
OBJECT ORIENTED
CONCEPT AND
PROGRAMMING
UNIT -1

-Madhavi Dave

PRINCIPLES OF OBJECT-
ORIENTED
PROGRAMMING

Procedure Oriented Programming
•High level language such as COBOL, C, FORTRAN is
known as procedure-oriented programming.

• In POP approach , the problem is viewed as a
sequence. like reading, calculating and printing.

Cont…

Structure of procedure oriented programs

Main Program

Function-1 Function-1Function-2

Function-5Function-4

Cont..

Relationship of data and function in procedural programming

Global data Global data

Function-2

Local data

Function-3

Local data

Function-1

Local data

Cont..
•Characteristics of procedure-oriented
programming are:

1. Emphasis is on doing things(algorithms)
2. Large program are divided into programs called

functions
3. Most of the function shares the global data.
4. Data move openly around the system function to

function.
5. Function transfer data from one form to another.
6. Emphasis top-down approach in program design.

Object-Oriented Programming
•The major motivating factor in oop is to remove
some of the flaws encountered in the procedural
approach.

•OOP allows decomposition of a problem into a
number of entities called object and then build
data and function around these objects.

Cont…

Data

Functions

Object A

Data

Functions

Object B

Data

Functions

Object C

Communication

Cont…
•Features of object-oriented programming are:

1. Emphases on data rather than procedure
2. Programs are divided into what are known as objects
3. Data s t ruc tu re a re des i gned such tha t t hey

characterize the objects.
4. Function that operates on the data of an object are tied

together in the data structure.
5. Data is hidden and can not be access by external

function.
6. Object may communicate with each other through

functions.
7. New data and function can easily added whenever

necessary.
8. Follows bottom-up in program design.

Basic concept of OOP
•Object
•Class
•Encapsulation and data abstraction
• Inheritance
•Polymorphism
•Dynamic binding
•Message passing
•Delegation

Objects
• It is the basic run time entities in an object-
oriented system

•They may represent a person, a place, a bank
account….

•Program object should be chosen in such a way
that they match closely with the real world object.

•Object is an instance of class.

Cont..

Way to represent an object Example

Object:
studentDATA

 Name
 Date-of
Birth
 Marks
Functions
 Total
 Average
 Display

Object Name
Attribute 1
Attribute 2
Attribute 3

Operation 1
Operation 2
Operation 3

Classes
•The entire set of data and code of an object can be
made a user defined data type with the help of a
class.

• In fact, object are the variables of the type class.

•Thus class is a collection of objects of similar types.

•classes are user defined data type.
•Syntax to create object is:

• Class_name object_name

Encapsulation and data
abstraction
•The wrapping of data and function into single unit
is known as encapsulation.

•Data is not accessible outside world, only function
which are wrapped in the class can only access it.

•This insulation of data from direct access by the
program is called data hiding OR information

hiding.

Cont..
•Abstraction refers to the act of representing
essen t i a l f ea tu res w i thou t i nc lud ing the
background details or explanations.

•Classes use the concept of abstraction, they are
known as Abstract data Types(ADT).

•The attributes called data members and function
called member function.

Inheritance
• It is a process, by which one object can acquire the
properties of another object.

• It allows the declaration and implementation of
one class to be based on an existing class.(reuse).

• It can be also define as the mechanism that
permits a c lass to share he attr ibutes and
operations defined in one or more classes.

Cont…
•Example:

Parent
features

Parent
features

Child's
features

paren
t

child

Base or super
class

derived or sub
class

Cont..
•Single inheritance
•Multiple inheritance
•Multilevel inheritance
•Hierarchical inheritance
•Hybrid inheritance

polymorphism
• It is Greek term, means the ability to take more
than one form.

•An operation may take different behaviors in
different instance.

•The behavior depend upon the types of data used
in the operation.

•For ex. Consider the operation for addition.
if two numbers, then addition operation will
generate sum.
if the operands are strings then it perform
concatenation.
It is operation overloading.

Cont..
•Using single function name to perform different
types of task is known as function overloading.

Shape
Draw()

Box object
Draw(box)

Triangle
objectDraw(triangl

e)

Circle object
Draw(circle)

Dynamic Binding
•Binding means the linking of a procedure call to
the code to be executed in response to the call.

•Dynamic binding means that the code associated
with a given procedure call is not known until the
time of the call at run time.

• It is associated with polymorphism and inheritance.

C++ TOKEN,
EXPRESSION AND
CONTROL
STRUCTURES

Tokens
•The smallest individual units in a program are
known as tokens. C++ has following tokens :

•Keywords
• Identifiers
•Constants
•Strings
•Operators

A C++ program is written using these tokens,
spaces and syntax of the language.

Keywords
•Keywords are the explicitly reserved words for the
language and cannot be used as names for the
program variables or other user-defined program
elements.

•Eg. Auto, break, case, const, class etc.

Identifiers and Constants
• Identifiers means the names of the variables,
functions, arrays, classes etc. used in your
program.

•Each language has their own rules for naming
these identifiers.

•Some rules for both c and c++ are
- i) Only alphabetic characters, digits and
underscores are permitted.

- ii) The name cannot start with a digit.
- iii) Uppercase and lowercase letters are
different

- iv) A declared keyword cannot be used as a
variable name

Constants
•Constants means the fixed values that do not
change during the execution of a program.

•They are integers, characters, floating nos. and
strings

•Eg.
 123 -- int constant

“C++ ” -- string constant
‘A’ -- Character constant

Basic Data Types
C++ Data

Types
User Defined

Type

Structure
Union
Class

Enumeration

Derived Type

Array
Function
Pointer

Reference

Built in type

VoidInteger Type Floating
Type

Int Char float Double

Reference Variable
•A reference variable provides an alias or
alternative names for a previously defined variable.

•Eg. We can make a variable sum a reference to the
variable total and then use sum and total
interchangeably.

•Syntax : datatype & refName = variable name
•Eg float total = 100;

• float & sum = total

Operators in C++
•:: - Scope resolution operator
•::* - Pointer-to-member declarator
•->* - Pointer-to-member operator
• .* - Pointer-to-member operator
•delete - Memory release operator
•Endl – Link feed operator
•New – Memory allocation operator
•Setw – Field width operator

C++ control structures

• Selection
if
if . . . else
switch

• Repetition
for loop
while loop
do . . . while loop

CONTROL STRUCTURES

Use logical expressions which may
include:

6 Relational Operators
< <= > >=
== !=

3 Logical Operators
! && ||

Operator Meaning Associativity

! NOT Right
*, / , % Multiplication, Division, Modulus

Left
+ , - Addition, Subtraction

Left
< Less than

Left
<= Less than or equal to

Left
> Greater than Left
>= Greater than or equal to

Left
== Is equal to

Left
!= Is not equal to
Left

&& AND Left
|| OR

Left
= Assignment

Right

Example

int Number;
float X;
(Number != 0) && (X < 1 / Number)

Conditional statements
•Syntax
if (expression)
 statement1
else
 statement2

Iteration statements
•while-statement syntax
while (expression)
 statement

Iteration statements

// compute sum = 1 + 2 + ... + n
// using a while loop
int i;
int sum = 0;
i = 1;
while (i <= n) {
 sum += i;
 i++;
}

Iteration statements

// compute sum = 1 + 2 + ... + n
// using for loop

int sum = 0;
for (int i = 1; i <= n; ++i) {
 sum += i;
}

Switch
switch (letter) {
 case ‘N’: cout < “New York\n”;
 break;
 case ‘L’: cout < “London\n”;
 break;
 case ‘A’: cout < “Amsterdam\n”;
 break;
 default: cout < “Somewhere else\n”;
 break;
}

Simple arrays

• subscripts can be an integer expression
• In the declaration, the dimension must be a constant

expression

const int LENGTH = 100;
...
int a[LENGTH]
...
for (int i=0; i<LENGTH; i++)
 a[i] = 0; // initialize array

Functions:
3 parameter transmission
modes•pass by value (default)
•pass by reference (&)

•pass by const reference (const &)

Functions:
example of pass by value

 int sqr(int x) {

 }

The Swap Function

void swap(int x, int y)
{
 // Create a temporary variable
 int temp;
temp = x;

 x = y;
 y = temp;
}

swap (a, b);

Passing values by reference!
•C/C++ passes parameters by value, i.e. a copy
of the variable is passed to the function, not the
actual value itself.

•C++ can pass the actual variables themselves -
known as passing parameters by reference.

•To pass a parameter by reference we place &
between the parameters type name and the
parameter tag.

The New Swap Function
void swap(int& x, int& y)
{
 // Create a temporary variable
 int temp;

 temp = x;
 x = y;
y = temp;

}

Pointers
• Pointers in C++ are same like in C, but some

characteristics are different from C.
• Void Pointer :- “pointer to void” in c++, it points to a value

which does not have a type such as int, float etc.
• Eg. Int* F1

 void * S1
S1 = F1 //valid in c and C++
F1 = S1 // not valid in C++
For c++ we need to convert it in int type as c++ is strictly

typed language
F1 = (int*) S1;

• Constant Pointer :-It is one that cannot point to anything
other than what it is pointing to at the time of its definition.
This means the address cannot be changed but the content
of the address can be changed.

• Eg int * const S1 = &content1
• S1++ // not possible

• Pointer to Constant :- A pointer to Constant can point to any
memory location, but the content to which it points cannot
be changed.

• int const* S1 = &Content;
• *S1 = 100 // not allowed.

Functions
•Diving a program into Functions is one of the
major principles of top-down, structured
programming.

• It also reduce the size of the program by calling
and using them at different places in program

•Function Prototyping :- It is a declaration
statement in the calling program.

type function-name (argument-list);
•Call by Reference :- Reference variables in c++
permits us to pass parameters to the functions
by reference. This means ‘formal’ arguments in
the called function become aliases to the ‘actual’
arguments in the calling function.

• Inline Functions:- To eliminate the cost of calls to small
functions C++ has Inline functions. That means a function
is expanded in line when it is invoked.

• That means the complier replaces the function call with
the corresponding function code

• Syntax: inline function-header
{
 function-body

}
Eg inline double square(double r)

{ return r * r;
}
c = square(3);

