
Java SERVLET
Unit I



Understanding Web Components
▪ When a web-based client such as a browser communicates 

with a J2EE application, it does so through server-side 
objects called web components. 

▪ The web component should be those involved with receiving 
a request and creating a response to the client, whatever the 
client may be.

▪ For now we will focus on the components managed in web 
containers, starting with servlets then JSP.

▪ Servlets are Java programming language classes that 
dynamically process requests and construct responses. 

▪ JSP pages are text-based documents that execute as 
servlets, but allow a more natural approach to creating static 

content.



Cont…
▪ So what is web containers?

▪ Web components are supported by the services of a 
runtime platform called a web container. 

▪ A web container provides services such as request 
dispatching, security, concurrency, and life-cycle 
management. 

▪ It also gives web components access to APIs such as 
naming, transactions, and email.

▪ Certain aspects of web application behavior can be 
configured when the application is installed, or deployed, 
to the web container. 



Client EIS

Resources

Java 

Classes

XML

Documents

JSPs

Custom Tag 

Libraries

Servlets

Web Container

Web Container Boundaries



Introduction of Servlet

• They are programs that run on a Web server, acting as a 

middle layer between a request coming from a Web browser 

or other HTTP client and databases or applications on the 

HTTP server. 

• Their job is to:

– Read any data sent by the user

– Look up any other information about the request that is embedded in 

the HTTP request

– Generate the results

– Format the results inside a document

– Set the appropriate HTTP response parameters

– Send the document back to the client



The Advantages of Servlets
▪ Servlet provides a programmatic way for creating dynamic 

and structured data.

▪ Servlets run inside a Java Virtual Machine (JVM) and are 
generic server extension that can be dynamically loaded 
when needed by the web server.

▪ Advantages of using Servlets:

▪ Fast Performance:

▪ The performance of servlets is superior to CGI because 
there is no process creation for each client request. 
There is no process spawning with servlets so servlet 
invocation is very fast.

▪ Scalable.

▪ Servlets are scalable as each request is handled by 

threads which gives better scalability.



▪ Portability. 

▪ Being written in java servlets are portable between 

operating systems as well as Web Servers. 

▪ Rapid development cycle. 

▪ Servlets technology is part of javax packages.

▪ They are able to tale full advantages of all of the java API 

which helps speed up the development process.

▪ Robustness. 

▪ Servlets are managed by the Java Virtual Machine.

▪ As such, you don't need to worry about memory leak or 

garbage collection, which helps you write robust 

applications. 



▪ Widespread acceptance. 

▪ Java is a widely accepted technology. This means 

that numerous vendors work on Java-based 

technologies. One of the advantages of this 

widespread acceptance is that you can easily find and 

purchase components that suit your needs, which 

saves precious development time.

▪ Servlet will stay in memory one it’s loaded, which allows 

state management of other resources such as database 

connection.



Client

Web 

Server

JSP/Servlet Container

Servlet 

Code
JSP

3.If first access of JSP page, 

then compile JSP.

4.Create instance 

if required 

5. Execute servlet, 

Response generated

Servlet Model



▪ A servlet is a Java class that can be loaded dynamically  
and run by a special web server. 

▪ This servlet-aware web server is called a servlet container.

▪ Servlets interact with clients via a request-response model 
based on HTTP. Because servlet technology works on top of 
HTTP, a servlet container must support HTTP as the 
protocol for client requests and server responses.

▪ In a JSP application, the servlet container is replaced by a 
JSP container. Both the servlet container and the JSP 
container often are referred to as the web container or 
servlet/JSP container, especially if a web application 
consists of both servlets and JSP pages. 



Web 

Server
DB

Servlets

Controllers

JavaBean

EJB

JSP

Model

View

Web/Application server

HttpRequest

HttpResponse

MVC Model



Web Application Structure

▪ Defined as a hierarchy of directories.

▪ The root of hierarchy is document root.

▪ The document root is a directory where the application 

context points.

▪ The Context element represents a web application, which is 

run within a particular virtual host. 

▪ Anything located in document root becomes a public 

document accessible through the web application.

▪ For example, if index.html was in the document root of the 

j2ee context, it could be accessible through /j2ee/index.html.

▪ The context path for an application determines the URL for 

that application.



▪ There are rules applied for matching URL’s to context 

paths, so you cant deploy two application with the same 

context.

▪ Otherwise, the web container would not be able to 

determine which application should actually receive the 

request.

▪ Usually web container will give error if you try to deploy an 

application that already has context defined or is a substring 

of an existing context.

▪ Since the document root is public you need some type of 

file protection, to restrict somebody to have access on your 

application’s class file or other sensitive data.

▪ Figure shows the directory structure hierarchy. 



Context 
Directory

Subdirs*
Static files

(*.html, *.png)
WEB-INF *.jsp files

classes lib web.xml

Compiled 
servlets

JavaBeans

*.html, *.png 

Or *.jsp files



Basic Servlet Structure
• To be a servlet, a class should extend HttpServlet and 

override doGet or doPost, depending on whether the data is 

being sent by GET or by POST. 

• If you want the same servlet to handle both GET and POST 

and to take the same action for each, you can simply have 

doGet call doPost, or vice versa.

• Both of these methods take two arguments: an 

HttpServletRequest and an HttpServletResponse. 





• The HttpServletRequest has methods by which you can find 

out about incoming information such as 

– form data, 

– HTTP  request headers, and 

– the client’s hostname. 

• The HttpServletResponse lets you specify outgoing 

information such as 

– HTTP status codes (200, 404, etc.), 

– response headers (Content-Type, Set-Cookie, etc.), and

– obtain a PrintWriter used to send the document content back to the 

client.



• Since doGet and doPost throw two exceptions, you are 

required to include them in the declaration. 

• Finally, you have to import classes in java.io (for PrintWriter, 

etc.), javax.servlet (for HttpServlet, etc.), and 

javax.servlet.http (for HttpServletRequest and HttpServlet-

Response).

• If your servlets generate HTML, set the HTTP Content-Type  

response header as response.setContentType("text/html");

before actually returning any of the content via the Print-

Writer.



Packaging Servlets
• To better manage servlets in production environment, 

servlets are placed inside a package. 

• Insert a package statement in the class file as 

• package coreservlets;



The Servlet Life Cycle
• When the servlet is first created, its init method is invoked, 

so that is where you put one-time setup code. 

• After this, each user request results in a thread that calls the 

service method of the previously created instance.

• The service method then calls doGet, doPost, or another 

doXxx method, depending on the type of HTTP request it 

received. 

• Finally, when the server decides to unload a servlet, it first 

calls the servlet’s destroy method.



• The init Method: The init method is called when the 

servlet is first created and is not called again for each 

user request.

• The servlet can be created when a user first invokes a URL 

corresponding to the servlet or when the server is first 

started,

• There are two versions of init: one that takes no arguments 

and one that takes a ServletConfig object as an argument.

public void init() throws ServletException {

// Initialization code...

}

public void init(ServletConfig config) throws ServletException {

super.init(config);

// Initialization code...

}



• The service Method:  Each time the server receives a 

request for a servlet, the server spawns a new thread and 

calls service. 

• The service method checks the HTTP request type (GET, 

POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, 

doDelete, etc., as appropriate.

• The destroy Method:  The server may decide to remove a 

previously loaded servlet instance, perhaps because it is 

explicitly asked to do so by the server administrator, or 

perhaps because the servlet is idle for a long time. Before it 

does, however, it calls the servlet’s destroy method. 

• This method gives your servlet a chance to close database 

connections, halt background threads, write cookie lists or 

hit counts to disk, and perform other such cleanup activities.





/WEB-INF/web.xml
• The web application deployment descriptor is the xml file 

describing the servlets, other components, and deployment 

information that make up the application.

▪ It describes the J2EE Web Application so that container 

knows how to manage application once it deployed.

▪ It is nothing more then a xml file which declaratively 

describes how to deploy various components that make up 

the web application.

▪ It allows you to change system settings without having to 

actually change the code.

▪ It is called as web.xml located at /WEB-INF directory of the 

web application. These are the type of information contained 

in the deployment descriptor.



▪ Servlet Context Initialization parameter

▪ Session Configuration

▪ Servlet Declaration

▪ Servlet Mapping

▪ Application lifecycle listener classs

▪ Filter definition and Filter mapping

▪ MIME type mapping

▪ Welcome file list

▪ Error Pages

▪ Security information

▪ Declaration of custom tag libraries

▪ Syntax for JNDI object.



Understanding Protocols
▪ Most standard web application uses browsers as their client.

▪ They use HTTP, HTTP Proxies, HTTPS (HTTP over SSL 

Secure Socket Layer).

▪ There are another protocols also which are supported by your 

J2EE application for different component.

▪ Some J2EE applications servers may provide support for 

tunneling, means one protocol is contained within another.

JRMP     RMI/IIOP HTTPS SOAP/HTTP

Web Container



▪ HTTP: HTTP is standard protocol used on the web.

▪ A client usually a web browser, sends a request to a web 

server.The web server receives the information and initiates 

specific processing on the server.

▪ There are eight different request methods: 

▪ GET

▪ POST 

▪ HEAD

▪ OPTIONS 

▪ PUT

▪ TRACE

▪ DELETE

▪ CONNECT

▪ From these eight only GET and POST are commonly used.



▪ GET Request Method :

▪ It is the most common request.

▪ It’s used to access resources such as documents, images or 

result sets.

▪ It is used to retrieve dynamic information.

▪ It can be retrieved by using query parameters that are 

encoded in the request URL.

▪ When passing parameters in a URL, the resulting string 

referred as query string.

▪ A request parameter is identified by using a ?, followed by a 

parameter name and its value.

▪ Parameters are separated by the & symbol.

▪ The sample URL can be:

http://www.apress.com/j2ee?student=Liz&level=high

http://www.apress.com/j2ee?student=Liz&level=high


▪ The web server pare this string and get necessary information 

to generate response.

▪ Most browsers have limits on charactes in GET request string.

▪ Which is about 240 characters.

▪ GET request uses URL and query string so allows to bookmark 

the address in browser and allows to cut-paste the URL and 

use.

▪ If your application is of kind that it can create damage or wrong 

o/p by using same URL again, so do not use GET request.

▪ For example, if you are updating a database or processing a 

credit card order.



▪ POST Request Method :

▪ We use POST requests for sending large amounts of data to 

the server.

▪ Using the POST request it allows your data to be passed to 

server as a part of the HTTP request body, regardless of 

how much data exist.

▪ A POST request doesn’t change URL at all.

▪ The client web browser does not display anything different to 

the user or present a query string.

▪ As a result, it can not be bookmarked or reloaded.

▪ If you are using POST request, the information you are 

dealing with is supposed to be sent to the server only once.

▪ A example of a POST request is uploading a file to a web 

server.



▪ GET and POST in HTML Form Processing:

▪ In HTML form processing, it became common practice to 
use POST for request URLs that got to be too long.

▪ The long URLs  could not be handled by the limitations on 
the GET request size.

▪ GET gives no protection against causing the change on a 
server.

▪ With METHOD=“GET”, the form data is encoded into a URL.

▪ This means that you can achieve a similar functionality of 
form submission by entering URL with appropriate 
parameters in the browser.

▪ The browser divides the URL into the parts and recognize 
the host and then it sends to that host an HTTP GET request 
with the rest of the URL as an argument. Then server will 
process it.



▪ When using a method =“POST”, the form data is encoded 

using multipart/form data, and there for it’s not visible in a 

location line of a browser.

▪ It causes an HTTP POST request to be sent with the data 

encoded accordingly.



▪ Other Request Methods:

▪ The other request methods are not used frequently. They 
are:

▪ HEAD:

▪ It is sent from the client when it want to see only the 
headers of a response.

▪ It can use to determine the size or a type of a document.

▪ Its used as a READ-ONLY request. No document body is 
returned.

▪ OPTIONS:

▪ You can use the OPTIONS request to find out which 
HTTP request methods the server supports.

▪ PUT:

▪ It can be used to store a resources on a server under a 
given URL that may not already exist.

▪ This differs from using POST in that when using POST, 
the target resource already exist.



▪ TRACE:

▪ It allows client to see what's being received at the other 

end of the request chain and use that data for testing or 

diagnostic information.

▪ DELETE:

▪ It is used for removing information corresponding to a 

given URL.

▪ After a successful DELETE method, the URL becomes 

invalid for any future requests.

▪ CONNECT:

▪ It is reserved for use with a proxy that can be dynamically 

switch to being a tunnel.



▪ Http Response:

▪ HTTP is request/response protocol.

▪ For each request there is a response.

▪ In each response there is a status code and other 

information contained in the response headers.

▪ Status codes are three digit numbers, where the first digit 

defines  the general classification of response.

▪ 1xx: Informational. Request received, continuing process

▪ 2xx: Success.

▪ 3xx: Redirection. Further action must be taken to 

complete the request.

▪ 4xx: Client Error. The request contained bad syntax or 

can’t be fulfilled.

▪ 5xx: Server Error. The server failed to fulfill the request.



Reading Form Data from Servlets

• Call the getParameter method of the Http-

ServletRequest, supplying the case-sensitive 

parameter name as an argument. 

• You use getParameter exactly the same way 

when the data is sent by GET as you do 

when it is sent by POST.

• An empty String is returned if the parameter 

exists but has no value, and null is returned if 

there was no such parameter.

• Parameter names are case sensitive







Reading All Parameters

• The servlet looks up all the parameter names by the 

getParameterNames method of HttpServletRequest. 

• This method returns an Enumeration that contains the parameter 

names in an unspecified order. 

• Next, the servlet loops down the Enumeration in the standard 

manner, using hasMoreElements to determine when to stop and 

using nextElement to get each entry. 

• Since nextElement returns an Object, the servlet casts the result to 

a String and passes that to getParameterValues, yielding an array 

of strings. 

• If that array is one entry long and contains only an empty string, 

then the parameter had no values and the servlet generates an 

italicized “No Value” entry. 

• If the array is more than one entry long, then the parameter had 

multiple values and the values are displayed in a bulleted list.



Enumeration paramNames = request.getParameterNames();

while(paramNames.hasMoreElements()) {

String paramName = (String)paramNames.nextElement();

out.print("<TR><TD>" + paramName + "\n<TD>");

String[] paramValues = 

request.getParameterValues(paramName);

}



Handling the Client Request:

HTTP Request Headers
• Methods of these interface help to know about a request.

• The getHeader method of HttpServletRequest, returns a 

String if the specified header was supplied on this request, 

null otherwise. 

• Header names are not case sensitive.

• Request header methods:

• getCookies

– The getCookies method returns the contents of the 

Cookie header, parsed and stored in an array of Cookie 

objects. This method is discussed more in next chapters.

• getAuthType and getRemoteUser

– The getAuthType and getRemoteUser methods break 

the Authorization header into its component pieces. 



• getContentLength

– The getContentLength method returns the value of the 

Content-Length header (as an int).

• getContentType

– The getContentType method returns the value of the Content-

Type header (as a String).

• getDateHeader and getIntHeader

– The getDateHeader and getIntHeader methods read the 

specified header and then convert them to Date and int values, 

respectively.

• getHeaderNames

– Rather than looking up one particular header, you can use the 

getHeaderNames method to get an Enumeration of all header 

names received on this particular request.



• getMethod

– The getMethod method returns the main request method 

(normally GET or POST, but things like HEAD, PUT, and 

DELETE are possible).

• getRequestURI

– The getRequestURI method returns the part of the URL that 

comes after the host and port but before the form data.

• getProtocol

– Lastly, the getProtocol method returns the third part of the 

request line, which is generally HTTP/1.0 or HTTP/1.1.



ShowRequestHeaders.java

Out.println(“<B>Request Method: </B>" + request.getMethod() ); 

Out.println(“"<B>Request URI: </B>" +request.getRequestURI();

Out.println(“ "<B>Request Protocol: </B>" + request.getProtocol());

Enumeration headerNames = request.getHeaderNames();

while(headerNames.hasMoreElements()) {

String headerName = (String)headerNames.nextElement();

out.println( headerName);

out.println(request.getHeader(headerName));

}



Server Response: HTTP Status 

Codes
• When a Web server responds to a request from a browser 

or other Web client, the response typically consists of a 

status line, some response headers, a blank line, and the 

document. Here is a minimal example: HTTP/1.1 200 OK 

Content-Type: text/plain 

Hello World

• The status line consists of 

– the HTTP version (HTTP/1.1 in the example above), 

– a status code (an integer; 200 in the above example), and 

– a very short message corresponding to the status code (OK in 

the example). 



• Servlets can perform a variety of important tasks by 

manipulating the status line and the response headers. 

• For example, they can forward the user to other sites; 

indicate that the attached document is an image, Adobe 

Acrobat file, or HTML file; tell the user that a password is 

required to access the document; and so forth.

• Since the message is directly associated with the status 

code and the HTTP version is determined by the server, all 

a servlet needs to do is to set the status code. 

• The way to do this is by the setStatus method of 

HttpServletResponse. 



• If your response includes a special status code and a document, 

be sure to call setStatus before actually returning any of the 

content via the PrintWriter. 

• That’s because an HTTP response consists of the status line, one 

or more headers, a blank line, and the actual document, in that 

order. 

• The setStatus method takes an int (the status code) as an 

argument, but instead of using explicit numbers, it is clearer and 

more reliable to use the constants defined in 

HttpServletResponse. 

• The name of each constant is derived from the standard HTTP 

1.1 message for each constant, all uppercase with a prefix of SC 

(for Status Code) and spaces changed to underscores. Thus, 

since the message for 404 is “Not Found,” the equivalent constant 

in HttpServletResponse is SC_NOT_FOUND. 



• There are two common cases where a shortcut 

method in HttpServletResponse is provided.

• public void sendError(int code, String message) 

– The sendError method sends a status code (usually 404) 

along with a short message that is automatically 

formatted inside an HTML document and sent to the 

client. 

• public void sendRedirect(String url) 

– The sendRedirect method generates a 302 response 

along with a Location header giving the URL of the new 

document



Status Codes

• 100-199 Codes in the 100s are informational, indicating that 

the client should respond with some other action. 

• 200-299 Values in the 200s signify that the request was 

successful. 

• 300-399 Values in the 300s are used for files that have 

moved and usually include a Location header indicating the 

new address. 

• 400-499 Values in the 400s indicate an error by the client. 

• 500-599 Codes in the 500s signify an error by the server. 



Response Headers

• A response from a Web server normally consists of a status 

line, one or more response headers, a blank line, and the 

document. 

• To get the most out of your servlets, you need to know how 

to use the status line and response headers effectively, not 

just how to generate the document. 

• Setting the HTTP response headers often goes hand in 

hand with setting the status codes in the status line. 

• For example, all the “document moved” status codes (300 

through 307) have an accompanying Location header, and a 

401 (Unauthorized) code always includes an accompanying 

WWW-Authenticate header.



• Response headers can be used to 

– specify cookies, 

– to supply the page modification date (for client-side 

caching), 

– to instruct the browser to reload the page after a 

designated interval, 

– to give the file size so that persistent HTTP connections 

can be used, 

– to designate the type of document being generated, and 

to perform many other tasks



Setting Response Headers from 

Servlets
• The most general way to specify headers is to use the 

setHeader method of HttpServletResponse. 

• This method takes two strings: 

– the header name and 

– the header value. 

• As with setting status codes, you must specify headers 

before returning the actual document. 

• HttpServletResponse also has two specialized methods to 

set headers that contain dates and integers:



• setDateHeader(String header, long milliseconds) This method 
saves you the trouble of translating a Java date in milliseconds 
since 1970 (as returned by System.currentTimeMillis, 
Date.getTime, or Calendar.getTimeInMillis) into a GMT time 
string.

• setIntHeader(String header, int headerValue) This method spares 
you the minor inconvenience of converting an int to a String 
before inserting it into a header.

• With servlets version 2.1, setHeader, setDateHeader and 
setIntHeader always add new headers, so there is no way to 
“unset” headers that were set earlier

• With servlets version 2.2, setHeader, setDateHeader, and 
setIntHeader replace any existing headers of the same name, 
whereas addHeader, addDateHeader, and addIntHeader add a 
header regardless of whether a header of that name already 
exists. 



• HttpServletResponse also supplies a number of 

convenience methods for specifying common 

headers. These methods are summarized as 

follows.

• setContentType 

– This method sets the Content-Type header and is used 

by the majority of servlets

• setContentLength 

– This method sets the Content-Length header, which is 

useful if the browser supports persistent (keep-alive) 

HTTP connections



• addCookie 

– This method inserts a cookie into the Set-

Cookie header. There is no corresponding 

setCookie method, since it is normal to have 

multiple Set-Cookie lines. 

• sendRedirect 

– the sendRedirect method sets the Location 

header as well as setting the status code to 

302. 



Content-Type
• The Content-Type header gives the MIME (Multipurpose 

Internet Mail Extension) type of the response document. 

• Setting this header is so common that there is a special 

method in HttpServletResponse for it: setContentType. 

• MIME types are of the form maintype/subtype for officially 

registered types, and of the form maintype/x-subtype for 

unregistered types. 

• The default MIME type for servlets is text/plain, but servlets 

usually explicitly specify text/html.

• Common MIME Types:

Common MIME Types.docx


Cookies Handling

• Cookies are text files stored on the client computer and they 

are kept for various information tracking purpose. Java 

Servlets transparently supports HTTP cookies.

• There are three steps involved in identifying returning users:

– Server script sends a set of cookies to the browser. For 

example name, age, or identification number etc.

– Browser stores this information on local machine for 

future use.

– When next time browser sends any request to web server 

then it sends those cookies information to the server and 

server uses that information to identify the user.



• Cookies are usually set in an HTTP header

• Servlet Cookies Methods:

• public void setMaxAge(int expiry)

– This method sets how much time (in seconds) should elapse before 

the cookie expires. If you don't set this, the cookie will last only for 

the current session.

• public int getMaxAge()

– This method returns the maximum age of the cookie, specified in 

seconds, By default, -1 indicating the cookie will persist until browser 

shutdown.

• public String getName()

– This method returns the name of the cookie. The name cannot be 

changed after creation.



• public void setValue(String newValue)

– This method sets the value associated with the cookie.

• public String getValue()

– This method gets the value associated with the cookie.

• public void setComment(String purpose)

– This method specifies a comment that describes a cookie's purpose. 

The comment is useful if the browser presents the cookie to the user.

• public String getComment()

– This method returns the comment describing the purpose of this 

cookie, or null if the cookie has no comment.



• Setting Cookies with Servlet:

(1) Creating a Cookie object: You call the Cookie constructor 

with a cookie name and a cookie value, both of which are 

strings.

• Cookie cookie = new Cookie("key","value");

• Keep in mind, neither the name nor the value should contain 

white space or any of the following characters:

• [ ] ( ) = , " / ? @ : ;



(2) Setting the maximum age: You use setMaxAge to specify 

how long (in seconds) the cookie should be valid. Following 

would set up a cookie for 24 hours.

• cookie.setMaxAge(60*60*24); 

• (3) Sending the Cookie into the HTTP response 

headers: You useresponse.addCookie to add cookies in 

the HTTP response header as follows:

• response.addCookie(cookie);








