
Object Oriented Concept
and Programming
Unit -4
-Madhavi Dave

Runtime Polymorphism by
Virtual Functions

Introduction
•Polymorphism : It is one of the crucial features of

OOP. It simply means ‘one name, multiple forms’.
•The overloaded member functions are selected for

invoking by matching the arguments, both type
and number.

•The information is known to the compiler at
compile time.

•This is called early binding or static binding or
static linking and polymorphism.

•When two functions with the same name are
used in two different classes, they can be
defined using class resolution operator.

•Here the function is not overloaded and so
static binding does not apply.

•If we want a member function could be
selected while the program is running , then
we have to use virtual function.

•This is known as run time polymorphism.

• // Virtual Functions and // Run-time Polymorphism
•#include <iostream.h>

▫ // base class
 class base
 { public: int a; };

▫ // derived class
class derived:public base
 { public: int b; };

▫ // main
 void main()
 { base b; derived d;

▫ // base class pointer
base *bptr;

 // pointer pointing to base's object
bptr=&b;
bptr->a=10;

// pointer pointing to derived's object
 bptr=&d; // still is able to access the members of the base class
 bptr->a=100; }

• // Using Virtual functions to achieve run-time Polymorphism
•#include <iostream.h>
// base class
class base
 {

 public:
 virtual void func()
 { cout<<"Base's func()\n"; }

 };
// derived class
class derived:public base
{

public:
 void func()
{

 cout<<"Derived's func()\n"; }
};

• // main
 void main()
 {

int ch=0;
base b;

 derived d;
 // base class pointer
 base *bptr;
 while(ch!=3)
 {
 cout<<"1> Call Base's func\n";
 cout<<"2> Call Derived's func\n";
 cout<<"3> Quit\n"; cin>>ch;
 switch(ch)
 {
 case 1: // point to base's object
 bptr=&b; break;
 case 2: // point tp derived's object
 bptr=&d; break;
 default: bptr=&b;
 } // call whichever function // user has chosen to call
bptr->func(); } }

Pointers
•To achieve the dynamic binding, it is required to

use the pointer to objects and virtual functions.
•Pointer is a derived data type that refers to

another data variable by storing the variable’s
memory address rather than the data.

•Like C, a pointer variable can also be used to refer
another pointer in c++.

•Pointers provide an alternative approach to access
other data objects.

Pointer to Object
•Normal Objects cannot help in achieving runtime

polymorphism. It is possible to achieve it only by
setting or defining pointer to objects,

•Pointer to object is a variable containing an
address of an object.

•It is similar to a pointer to any other variable. We
can use normal address-of operator to get the
address of an object.

•We can define a pointer to an object and can
assign it the address of an object.

Declaring Pointers
•The declaration of a pointer is based on the data

type of the variables it points to.
•Syntax : - datat-type *pointerVariable;
•A pointer is able to point to only one data type at

a specific time.
•Eg :- int *ptr; // declare

ptr = &a; // initialize

Class Demo{ ----}
Demo objDemo;
Demo *ptrObjDemo;
ptrObjDemo = &objDemo;

this pointer
•The this pointer is a pointer that represent an

object that invokes a member function.
•This is a pointer that points to an object for which

this function was called.
•This pointer is automatically passed to a member

function when it is called.
•This pointer acts as an implicit argument to all the

member functions.
•Eg:objDemo.Display() function call, the value of

this pointer contains the address of objDemo.
•this pointer is poiner to objDemo.

Virtual Functions
•Virtual functions are special.
•Using virtual functions we are able to point to any

object of a derived class using a base pointer and
can manipulate that object.

•The class has an additional storage requirement
when at least one virtual function is defined.

•A table is created additionally to store pointers to
all virtual functions available to all objects of
class.

•This is known to a virtual table.
•Syntax Constraints on Virtual functions:
•1) Function should precede virtual keyword in the

base class
•.

2)The function name in derived class must have
same name as of virtual function defined in base
class and same prototype

3) The function in derived class need not to be
preceded by virtual keyword.

4) If function is not defined with same name then
base class function will be called.

5) The virtual function must be defined in the base
class, it may have an empty body though.

6) Polymorphism is achieved (executing the
function of the object which is pointed to) only
using pointers to the base class. It is not possible
using objects.

7) Virtual Constructors are not possible.

 Virtual Destructors
•Virtual destructors are needed for proper deletion

of objects of derived class, when pointed to by a
base class pointer.

•If do not define virtual destructors, only the base
class subobject is deleted, and the remaining
portion of the derived class object is not deleted.

•We know destructor name cannot be same in
base and derived class as it should same as class
name.

•A class can have only one destructor and the
derived class destructor is the function called
when delete is invoked with a base class pointer.

Pure Virtual Functions
•When a class does not have any object, there is no

need to have functions for it as there is no object
to utilize those functions.

•When we write “=0” in place of the function body
after function header, the function is said to be
pure virtual function.

•In this function need not have any body.
•So instead of defining the function with any empty

body, if we define it as pure virtual function, the
function forces the base class to be abstract and it
has to be derived.

•And abstract classes do not have object.

Static Invocation of virtual
Functions
•Virtual functions can also be invoked

statically.
•When we use a class name :: ptr-> virtual

function mechanism, they are called
statically.

Pointers expressions and Arithmetic
•C++ allows pointers to perform the following

arithmetic operations:
▫A pointer can be incremented (++) or

decremented (--).
▫Any integer can be added to or subtracted from

a pointer
▫One pointer can be subtracted from another.

Eg: int a[10];
int *aptr;
aptr = &a[0];

We cn do aptr++ or aptr– to increment or
decrement a pointer and it moves to the next
memory address.

Pointers with Arrays and
Strings
•Accessing an array with pointers is simpler than

accessing the array index.
•Arrays refer to a block of memory space, but

pointers do not refer to any section of memory.
•The memory addresses of arrays cannot be

changed, whereas the content of the pointer
variables, such as the memory addresses that it
refer to can be changed.

•Eg :- Pointer to array

int *nptr;
nptr = number[0];

Nptr points to the 1st element of an array.

Array of pointers
•An array of pointers represent the

collection of addresses.
•An array of pointers point to an array of

data items.
•Each element of the pointer array points

to an item of the data array.
•Data items can be accessed either

directly or by dereferencing the elements
of pointer array

Pointers to Functions
•The pointer to function is known as callback

function. We can use these function pointers to
refer to a function.

•Using function pointers, we can allow a c++
program to select a function dynamically at run
time.

•We can also pass a function as an argument to
another function (as pointer).

•There are two types of function pointers, function
that points to static member functions and
function pointers that point to non-static member
functions

•For non-static member function requires hidden
argument.

Managing Console i/o
operations and Working
with files

Introduction
•C++ has rich set of I/o functions and

operations to format the o/p and print in
the desired form.

•C++ uses the concept of stream and
stream classes to implement its I/O
operations with console and files.

C++ Streams
•A stream is a sequence of bytes. It acts as a

interface.
•It acts as a source from which the input data can

be obtained or as a destination to which the
output can be sent.

•The source stream that provides data to the
program is called the input stream and the
destination stream that receives output from
program is called output stream. I/P

devic
e

O/P
device

Program

I/p Stream

O/P Stream

Extraction from
input stream

Insertion into
Output stream

C++ Stream Classes
•The c++ I/O system contains a hierarchy of classes that are

used to define various streams to deal with console and files.
•These classes are called stream classes.

ios

istream streambuf ostream

iostream

Istream_withassig
n

Iostream_withassi
gn

Ostream_withassig
n

Put() and get() functions
•Get() and put() are the member functions of

istream and ostream to handle the single character
input/output operations.

•Two types of get() functions are get(char *) and
get(void).

•They both can be used to fetch a character
including the blank space, tab and the newline
character.

•The get(char *) version assigns the input character
to its argument and the get(void) version returns
the input character. Eg:

Char ch;
Cin.get(ch); // get character from keyboard and assign to ch
While (ch != ‘\n’)
{
Cout << ch; // display character on screen and get
another ch
Cin.get(ch);
 }

•The get(void) version returns the input character.
•Eg

▫Char ch;
▫Ch = cin.get() // value assigned to ch.

The function put() is a member of ostream class
and can be used to output a line of text,
character by character.

Eg:

cout.put(‘c’); //displays c
cout.put (c); // display value in c.

Getline() and write() functions
•The getline() function reads a whole line of text

that ends with a newline character.
•This function can be invoked by using the object

cin as follows:
•Cin.getline(line,size);
•This function reads character input into the

variable line.
•The reading is terminated as soon as the newline

character ‘\n’ is encountered or size-1 characters
are read. The newline character is replaced by
null.

•Eg:
▫Char name[20];
▫Cin.getline(name,20);
▫Cin >> name can read strings that don’t have white

spaces.

•The write() function displays an entire line and
has the following form.

•Cout.write(line,size)

•The first argument line is the name of the string
to be displayed and the second indicates the size
(no of characters to display).

•But it does not stop displaying the characters
automatically when the null character is
encountered.

•If the size is greater than the length of line, then
it displays beyond the bounds of line.

Formatted console I/O
operations•C++ supports a number of features that could be used for

formatting the output.
•Ios class functions and flags.
•Manipulators.
•User-defined output functions

Functio
n

Task

Width() To specify the required field size for displaying and output
value

Precisio
n()

To specify the no of digits to be displayed after decimal
point

Fill() To specify a character that is used to fill the unused
portion of a field

Setf() To specify format flags that can control the form of o/p
display like left or right justification

Unsetf() To clear the flags specified.

•Manipulators : They are special functions that can
be included in the I/O statements to alter the
format parameters of a stream.

•File iomap should be included to acces the
manipulators.

Manipulators Ios Function
Setw() Width()

Setprecision Precision()

Setfill() Fill()

Setiosflags() Setf()

Resetiosflags() Unsetf()

Files
•A file is a collection of related data stored in a

particular area on the disk.
•Programs can be designed to perform the read and

write operations on these files.
•Program can involve

▫Data transfer between the console unit and the
program.

▫Data transfer between the program and disk file.

•File streams is used as an interface between the
programs and the files.

•The stream that supplies data to the program is
known as input stream and the one that receives
data from the program is known as output stream.

•Inputs stream extracts data from file and output
stream inserts data to the file.

Disk files Program

I/p Stream

O/P Stream

Data input

Data output

Write data

Read data

Classes for File Stream
operations
•The set of classes that define the file handling

methods are ifstream, ofstream and fstream.

•These classes are derived from fstreambase and
from the corresponding iostream class.

•These classes, designed to manage the disk files,
are declared in fstream and therefore we must
include this file in any program that uses files.

Opening and closing files
•Before using any file we need to decide the

following things :

▫Proper name for the file.
▫Data type and structure.
▫Purpose.
▫Opening method.

A file can be opened in two ways :
1) Using the constructor function of the class.
2) Using the member function open() of the class.

Using Constructor
•Using constructor involves the following

steps:
1) Create a file stream object to manage the

stream using the appropriate class.
i.e Class ofstream is used to create the output
stream and class ifstream is used to create the
input stream.

2) Initialize the file object with the desired
filename.

Eg: ofstream outputFile(“test”);

This statement opens the file test and attaches
it to the output stream outputFile.

•Similarly to open for reading

▫Eg: ifstream inputFile(“data”)

•This statement declares inputFile as an ifstream
object and attaches it to the file data for reading
input.

•We can also use the same file for both output and
input or for reading and writing data.

•The connection with a file is automatically closed
when stream object expires or use
filenameObject.close().

Ofstream outputfile (“data”);
Ifstream inputfile(“data”);

• // program to write into file.

#include <iostream>
#include <fstream>

int main ()
{
 ofstream myfile;

myfile.open ("example.txt");
myfile << "Writing this to a file.\n";
myfile.close();
return 0;

}

#include <iostream>
 #include <fstream>
int main ()
{
 ofstream myfile ("example.txt");
If (myfile.is_open())

 {
 myfile << "This is a line.\n";
 myfile << "This is another line.\n";
myfile.close();

 }
else cout << "Unable to open file";
 return 0;

 }

•Detection of end of file is necessary for
preventing any attempt to read data from the file.

•If we use while(fin), an ifstream object returns a
value 0 if any error occurs in the file operation
including the end-of-file condition. And the while
loop terminates when fin returns value 0.

•Eof() is a member function of ios class which can
also be used to detect the end of file condition.

•It returns a non-zero value if the end-of-file
condition is encountered, and 0 otherwise.

•Eg:
 if(fin.eof() !=0)
{

Exit(1);
}

File Modes
Parameter Meaning
ios::app Append
ios::ate Go to end of file for opening
ios::binary Binary file
ios::in Open file for reading only
ios::nocreate Open fails if file does not exist
ios::noreplace Open file if file already exist
ios::out Open file for writing only
ios::trunc Delete contents if file exists

Manipulation of File pointer

Standard Template Library

Introduction
•Standard Template library is a collection of generic software

components(containers) and generic algorithms and objects
called iterators.

•STL has large number of non-member functions designed to
work on multiple classes of container types.

•There are three main components of STL.

1) Containers
2) Algorithms
3) Iterators.

These three components work in conjunction with one another
to give the support to a different variety of programming
solutions.

Algorithm employ iterators to perform operations stored in
containers.

Containers
•Containers is an object that actually stores the data of same type.
•It is a way data is organized in memory. The STL containers are

implemented by template classes and so they can be easily
customized to hold different types of data.

•The STL , defines ten containers which are grouped into three
categories

•1) Sequence containers
▫vector
▫deque
▫list

•2) Associative containers
▫set
▫multiset
▫map
▫multimap

•3) Derived containers
▫stack
▫Queue
▫Priority_queue

Advantages of containers
1) Small in number : The software components are few in

number and so are easy to master, they are extremely useful
in solving problems.

2) Generality : They are general in nature, it is possible to use
them at various places without much trouble.

3) Efficient, Tested, Debugged and Standardized: The program
written using STL components are easier to program and also
easier to read.

4) Portability and Reusability : Program that uses STL becomes
more portable because the vectors, queues are available.

Algorithms
•An algorithm is a procedure that is used to process the data

contained in the containers. The STL includes many different
kinds of algorithms to provide support to tasks such as
initializing, searching, copying, sorting and merging.

•Algorithms are implemented using template functions.
•Algorithms are functions that can be used generally across a

variety of containers for processing their contents.
•STL provides more than sixty standard algorithms to support

more complex operations.
•STL Algorithms, based on the nature of operations they

perform, may be categorized as under:
•Retrieve or non-mutating algorithms
•Mutating algorithms
•Sorting algorithms
•Set algorithms
•Relational algorithms vc

Advantages of Algorithms
•Programmers are free from writing routines like

sort(), merge(), binary_search() and so on with
different variations in each.

•The algorithms use the best mechanisms to be as
efficient as possible , and designing which may not
be possible for most programmers.

•Generic algorithms are standardized and have
more acceptability.

Iterators
•An iterator is an object like a pointer that points to an element

in a container. We can use iterators to move through the
contents of containers.

•They are often used to traverse from one element to another.
•Iterators are handled just like pointers, as we can increment

and decrement them.
•Iterators connect algorithms with containers and play a key

role in the manipulation of data stored in containers.
•There are five types of iterators :
•1) Input : Only for traverse in container
•2) Output : Only for traverse in container
•3)Forward : it supports all operations of i/o & also retains

position
•4) Bidirectional : it has ability to move backward in container/
•5) Random : it combines the functionality of bidirectional and

jump to any location.
•Different types of iterators must be used with different types of

containers.

