
.NET PROGRAMMING
USING C#

Validation in ASP.NET

What is Validation?

⚫ An important aspect of creating ASP.NET
Web pages for user input is to be able to
check that the information users enter is
valid.

⚫ ASP.NET provides a set of validation
controls that provide an easy-to-use but
powerful way to check for errors and, if
necessary, display messages to the user.

⚫There are two ways we can
perform validation:
⚪Client side validation
⚪ Server side validation

Client Side Validation

⚫ Client side validation is something that will happen
on user’s browser. The validation will occur before
the data gets posted back to server.

⚫ It is a good idea to have client side validation as the
user gets to know what needs to be changed
immediately, i.e., no round trips to servers are
made.

⚫ From the user’s point of view, it gives them fast
response and from the developer’s point of view, it
saves valuable resources of server.

⚫ JavaScript provides full control to the developer on
how client side validation should happen but
developers will have to write the validation code
themselves.

Server Side Validation

⚫ Server side validation occurs at server.
⚫ The benefit of having server side validation is that

if the user somehow bypasses the client side
validation then we can catch the problem on the
server side.

⚫ So having server side validation provides more
security and ensures that no invalid data gets
processed by the application.

List of Server Side Validation

⚫ RequiredFiledValidator
⚫ Ensures that the user does not skip a mandatory

entry field.
⚫ CompareValidator
⚫ Compares one controls value with another controls

value, constants and data type using a comparison
operator

⚫ RangeValidator
⚫ Checks the user's input is in a given range

⚫ RegularExpressionValidator
⚫ Checks that the user's entry matches a pattern defined by a

regular expression.
⚫ CustomValidator
⚫ Checks the user's entry using custom-coded validation

logic.
⚫ ValidationSummary
⚫ Displays a summary of all validation errors inline on a web

page, in a message box, or both.

Required Filed Validator

⚫ You can use it to make sure that the user has
entered something in a control.

⚫ Properties
⚫ ControlToValidate:

Indicates the input control to validate.

⚫ ErrorMessage:
Indicates error string

⚫ Text:
Error text to be shown if validation fails.

⚫ SetFocusOnError – true, false
Set SetFocusOnError to true on one or several of your

validators, to give focus to the first invalid field when the
form is validated.

⚫ Display – none, static, dynamic
This attribute decides how the validator is rendered to

your page.
⚫ ValidationGroup

Range Validator

⚫ The RangeValidator Server Control is another
validator control, which checks to see if a
control value is within a valid range.

⚫ Properties
⚫ ControlToValidate, ErrorMessage, Text, Display,

ValidationGroup
⚫ MinimumValue
⚫ MaximumValue
⚫ Type - Currency, Date, Double,

Integer, String

Example of RangeValidator

Compare Validator

⚫ The CompareValidator control allows you to
make comparison to compare data entered in an
input control with a constant value or a value in
a different control.

⚫ This control will compare the value of its
ControlToValidate with ControlToCompare.

Properties

⚫ ErrorMessage, Text, Display,
ValidationGroup

⚫ ControlToValidate
⚫ ControlToCompare
⚫ ValueToCompare
⚫ Operator – Equal, NotEqual, LessThan,

GreaterThan, GreaterThanEqual,
LessThanEqual, DataTypeCheck

<asp:CompareValidator
ID="CompareValidator1" runat="server"
ControlToCompare="TextBox1"
ControlToValidate="TextBox2"
ErrorMessage="Password and confirm

password must match"
Text = “*”>

</asp:CompareValidator>

Regular Expression Validator

⚫ RegularExpressionValidator useful when we
want input data to be in some specific format.

⚫ Properties
⚫ ControlToValidate, ErrorMessage, Text,

Display
⚫ ValidationExpression

Custom Validator

⚫ If none of the other validators can help you,
the CustomValidator usually can. It doesn't
come with a predefined way of working; you
write the code for validating your self.

⚫ The CustomValidator Control can be used on
client side and server side. JavaScript is used
to do client validation and you can use any
.NET language to do server side validation.

⚫Properties
⚫ControlToValidate, ErrorMessage,

Text, Display
⚫Event
⚫ ServerValidate

Validation Summary

⚫ ASP.NET has provided an additional control that
complements the validator controls.

The ValidationSummary control is reporting control,
which is used by the other validation controls on a
page.

ASP.NET State
Management Engine

Why is it Required in ASP.NET

⚫ Browsers are generally state less.
⚫ Stateless means, whenever we visit a website, our

browser communicates with the respective server
depending on our requested functionality or the
request. The browser communicates with the
respective server using the HTTP or HTTPs protocol.

⚫ But after that response HTTP/HTTPs doesn't
remember what website or URL we visited or in
other words we can say it doesn't hold the state of a
previous website that we visited before closing our
browser that is called stateless.

⚫ In ASP.NET there are the following 2 State
Management methodologies:
⚪ Client Side Statement
⚪ Server Side Statement

Client Side State Management

⚫ View State
⚫ Hidden fields
⚫ Cookies
⚫ Query Strings

Server Side State Management
⚫ Application State
⚫ Session State

Cookies

⚫A set of Cookies is a small text file that
is stored in the user's hard drive using
the client's browser.

⚫The cookie access depends upon the
life cycle or expiration of that specific
cookie file.

Some features of cookies are:

⚫ Store information temporarily
⚫ It's just a simple small sized text file
⚫ Can be changed depending on requirements
⚫ User Preferred
⚫ Requires only a few bytes or KBs of space for

creating cookies

Writing and Reading Cookies

⚫ By using Response directly
⚫ Writing
⚪ Response.Cookies["userName"].Value = “INDUS";
⚪ Response.Cookies[“userName”].Expires =

DataTime.Now.AddDays(10);
⚫ Reading
⚪ String value = Request.Cookies[“userName”].Value;

⚫ By using Response directly
⚫ Writing
⚪ Response.Cookies[“login"][“username”] = “INDUS";
⚪ Response.Cookies[“login"][“password”] = “INDUS";
⚪ Response.Cookies[“login”].Expires =

DataTime.Now.AddDays(10);
⚫ Reading
⚪ String value1 = Request.Cookies[“login”][“username];
⚪ String value2 = Request.Cookies[“login”][“password];

HttpCookie Class - Properties

1. Expires
⚪ Which is used to set expire date for the cookies.

2. Values
⚪ We can manipulate cookies with key/value pair.

3. Value
⚪ We can manipulate individual cookie.

4. Name
⚪ It contains the name of the cookie.

Deleting Cookies

⚫ Response.Cookies[“user"].Expires =

DateTime.Now.AddDays(-1);

Query String

⚫ Query string is one of the technique to send data
from one webform to another through URL.

⚫ Query string consist of two parts (field and
value), and each of pair separated by
ampersand (&).

⚫ ?(Question Mark), indicates the beginning of a
query string and it's value.

⚫ Query String –
Response.Redirect(“webform2.aspx?name=‘Indus’lastN
ame=‘University’”);

⚫ url -
http://www.localhost.com/Webform2.aspx?name=Ind
us&lastName=University

1. Webform2.aspx this is the page your browser will go.
2. name=Indus you send a name variable which is set to

Indus
3. lastName=University you send a lastName variable

which is set to University

How to access data in another page

⚫ lblName.Text = Request.QueryString[“name"];
⚫ lblLastName.Text = Request.QueryString["lastName

"];

Hidden Field

⚫ A hidden field is used for storing small amounts of
data on the client side. In most simple words it's just
a container of some objects but their result is not
rendered on our web browser. It is invisible in the
browser.

⚫ It stores the value between the roundtrip. Anyone
can see HiddenField details by simply viewing the
source of document.

⚫ HiddenFields are not encrypted or protected and can
be changed by any one. However, from a security
point of view, this is not suggested.

Some features of hidden fields are:

⚫ Contains a small amount of memory
⚫ Direct functionality access

Store the value in HiddenField -
<asp:HiddenField ID=“hDateTime" runat="server"
/>

Retrieve the value from HiddenField -
lblDateTime.Text =
Convert.ToString(hDateTime.Value);

View State

⚫ In ASP.NET applications the user wants to maintain
or store their data temporarily after a post-back.

⚫ In this case VIEW STATE is the most used and
preferred way of doing that.

⚫ This property is enabled by default but we can make
changes depending on our functionality with the help
of EnableViewState value to either TRUE for
enabling it or FALSE for the opposite operation.

Some of the features of view state are:

⚫ It is page-level State Management
⚫ Used for holding data temporarily
⚫ Can store any type of data

How to Enable and Disable View State

⚫ In Page Directive set EnableViewState="false“;

⚫ ViewState[<variable_name>] = <value>; //set
view state value

⚫ String abc = ViewState[<variable_name>]; //get
view state value

Syntax For View State

Example of ViewState

⚫ Set value of ViewState
⚪ ViewState["NameOfUser"] =

NameField.Text;
⚫Get value of ViewState
⚪ NameLabel.Text =

ViewState["NameOfUser"].ToString();

Sessions In Asp.Net

⚫ When a user connects to an ASP.NET
website, a new session object is created.

⚫ When session state is turned on, a new
session state object is created for each new
request.

⚫ This session state object becomes part of the
context and it is available through the page.

Session ID

⚫ Sessions are identified and tracked with a 120-bit
SessionID, which is passed from client to server and
back as cookie or a modified URL.

⚫ The SessionID is globally unique and random.

HttpSessionState (Session)

⚫Properties
⚪Count
⚪ SessionID
⚪TimeOut

•IsNewSession

•IsCookieless

•Keys

HttpSessionState (Session)

⚫Methos
⚪Add(string key, string value)
⚪Abandon()
⚪Clear() or RemoveAll()
⚪Remove(string key)
⚪RemoveAt(int index)

How to Add Session

⚫Session[“user”] = “admin”
⚫or
⚫Session.Add(“user”,”admin”)

How to Remove Session

⚫Session.Abandon();
⚫or
⚫Session.Remove(“user”) – only one

key remove

Application State

⚫ Application state is a server side state management
technique.

⚫ The date stored in application state is common for all
users of that particular ASP.NET application and can be
accessed anywhere in the application.

⚫ It is also called application level state management.
⚫ Data stored in the application should be of small size.
⚫ Application object is not permanent and is lost any time

the application is restarted.

ASP.NET provides three events in global.asax that
enable you to initialize Application variables and
respond to Application errors:

1.Application_Start
2.Application_End
3.Application_Error
4.Session_Start
5.Session_End

Application State in Global.asax file

web.config

⚫ Visual Studio generates a default web.config
file for each project.

⚫ An application can execute without a
web.config file, however, you cannot debug an
application without a web.config file.

⚫ Configuration file is used to manage various
settings that define a website. The settings are
stored in XML files that are separate from your
application code

What Web.config file contains?

⚫ Database connections
⚫ Caching settings
⚫ Session States
⚫ Error Handling
⚫ Security

System.Web Element
<system.web> </system.web>

⚫ Authentication
⚫ Authorization
⚫ Caching
⚫ CustomErrors
⚫ Trace

•Pages
•RoleManager

•SessionState
•HttpCookies

Authentication

<system.web>
 <authorization>
 <allow roles="admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>

Authentication and Authorization

<authentication mode="Forms"/>
<authorization> <deny users="?"/>

</authorization>
</authentication>

