
Object Oriented Concept and
Programming
Unit -2
-Madhavi Dave

Classes and objects

introduction
•The most important feature if c++ is class.
•A class is an idea of structure used in c.
•I t i s a n ew wa y t o c r e a t i n g a n d
implementing user-defined data type.

C structures revisited
•Example is:
struct student

 {
int Roll_no;
int marks;

 };
•Create structure variable:

Struct student s1;

Limitation of C structure
•U can not perform all operation directly on
structure variables.

•Like
struct student s1, s2, s3;
then

S3=s1+s2 is not allowed
•They do not permit data hiding . Structure
members are public and directly accessed by the
structure variable.

•In c++ class is there to overcome these limitations.

Specifying Class
•A class is a way to bind data and its
associated function together.

•Class specification has two parts:

▫Class declaration
▫Class function definition

Class declaration
•General format of class declaration is:
class class_name
{

private:
variable declaration;
function declaration;

protected:
 variable declaration;
function declaration;

public:
 variable declaration;
function declaration;

}
The member of class declare as private, protected or public.
By default it is private. They are called access specifies.

Cont..
•Example:

class student
{

int Roll_no;
int marks;

 public:
void setdata();
void display();

 };

Creating objects
•Syntax is:

class_name object_name

•Example:
student s1,s2;

 S1 and s2 are object of class type student.
 The necessary memory is allocated to an
object at this time.

Access Class Members
•Syntax is:

Object_name.memberfunction(actual
argument)
Object_name.datamember

•Example:
S1.getdata(arguments if any)

Note: Only public data member and functions
are accessed by object.

Private, protected, public
•Private: Members declared as private can be
accessed only by the member function of that
class. All members of class are private default.

•Protected: Members declared as protected can
be accessed in the same class as well as all the
other class derived from this class.

•Public: Members declared as public can be
accessed by any other function/class in the
program.

Cont..(example)
class student

{
int Roll_no;
int marks;

 public:
int count;
void setdata();
void display();

 };
•Now assume s1 is object of class student. State following are
valid/invalid:
statement valid/invalid
s1.marks=50; invalid
s1.count=1; valid
s1.setdat(); valid

Defining member Function
•Member function can be defined in two
ways:

▫Inside the class definition
▫Outside the class definition

The function perform same task, does not
matter where it is defined outside/inside a
function

Inside the Class Definition
class student
{

int Roll_no;
int marks;

 public:
void setdata(int r, int m)
{

Roll_no=r;
marks=m;

}
void display();

 };
void main()
{

student s1;
int roll, mark;
cout<<“enter roll no and marks”<<“\n”;
cin>>roll>>mark;
s1.setdata(roll,mark);

}

outside the Class Definition
•General format is:

return_type class_name :: function_name(argument
declaration)
{
function body

}

outside the Class Definition
class student
{

int Roll_no;
int marks;

 public:
void setdata(int r, int m)
{

Roll_no=r;
marks=m;

}
void display();

 };
void student :: display()
{

cout<<“roll no is: ”<<Roll_no<<“\n”;
cout<<“marks is: ”<<marks

}
void main()
{

student s1;
int roll, mark;
cout<<“enter roll no and marks”<<“\n”;
cin>>roll>>mark;
s1.setdata(roll,mark);
s1.dispaly();

}

Output:
enter roll no and marks
12 50
roll no is: 12
marks is: 50

Nesting of Member Function
•A member function can be called from another
member function of the same class. This is called
nesting of member function.

Cont..

Here
calculate() is
called from
display
function

Private member function
•Member function can also be declared as private.
It is required when the function are to be hidden
from outside world.

•Private member function can only access from
member function of same class.

•Neither the object nor any external function can
access the private member function.

Arrays within class
“arr” is a int type
array which can
store 5 element.
Elements are

scanned in setdata
function

Array of objects
•Syntax is:

class_name array_name[size];

•Example:
student std[5];

Will create array of 5 object names std.

•How to access member function
std[0].setdata();
std[2].display();

Memory Allocation for Objects
•Memory allocation pattern for objects:

Variable 1

Variable 2

Variable 3

Object 1
Variable 1

Variable 2

Variable 3

Object 2
Variable 1

Variable 2

Variable 3

Object 3

Member Function 1 Member Function 2

Cont..
•Memory is allocated when object are created not when class are
specified.

•That is true for data member only, not for the member function.
For that rule is slightly different.

•All objects of same class use the same member function.
•The member function are created and place in memory only once-
when they are defined.

•No separate memory is allocated for member function when
object is created.

•For data member separate memory is allocated for each object
because data member may have a different value for each
member.

Static Data Member
•Data members are made common to all objects
of a class by declaring them static. That data
members are called static data members.

•Only one copy of static variables is maintained by
the class and it is shared by all the objects of that
class.

•It is generally used when we want to maintain
common value to the entire class.

•They are initialized to ZERO.

Cont..

Static Member Function
•Like static data member, static member function
are associated with a c lass , not with any
particular object of the class.

•So they are invoked using class name, like
Class_name :: function_name

OR
object.function_name

•A function declares as a static can access only
static member function of that class.

•They can not be declare as const or volatile.

Cont…

Object as Function Argument
•Object can be passed to a function as
argument, like any other data type.

•It can be passed in two ways.
By value
By reference

Cont..

Returning object
•WAP that adds two complex numbers A
and B to produce third number C and
displays all the three numbers.

Constant Member Function
•Ex:

void mul(int,int) const;
double get_bal() const;

 The complier will generate error message
if function try to alter the data values.

Pointers to members
It is possible to take the address of a member of a class and
assign it to a pointer.

Class A
{
private:

int m;
public:

void show();
}

Pointer to the member m as follows:
int A::* ip = &A :: m;

A::* pointer to member of A class
&A::m address of the m member of A class

Cont..
•ip can be used to access m inside
member function:
cout<<a.*ip;
cout<<a.m;

a is object of class A.

Pointer to object

ap=&a;
cout<<ap *ip;
cout<<ap m;

ap is pointer to object a.

Pointer to member function
General syntax is:

Ret_type (class_name::*ptr)(arg list)=&class_name ::
fun_name

And call using following syntax:

(obj_name.*ptr to member fun)(arg list);

(ptr to object->*ptr to member fun)(arg list);

Example
Class M
{

int x;
 int y;
 public:

void set_xy(int a,int b)
{

x=a;
y=b;

}

}

FRIEND function
•The private data members of a class can
be accessed only by its member function.

•But i f non-member function want to
access these data, then it is possible with
friend function only.

• A function can be made friend of a class
by using the keyword friend.

Cont…

Cont….
•Member function of one class can be a
friend of another class.

•Class name is used as the qualifier for the
member function.

Cont..

Cont..
•An entire class can be made friend of another
class . This has the effect of making every
member function of the class a friend.

•Ex:
class B
{

int b;
public:

void setdata();
void dispdata();

};
class A
{

friend class B;
int a;

public:
void setdata();
void disp();

}

Characteristics of friend
function
•A friend function does not belong to the class to
which it is declared friend.

•A friend function is invoked just like any other c++
function(without using object), as it is not a part
of the class.

•It can not access data members directly like
member functions. It has to use the object name
along with the dot operator.

•It can be declared private, public, protected
without altering the meaning.

•usually., it has object as argument.

Constructors and destructors

introduction
•In all program we have written setdata()
function to set values to the private
variables of the class.

•And th is funct ion must be invoked
explicitly by the object.

•These funct ions cannot be used to
initialize the member variables at the time
of creation of object

•So, concept of constructor and destructor
came into existence.

Constructors
•It is a special member function whose main task is to
allocate the memory and initialize the objects of the
class.

• It has the same name as class name.
•Constructor is invoked whenever the object of the
class is created.

•As it constructs the values of data members of the
class, it is called constructor.

•Types of constructor:
▫Default constructor
▫Parameterized constructor
▫Copy constructor
▫Dynamic constructor

Constructor Characteristics
•They should be declared in the public section.
•They are invoked automatically when the objects
are created.

•They do not have return types, not even void and
therefore they cannot return values.

•They cannot be inherited, though a derived class
can call the base class constructor.

•They can have default arguments.
•Constructors cannot be virtual.
•We cannot refer to their addresses.
•They make implicit calls to the operators new and
delete when memory allocation is required.

Default constructor
•A constructor without argument is called
“Default Constructor”.

•Default constructor is called at run time
when object is created.

Cont..

Parameterized Constructor
•Constructor with take parameters are
called “parameterized constructor”.

•For invoking this constructor, appropriate
parameters should be passed whi le
creating object.

•There are two way to call constructor:
▫Implicitly
▫Explicitly

Cont..(Implicitly called)

Cont..(explicitly called)

Constructor with default
arguments
•The default arguments can be passed in
the constructor while declaring.

•Eg. Complex(float num, float num2=0);
•The constructor is called either with or
without the arguments while creating
object.

Copy constructor
•It is used to make copies of the objects.
•It is generally used to initialize an object
from another object.

•Eg. Integer I1(I2) or Interger I1 = I2;
•That is, it is a constructor of class
class_name that takes a reference object
of the same class as a argument.

Cont..
•Copy constructor can be invoked by:

Class_name object1(object2)
OR

Class_name object1=object2

•The process of initializing through a copy
c o n s t r u c t o r i s k n o w n a s “ c o p y
constructor”.

Cont..

Dynamic Constructor
•Object can be created run time. So,
memory is allocated run time only. This is
called “dynamic constructor”.

•That can be achieved by new operator
and using pointer.

Cont..
•Example:

student *sptr; // does not call any
constructor and no
memory is allocated.

sptr=new student(); // memory is allocated and
 default constructor

is called.

Cont…

Const Object
•We can create and use constant objects
using const keyword before object
declaration.

•Eg. const matrix X(m,n)
•Now here X is constant object and the
values of m and n cannot be modified.

•Whenever const object try to invoke
non-const member functions, the compiler
gives error.

Destructor
•It is used to destroy the objects that
have been created by constructor. Its
name is same as class name but preceded
by tilde sign.

•Eg ~integer() {}
•It never takes arguments not does return
anything.

•It is called implicitly when program is
exited or from a block.

