax: <%@ include file="resourceName" %>

30

Taglib Directives

• The JavaServer Pages API allows you to define custom

JSP tags that look like HTML or XML tags and a tag library

is a set of user-defined tags that implement custom

behavior.

• The taglib directive declares that your JSP page uses a set

of custom tags, identifies the location of the library, and

provides a means for identifying the custom tags in your

JSP page.

• <%@ taglib uri="uri" prefix="prefixOfTag" >

• Where the uri attribute value resolves to a location the

container understands and the prefix attribute informs a

container what bits of markup are custom actions.
31

JSP Action Tags
• JSP actions use constructs in XML syntax to control the

behavior of the servlet engine. You can dynamically insert a

file, reuse JavaBeans components, forward the user to

another page, or generate HTML for the Java plugin.

• Each JSP action tag is used to perform some specific tasks.

• <jsp:action_name attribute="value" />

• Common Attributes:

– There are two attributes that are common to all Action elements:

the id attribute and the scope attribute.

– Id attribute: The id attribute uniquely identifies the Action element,

and allows the action to be referenced inside the JSP page

– Scope attribute: The id attribute and the scope attribute are directly

related, as the scope attribute determines the lifespan of the object

associated with the id. The scope attribute has four possible values:

(a) page, (b)request, (c)session, and (d) application.
32

JSP Action Tags Description

jsp:forward forwards the request and response to another
resource.

jsp:include includes another resource.

jsp:useBean creates or locates bean object.

jsp:setProperty sets the value of property in bean object.

jsp:getProperty prints the value of property of the bean.

jsp:plugin embeds another components such as applet.

jsp:param sets the parameter value. It is used in forward and
include mostly.

jsp:fallback can be used to print the message if plugin is
working. It is used in jsp:plugin.

33

jsp:forward Action

• The jsp:forward action tag is used to forward the request to

another resource it may be jsp, html or another resource.

• Syntax:

<jsp:forward page="relativeURL | <%= expression %>" />

• Syntax of jsp:forward action tag with parameter

<jsp:forward page="relativeURL | <%= expression %>">

<jsp:param name="parametername" value="parametervalu

e | <%=expression%>" />

</jsp:forward>

• df

34

The <jsp:include> Action
• The jsp:include action tag is used to include the content of

another resource it may be jsp, html or servlet.

• The jsp include action tag includes the resource at request

time so it is better for dynamic pages because there might

be changes in future.

• The jsp:include tag can be used to include static as well as

dynamic pages.

• Syntax:

• <jsp:include page="relativeURL | <%= expression %>" />

• <jsp:include page="relativeURL | <%= expression %>">

<jsp:param name="parametername" value="parametervalu

e | <%=expression%>" />

</jsp:include> 35

• Difference between jsp include directive and

include action:

36

JSP include directive JSP include action

includes resource at translation
time.

includes resource at request time.

better for static pages. better for dynamic pages.

includes the original content in the
generated servlet.

calls the include method.

jsp:plugin

• The jsp:plugin action tag is used to embed applet in the jsp

file. The jsp:plugin action tag downloads plugin at client side

to execute an applet or bean.

• Syntax:

• <jsp:plugin type= "applet | bean" code= "nameOfClassFile"

codebase= "directoryNameOfClassFile"

• </jsp:plugin>

37

JSTL (JSP Standard Tag

Library)
• The JSP Standard Tag Library (JSTL) represents a set of

tags to simplify the JSP development.

• The JavaServer Pages Standard Tag Library (JSTL) is a

collection of useful JSP tags which encapsulates core

functionality common to many JSP applications.

• JSTL has support for common, structural tasks such as

iteration and conditionals, tags for manipulating XML

documents, internationalization tags, and SQL tags. It also

provides a framework for integrating existing custom tags

with JSTL tags.

• The JSTL tags can be classified, according to their

functions, into following JSTL tag library groups that can be

used when creating a JSP page: 38

• Advantage of JSTL

1. Fast Developement JSTL provides many tags that simplifies the

JSP.

2. Code Reusability We can use the JSTL tags in various pages.

3. No need to use scriptlet tag It avoids the use of scriptlet tag.

• For creating JSTL application, you need to load jstl.jar file.

• There JSTL mainly provides 5 types of tags:

39

Tag Name Description

Core tags The JSTL core tag provide variable support, URL
management, flow control etc. The url for the core tag
ishttp://java.sun.com/jsp/jstl/core . The prefix of
core tag is c.

Function tags The functions tags provide support for string
manipulation and string length. The url for the functions
tags is http://java.sun.com/jsp/jstl/functions and
prefix is fn.

Formatting tags The Formatting tags provide support for message
formatting, number and date formatting etc. The url for
the Formatting tags
is http://java.sun.com/jsp/jstl/fmt and prefix
is fmt.

XML tags The xml sql tags provide flow control, transformation
etc. The url for the xml tags
ishttp://java.sun.com/jsp/jstl/xml and prefix is x.

SQL tags The JSTL sql tags provide SQL support. The url for the
sql tags is http://java.sun.com/jsp/jstl/sqland
prefix is sql.

40

http://www.javatpoint.com/jstl-core-tags
http://www.javatpoint.com/jstl-function-tags
http://www.javatpoint.com/jstl-formatting-tags
http://www.javatpoint.com/jstl-xml-tags
http://www.javatpoint.com/jstl-sql-tags

Core Tags:

• The JSTL core tag provides variable support,

URL management, flow control etc. The

syntax used for including JSTL core library in

your JSP is:

• <%@ taglib uri="http://java.sun.com/jsp/jstl/c

ore" prefix="c" %>

• JSTL Core Tags List

41

42

Tags Description

c:out It display the result of an expression, similar to the way
<%=...%> tag work.

c:import It Retrives relative or an absolute URL and display the
contents to either a String in 'var',a Reader in 'varReader' or
the page.

c:set It sets the result of an expression under evaluation in a
'scope' variable.

c:remove It is used for removing the specified scoped variable from a
particular scope.

c:catch It is used for Catches any Throwable exceptions that occurs
in the body.

c:if It is conditional tag used for testing the condition and
display the body content only if the expression evaluates is
true.

c:choose,
c:when,
c:otherwise

It is the simple conditional tag that includes its body
content if the evaluated condition is true.

c:forEach It is the basic iteration tag. It repeats the nested body
content for fixed number of times or over collection.

http://www.javatpoint.com/jstl-core-out-tag
http://www.javatpoint.com/jstl-core-import-tag
http://www.javatpoint.com/jstl-core-set-tag
http://www.javatpoint.com/jstl-core-remove-tag
http://www.javatpoint.com/jstl-core-catch-tag
http://www.javatpoint.com/jstl-core-if-tag
http://www.javatpoint.com/jstl-core-choose-when-otherwise-tag
http://www.javatpoint.com/jstl-core-forEach-tag

c:forTokens It iterates over tokens which is
separated by the supplied
delimeters.

c:param It adds a parameter in a containing
'import' tag's URL.

c:redirect It redirects the browser to a new
URL and supports the context-
relative URLs.

c:url It creates a URL with optional query
parameters.

43

http://www.javatpoint.com/jstl-core-forTokens
http://www.javatpoint.com/jstl-core-param-tag
http://www.javatpoint.com/jstl-core-redirect-tag
http://www.javatpoint.com/jstl-core-url-tag

Expression Language

• The Expression Language (EL) simplifies the accessibility

of data stored in the Java Bean component, and other

objects like request, session, application etc.

• There are many implicit objects, operators and reserve

words in EL.

• Syntax for Expression Language (EL)

• ${ expression }

44

Implicit Objects Usage

pageScope it maps the given attribute name with the value set in
the page scope

requestScope it maps the given attribute name with the value set in
the request scope

sessionScope it maps the given attribute name with the value set in
the session scope

applicationScope it maps the given attribute name with the value set in
the application scope

param it maps the request parameter to the single value

paramValues it maps the request parameter to an array of values

header it maps the request header name to the single value

headerValues it maps the request header name to an array of values

cookie it maps the given cookie name to the cookie value

initParam it maps the initialization parameter

pageContext it provides access to many objects request, session
etc.

45

