
Unit 1
Unified Modeling Language

Prof. Kirtankumar Rathod
Dept. of Computer Science

Indus University

Unified Modeling Language
(UML)

• The Unified Modeling Language
(UML) is a general-purpose,
developmental, modeling language in
the field of software engineering that is
intended to provide a standard way to
visualize the design of a system.

• It was developed by Grady Booch, Ivar
Jacobson and James Rumbaugh at
Rational Software in 1994–1995

UML is…
• Used to visualize, specify,

construct, and document
• …appropriate for modeling

systems ranging from enterprise
information systems to distributed
Web-based applications and even
to hard real time embedded
systems.

• Process independent.

UML is a Language
• Vocabulary and rules for

communication.
• Focus on conceptual and physical

representations of a system.
• A language for software blueprints.
• Not a process.

• An explicit model facilitates
communication.

• UML is a graphical language.
• UML symbols are based on well-

defined semantics.

• Specifying means building models
that are:
– Precise
– Unambiguous
– Complete

• UML addresses the specification of
all important analysis, design, and
implementation decisions.

• Models are related to OO
programming languages.

• Round-trip engineering
– Forward engineering—direct mapping

of a UML model into code.
– Reverse engineering—reconstruction

of a UML model from an
implementation.

– Requires tool and human intervention
to avoid information loss.

• Architecture
• Requirements
• Tests
• Activities

– Project planning
– Release management

Conceptual Model of UML
• Three basic building blocks of UML

—abstractions that are first class
citizens in a model.

—tie things together.
—group interesting collections of

things.

Things
1) Structural—nouns of UML models.
2) Behavioral—dynamic parts of UML

models.
3) Grouping—organizational parts of UML

models.
4) Annotational—explanatory parts of

UML models.

• Nouns of UML models.
• Conceptual or physical elements.
• Seven Kinds

Structural Things

– Classes
– Interfaces
– Collaborations
– Use cases

– Active classes
– Components
– Nodes

Classes
• Description of a set of objects that

share the same attributes,
operations, relationships, and
semantics.

• Implement one or more interfaces.Windo
worigin

size
open()
close()

name
attributes

operations

Interfaces
• Collection of operations that

specify a service of a class or
component.

• Describes the externally visible
behavior. <<interface

>>
IWindow

open()
close()

name

operations

IWindow

Collaborations
• Defines an interaction.
• Society of roles and other

elements.
• Provide cooperative behavior.
• Structural and behavioral

dimensions. Chain of
responsibility

Use Cases
• Description of a sequence of

actions that produce an observable
result for a specific actor.

• Provides a structure for behavioral
things.

• Realized by a collaboration.
Place order

Active Classes
• Special class whose objects own

one or more processes or threads.
• Can initiate control activity.

Event
Manager

suspend()
flush()

name
attributes

operations

heavy
border

Components
• Physical and replaceable part.
• Conforms to a set of interfaces.
• Physical packaging of logical

components.

Node
• Physical element that exists at run

time.
• Represents a computational

resource.
• Generally has memory and

processing power.
Node

Variations on Structural
Things

• Actors
• Signals
• Utilities
• Processes and Threads
• Applications
• Documents
• etc.

• Verbs of UML models.
• Dynamic parts of UML models.
• Usually connected to structural

elements.
• Two kinds

– Interactions—behavior that comprises a set
of messages exchanged among a set of
objects.

– State Machines—specifies the sequences of
states an object or interaction goes through
in response to events.

Behavioral Things

display

Idle

Grouping Things
• Organizational parts of UML.
• Purely conceptual; only exists at

development time.
• One kind

– Package—general-purpose
mechanism for organizing elements.

Business rules

Annotational Things
• Explanatory parts of UML.
• Comments regarding other UML

elements.
• Information best expressed as text.
• One kind

– Note—symbol for rendering
constraints or comments attached to
an element.

Return copy of self

Relationships in UML
• Dependency
• Association
• Generalization
• Realization

Relationships
• Dependency—semantic

relationship between two things in
which a change to one thing may
affect the semantics of the other.

• Association—structural relationship
that describes a set of links; a link
being a connection among objects.

0..1 *
employer employee

Relationships (cont’d)
• Generalization—specialization

relationship in which child objects
are substitutable for the parent.

• Realization—semantic relationship
between classifiers, wherein one
classifier specifies a contract that
the other guarantees to carry out.

Diagrams
• Graphical representation of a set of

elements.
• Rendered as a connected graph

– Vertices are things.
– Arcs are behaviors.

• Projection into a system form a specific
perspective.

• Five most common views built from
nine diagram types.

Common Diagram Types
• Class
• Object
• Use case
• Sequence
• Collaboration

• Statechart
• Activity
• Component
• Deployment

Rules of UML
• Well formed models—semantically self-

consistent and in harmony with all its
related models.

• Semantic rules for:
– Names—what you can call things.
– Scope—context that gives meaning to a

name.
– Visibility—how names can be seen and used.
– Integrity—how things properly and

consistently relate to one another.
– Execution—what it means to run or simulate

a dynamic model.

Object‐Oriented
Modeling

and
Design with UML

Contents
• Introduction
• OO characteristics
• OO development
• OO themes
• Summary

Introduction
• OO modeling and design is a way of thinking

about problems using models organized around
real world concepts

OO characteristics
(1/4)Identity

– Data is quantized into discrete,
distinguishable
entities called objects

– Each object has is own inherent identity
• Two objects are distinct even if all their

attribute values are
identical

– Each object has a unique handle by
which it can be referenced
• Handle in various ways such as an address,

array index, or artificial number

OO characteristics
(2/4)Classification

•Objectswith the samedatastructure
(attributes) and
behaviour (operations) are grouped into a class

•A Class is an abstraction that describes
properties important

to an application and ignores the rest
•Each class describes an infinite set of individual
objects

•An Object is an instance of a class
Polygon objects Polygon class

abstract Attribut
es

Operatio
nsinto vertices draw

border color
fill color

erase
move

Objects and
Classes

Examples for Class &
Object

OO
characteristics

Classification
•Objectswith the same data structure
(attributes) and
behaviour (operations) are grouped into a class

•A Class is an abstraction that describes
properties important to an application and ignores
the rest
•Each class describes an infinite set of individual
objectsPolygon objects Polygon class

abstract Attribut
es

Operatio
nsinto vertices draw

border color
fill color

erase
move

An Object is an instance of
a class

Derive the instances for
the class

Attribut
es

Operations/Metho
ds

Clas
s

?
Object

Attributes Values
Operations/Metho

ds

?

OO
characteristics(3/4)

Inheritance
Sharing of
operations

attributes and
(features) among

classes based on a hierarchical
relationship

•Super class has general
i n f o r m a t i o n t h a t
subc lasses re f ine and
elaborate
•Each subclass incorporates,
or inherits, all the features of
its super class and adds its
own unique features

Greatly reduce repetition
•A b i l i t y t o f a c t o r o u t
c o m m o n f e a t u r e s o f
several classes into a super
class

OO characteristics
(4/4)

Polymorphism• Same operation behaves differently for
different classes

• An operation isa procedure or
transformation that an
object performs

• Method
– An implementation of

an operation by a
specific class

– Each object “ knows
how” to perform its
own operation.

– OO operator is polymorphic

OO development
(1/6)• Essence of OO development

– Identification and organization of application concepts
rather than their final representation in programming
language.

Modeling concepts, not
implementation
– Focus on analysis and design
– Encourages software developers to work and think
– Should be identified, organized, and understood

• Premature focus on implementation restricts design
choices

• Design flaws during implementation costs more
and leads to inferior product

– Conceptual process independent of a programming
language (OO is fundamentally a way of thinking and
not programming techniques.

OO development
(2/6)

• OO Methodology
– Process for OO development with graphical

notation (OO Concepts)
– Methodology = building a model + adding

details during design
– Same notation is used from

• analysis design implementation.
• Information added in one stage is

not lost and transformed to next
stage

Methodology
Stages• System

Conception
• Analysis
• System Design
• Class Design
• Implementatio

n

Methodology
Stages System
conception (1/5)s/w development begins with business

analyst and formulate tentative requirements

Analysis(2/5)
the requirements from system conception

by constructing
• Restat

es
model
s
Analys
t

• must work with the requestor to
understand the problemstatements

• Analysis model (abstract) describes what to
system must do, and not how it will do.(no
implementation decisions)

Domain model‐ description of all the module related to
given problem
Application model‐ description about a specific
task(visible to the user)

• A p p l i c a t i o n e x p e r t s w h o
a r e n o t a p r o g r a m m e r c a n
understand & criticize good
model

System
Design(3/5)

• System architecture – solving the
application problems

• System designer decides

– what performance characteristics to optimize

– Choose a strategy of attacking the problems.

– Make tentative resource allocation.

Methodology
Stages Class
Design(4/5)• Add details to the analysis

model (based on system
design strategy)

• Class designer elaborates both
domain and application objects
using the same OO concepts &
notation.

• Focus is to implement the data
structure and
algorithm.

Methodology
Stages
Implementation
(5/5)

• Implementer translate class and
relationship

Programming language, DB,
H/W

• Programming should be straight
forward (hard decision are already
made)

• Follow good software engineering
practice (S/M remains flexible &
extensible)

OO development
(3/6)Modeling

A model is a simplification of reality
 Abstraction for the purpose of

understanding before building it
 Isolate those aspects which are

important and suppress
the rest(unimportant)

Purpose
•Testing a physical entity before building it
•Communication with customers
•Visualization
•Reduction of complexity

Cla
ss
Stat
e

Interacti
on

Design a
System

For the objects in the system
and their relationship

For the life history of the
object

For the interaction among
the objects

OO development
(4/6)Three models

Class model

•Function
•Describes the static structure of the object in the
system –

identity, relationship to other object, attributes,
operations
•“data” aspects of the system

•Goal
•Provides context for state and interaction model
•Capture important concepts of an application from
the real world

•Representation
•Class diagrams
•Generalization,
aggregation

Graph
Nodes: Class
Arc: relationship B/W
Classes

OO development
(5/6)Three models (Cont’d)

State model
•Function

•Describes objects’ time and sequencing of
operation

•Goal
•Capture “control” aspect of system that
describes the

sequences of operations that occur

•Representation
•State diagrams

Graph :
nodes-states ; arcs- transaction between states

OO development
(6/6)Three models (Cont’d)

Interaction model
•Function

•Describes interactions between objects
•Individual objects collaborate to achieve the
behavior of the whole system

•Goal
•Exchanges between objects and provides a holistic
overview of the operation of a system

•Representation
•Use cases, sequence diagrams, activity diagrams

Functionality of the
system

Interaction of the
object and their
time sequence

Elaborates
important
processing

OO themes
(1/6)

•Focus on essential aspects of an application
while ignoring the details

•What an object is and does,
before deciding howto implement

•Preserves the freedom to make
decision as long as possible by Avoiding

premature commitments to details

Abstraction
Just like a skeleton.
You can fit anything
on it you like.

Examp
le

• A class called Animal.
• It has properties like ears,colour, eyes but they are not

defined.
• It has methods like Running(), Eating(), etc. but the method

does not have any body
• all animals will have the above properties and methods

but you decide how to do them.
• sub class of the class Animal called Tiger.

Color is
yellow

running is very
fast

color is
black

running is very
slow

OO themes
(2/6)Encapsulati

on

Separates the external aspects of an object
from internal implementation
Data structure and behaviour is encapsulated
in a single entity
 Ensuring reliability and maintainability

•Information exchange is done by public
interface among objects
•Changeinternal data structure

does not affect other objects

Examp
le• capsule that the doctor gives us

• We just have to take the capsule to
get better

• don't have to worry about
– what medicine is inside the capsule or
– how it will work on our body.

• user does not have to worry how
this
methods and properties work.

OO themes
(3/6)Combining data and behavior

Data structure hierarchy matches
the operation inheritance hierarchy

data structure hierarchy

procedure hierarchy

Old
approach

Is
replace
d by

class hierarchy

OO
approac
h

OO
themesSharing (4/6)

No redundancy (Inheritance)
Reusability (tools- abstraction, inheritance,
encapsulation)

Emphasis on the essence of an object
(5/6)

Focus on what an object is
•Rather than how it is used

Synergy (6/6)
Identity, classification, polymorphism,
inheritance

•Be clearer, more general and robust

Unified Modeling Language
User Guide

Prof. Kirtankumar Rathod
Dept. of Computer Science

Indus University

Slide 2

What is a model?
• A model is a simplification of

reality.
• A set of blueprints of a system.
• Semantically closed abstraction of

the system.

Slide 3

Why We Model
• Communicate a desired structure and

behavior of a software system.
• Visualize and control a system’s

architecture.
• Assist in understanding a system under

development.
• Expose opportunities for simplification

and reuse.
• Manage risk.
• Document decisions.

Slide 4

Principles of Modeling
1. The choice of what models to create

has a profound influence on how a
problem is attacked and how a
solution is shaped.

2. Every model may be expressed at
different levels of precision.

Slide 5

Principles of Modeling
3. The best models are connected to

reality.

4. No single model is sufficient. Every
nontrivial system is best approached
through a small set of nearly
independent models.

