
Object Oriented Concept and 
Programming
Unit -3

-Madhavi Dave



Operator Overloading



Introduction
•Operator Overloading is used to customize the 

behavior of the operator.
•It provides the flexibility to give new meaning  

and definitions to the existing operators.
•When the operator is overloaded, its original 

meaning is not lost.
•The rules for the operators do not change.
•Syntax : declaration in class

Return_type  operatorop(arglist)
Definition:

Return_type class_name :: operator 
op(Arglist)

{
Function body

  }



class OverloadingExample 
{
    private:

     int m_LocalInt;
 public:

OverloadingExample(int j) // default constructor
{
    m_LocalInt = j;
}
int operator+ (int j) // overloaded + operator
{
    return (m_LocalInt + j);
}

};



void main()
{
  OverloadingExample object1(10);

cout << object1 + 10; // overloaded operator called 
}

•Steps :
•Create a class that defines the data type that is 

to be used in the overloading operation.
•Declare the operator function operator op() in the 

public part of the class.
•Define the operator function to implement the 

required operations.



Types of Operators

•Unary Operator : - Operators attached to 
a single operand (-a, +a, --a, a--, ++a, a++) 
are unary operators.

•Binary Operator : - Operators attached to 
two operands (a-b, a+b, a*b, a/b, a%b, a>b, 
a>=b, a<b, a<=b, a==b) are called binary 
operators



•Unary operator Eg:-
class UnaryExample
{
    private:

     int m_LocalInt;
 public:
     UnaryExample(int j)

{
    m_LocalInt = j;
}
int operator++ () 
{
    return (m_LocalInt++);
}

};



void main()
{
    UnaryExample object1(10);

 cout << object1++; // overloaded operator results in value 
// 11

}



•Binary Operator Eg:-
class BinaryExample 
{
    private:

     int m_LocalInt;
 public:
     BinaryExample(int j) 

{
    m_LocalInt = j;

 }
int operator+ (BinaryExample& rhsObj)
{
    return (m_LocalInt + rhsObj.m_LocalInt);
}

};



void main()
{
    BinaryExample object1(10), object2(20);

 cout << object1 + object2; // overloaded operator called  
}



•Operators that cannot be overloaded 
are :-

• The dot operator for member access
• The dereference member to class 

operator .*
• Scope resolution operator ::
• Size of operator sizeof
• Conditional ternary operator ?: 
• Casting operators static_cast<>, 

dynamic_cast<>, reinterpret_cast<>, 
const_cast<>



• Assignment Operator =
• Function call operator ()
• Array Subscript operator []
• Access to class member using pointer to 

object operator ->

Operators which can not be overloaded as friends



Operator Functions As Class Members Vs. As 
Friend Functions

•Operator functions must be either member function (non-
static) or friend function.

•Friend Function will have only one argument for unary 
operators and two for binary operators.

•Member function has no arguments for unary operators and 
only one for binary operators

•Because the object  used to invoke member function is passed 
implicitly and therefore is available  for member function. 

•This is not the case with friend function.
•Eg:-

•int operator ==(vector)
•Friend int operator==(vector,vector)



•In case of member function, to invoke the 
function, Left hand operand should be object of 
same class and it is responsible for invoking this 
member function.

•A = B + 2 // valid
•A = 2 + B  // not valid



Rules for Overloading Operators
•Only existing operators can be overloaded. New 

operators  cannot be created.
•The overloaded operator must have at least one 

operand that is of user-defined type.
•We cannot change the basic meaning of an 

operator. That  is to say, we cannot redefine the 
plus (+) operator to subtract one value from other.

•Overloaded operators follow the syntax rules of the 
original  operators. They cannot be overridden.

•There are some operators that cannot be 
overloaded.

•We cannot use friend functions to overload certain 
operators (=,(),[],->)  but we can use member 
function to overload them.



•Unary operators, overloaded by means of a 
member function, take no explicit arguments and 
return no explicit values, but, those overloaded by 
means of a friend function, take on reference 
argument i.e the object of that class.

•Binary operators overloaded using member 
functions take one explicit argument and two 
arguments when friend function is used.

•When using binary operators overloaded through a 
member function, the left hand operator must be 
an object of the relevant class.

•Binary arithmetic operators such as +,-,* and / 
must explicitly return a value.



• Overloading () operator
• #include<iostream.h>
• Class Point
• {

Int x;
Int y;

Public:
void operator ()(int tempX, int tempY)
 {

x = tempX; y = tempY;
}

};
Void main()
{

Point P1, P2;

p1(2,3);
p2(4,5);

cout<<p1;  // overloaded <<
cout<<p2

}



Type conversion
•Generally c and c++ does the automatic type 

conversion based on the requirement.
•Compiler converts the type from it doesn't fit to the 

type it wants.
•Three types of situations might arise in the data 

conversion between incompatibility types.

1) Conversion from basic type to class type ( built 
in to object).
2) Conversion from class type to basic type (object 
to built in).
3) Conversion from one class type to another class 
type (object to object).



Conversion from basic type to class type ( 
built in to object).

•This conversion is done using constructors.
•Eg. Complex C1(5,6) takes two arguments 

of built in data type and converts to a 
Complex object.

•Whenever we use constructors, we convert 
the argument types from built in to native 
object type for the constructor.



Conversion from class type to basic type 
(object to built in).
•To convert the class type to basic type or any object to built in 

type , u need to write  a conversion function.
•If the conversion function is written then we will be able to 

assign the object to data type.
•  eg. int  a = obj1
•Sytax for conversion function
•Operator dataType()
•{

Return <Variable>
•}
•Here the return type in header is not specified. It is same data 

type which is written after the operator keyword.
•The argument list must be empty



Wrapper Class

•A class which makes a C-like struct or a built in 
type data represented as a class.

•For eg. An Integer wrapper class represents a data 
type int as a class.

•Example :



•Class Integer
•{

private: int value;
public: friend ostream & operator << (ostream &, Integer &);

friend ostream & operator >>(istream &, integer &);
Integer(int TempVal=0)
{ value = TempVal; }
operator int()
{ return value; }

};
// << and >> overloading definitions
Void main()
{

Integer INT1 = 5;  // constructor applied.
Integer INT2;

int int1;
int int2 = 7;

INT2 = int2; // constructor applied.
int1   = INT1 // operator is applied here.
cout<< “Integer value  “ << INT1 << int value is << int1;

}



Inheritance



Introduction
•The mechanism of deriving a new class from a old 

class is called Inheritance. 
•The old class is referred to as the base class and 

the new one is called the derived class or subclass.
•There are different types of inheritance.

•Single Inheritance
•Multiple Inheritance
•Hierarchical Inheritance
•Multilevel Inheritance
•Hybrid Inheritance



•Syntax:
class DerivedClassName : access-level 
BaseClassName
where 
▫access-level specifies the type of derivation

private by default, or
public

•Any class can serve as a base class
▫Thus a derived class can also be a base class



What a derived class doesn't 
inherit
•The base class's constructors and destructor
•The base class's assignment operator 
•The base class's friends
•Cannot directly access private members of its base 

class



What a derived class can add
•New data members
•New member functions (also overwrite existing 

ones)
•New constructors and destructor
•New friends



Public Inheritance
• class A : public B
• { // Class A now inherits the members of Class B
• // with no change in the “access specifier” for
• } // the inherited members

public base class (B)
public members
protected 
members
private members

derived class (A)
public
protected
inherited but not 
accessible



Protected Inheritance
class A : protected B
{ // Class A now inherits the members of Class B

// with public members “promoted” to protected
} // but no other changes to the inherited members

protected base class (B)
public members
protected members
private members

derived class (A)
protected
protected
inherited but not 
accessible



Private Inheritance
class A : private B
{ // Class A now inherits the members of Class B

// with public and protected members
} // “promoted” to private

private base class (B)
public members
protected members
private members

derived class (A)
private
private
inherited but not 
accessible



class Shape
 {

public:
int GetColor ( ) ;

protected: // so derived classes can access it
int color;

};
class Two_D : public Shape
{

// put members specific to 2D shapes here
};
class Three_D : public Shape
{

// put members specific to 3D shapes here
};



class Square : public Two_D
{

public:
float getArea ( ) ;

protected:
float edge_length;

} ;
class Cube : public Three_D
{

public:
float getVolume ( ) ;

protected:
float edge_length;

} ;



int main ( ) 
{

Square mySquare;
Cube myCube;

mySquare.getColor ( );  // Square inherits getColor()
mySquare.getArea ( );
myCube.getColor ( );  // Cube inherits getColor()
myCube.getVolume ( );

}





Access Control

Public members of the class
Private members of the class
Protected members of the class

All 
members 
functions 

of the 
derived 

class

All objects 
of the class 
as well as 

the derived 
class

All member 
functions of 

the class 
and friends

Accessible 
Entities



Virtual Base Classes
- Consider a child class that has two direct base 

classes called ‘parent1’ and ‘parent2’ which 
themselves have a common base class 
‘grandparent’

- The ‘child’  inherits the features of grandparent 
through two separate paths and it can also inherit 
directly.

- Therefore all the members of the grandparent are 
inherited into ‘child’ twice through ‘parent1’ and 
‘parent2’.

- The duplication of inherited members due to these 
multiple paths can be avoided by making a 
common base class as Virtual Base class while 
declaring the direct or intermediate base classes.



•Eg.
Class A 
{
};
Class B1 : virtual public A
{
};
Class B2 : public virtual A
{
};
Class C : public B1, public B2
{
};



•When a class is made virtual base class, c++   
takes necessary care to see that only one copy of 
that class is inherited, regardless of how many 
inheritances paths exist between the virtual base 
class and a derived class.

•The virtual keyword means that method, property 
or function can be overridden.

•A virtual function or virtual method is a function 
or method whose behavior can be overridden 
within an inheriting class by a function with the 
same signature.



•Difference between Overloading and Overriding.

•overloading is the definition of several functions 
with the same name but different arguments 
and/or a different number of arguments.

•overriding is writing a different body (in a derived 
class) for a function defined in a base class.



Abstract Classes
•An Abstract class is one that is not used to create 

objects. 
•An abstract  class is designed only to act as a 

base class to be inherited by other classes.
•It  is a design concept in program development  

and provides a base upon which other classes 
may be built.

•A class that contains at least one pure virtual 
function is considered an abstract class. Classes 
derived from the abstract class must implement 
the pure virtual function or they, too, are abstract 
classes.



// deriv_AbstractClasses.cpp // compile with: /LD
 class Account 
{
 public:

 Account( double d ); // Constructor. 
Virtual double GetBalance(); // Obtain balance. 
Virtual void PrintBalance() = 0; // Pure virtual 
function

private: 
double _balance;

 }; 



Applications of Constructors and Destructors 
In inheritance
- If we inherit multiple class in a derive class, eg
Class1:public class2, public class3..public classN, then the 

constructor for class2 is called first till classN and then the 
body of class1 will be executed.

- The call to base class constructors is to be defined outside 
the body of the constructor in the MIL.

-The list which appears after is sometimes reffered as 
inheritance list.

-Thus the base class constructor are to be initialized using 
theMIL. They cannot be called in the body of the derived 
class. 

-The arguments to the derived constructor will have all the 
arguments needed for all base classes plus few for itself. 

- The destructor of the base classes are called exactly in 
reverse order of their initialization when the derived object 
is destroyed.



Exception Handling in Inheritance

• If we have thrown an object of a derived class, it 
can be caught by a handler providing base class.

•If we want to provide a handler for derived class 
objects as a different handler, then it must appear 
before the handler for a base class. Otherwise that 
catch block will never be executed.


