
.NET MVC
Unit III
-Jalpa Poriya

ASP.NET MVC Scaffolding
• It is a feature of ASP.NET that allows us to generate
functional code rapidly.

• It is also known as code generator framework.
• It is pre-installed in Visual Studio 2013 and higher version.
• To create basic CRUD application, scaffolding is best
choice. It reduces time amount and generate clean
code

Executing the Scaffolding Template

Introduction of AREA
• The main use of Areas are to physically partition

web project in separate units.
• If you look into an ASP.NET MVC project, logical

components like Model, Controller, and the View
are kept physically in different folders, and ASP.NET
MVC uses naming conventions to create the
relationship between these components.

Creating Areas

Register Areas in Global.asax File
• As a last step to work with Areas, we need to

verify whether the Areas are registered in the
App_Start of the project or not.

• To do this, open global.asax and add the
highlighted line of code below (if it’s not there
already):

• Method Name:
• AreaRegistration.RegisterAllArea();

Setting up Entity Framework

Step 1

Step 2

Step 3

Entity Framework
Entity Framework is an Object Relational
Mapper (ORM). It basically generates
business objects and entities according
to the database tables and provides the
mechanism for:

1. Performing basic CRUD operations.
2. Easily managing "1 to 1", "1 to many",

and "many to many" relationships.
3. Ability to have inheritance

relationships between entities.

Features of ORM in entity framework

1. Map our database types to our code types
2. Avoid repetitive data access code
3. Access code automatically based on the data model

class
4. Support a clean separation of concerns and

independent development that allows parallel,
simultaneous development of application

5. Easily reuse the data object
6. Application Maintainability

DbContext Class

DbContext is an important class in Entity Framework API. It is a
bridge between your domain or entity classes and the database.

● Querying: Converts LINQ-to-Entities queries to SQL query and sends
them to the database.

● Change Tracking: Keeps track of changes that occurred on the
entities after querying from the database.

● Persisting Data: Performs the Insert, Update and Delete operations to
the database, based on entity states.

● Caching: Provides first level caching by default. It stores the entities
which have been retrieved during the life time of a context class.

● Manage Relationship: Manages relationships using API
configurations in Code-First approach.

● Object Materialization: Converts raw data from the database into
entity objects.

DbSet in Entity Framework 6

● The DbSet class represents an entity set that can
be used for create, read, update, and delete
operations.

● The context class (derived from DbContext) must
include the DbSet type properties for the entities
which map to database tables and views.

Example of DBSet

Method
● SaveChanges

○ Executes INSERT, UPDATE and DELETE commands to the
database for the entities with Added, Modified and Deleted
state.

● Insert Data
● Use the DbSet.Add method to add a new entity to a

context (instance of DbContext), which will insert a
new record in the database when you call the
SaveChanges() method.

● Example: dbcontext.Students.Add(studentEntity)

● Remove
● Marks the given entity as Deleted. When the

changes are saved, the entity is deleted from the
database. The entity must exist in the context in some
other state before this method is called.

● Example: dbcontext.Students.Remove(studentEntity);

● Find(int)
● Uses the primary key value to find an entity tracked by the

context.
● If the entity is not in the context, then a query will be executed

and evaluated against the data in the data source, and null is
returned

● If the entity is not found in the context or in the data source.
Returns entities that have been added to the context but have
not yet been saved to the database.

● Example:
● Student studEntity = dbcontext.Students.Find(1);

Form Methods
HTTP provides methods for the action performed on a resource.

HTTP providers following mail verbs:

GET [HttpGet]

HttpGet data travels in URL only

http://localhost:111/Home/Display/1

http://localhost:111/Home/Display?StudId=1

POST [HttpPost]

HttpPost used to while we have to create new resource.

Data travers from Body (JSon), Header

PUT [HttpPut]

HttpPut is used while we have to update existing resource.

Data travers by URL or body

http://localhost:111/Home/AddRecord/1

Body - JSon

DELETE [HttpDelete]

HttpDelete used to delete existing resource.

http://localhost:111/Home/DeleteRecord/1

LINQ for MVC
● LINQ (Language Integrated Query) is uniform

query syntax in C# and VB.NET to retrieve data
from different sources and formats.

● It is integrated in C# or VB, thereby eliminating the
mismatch between programming languages and
databases, as well as providing a single querying
interface for different types of data sources.

● LINQ queries return results as objects. It enables you to uses
object-oriented approach on the result set and not to worry about
transforming different formats of results into objects.

LINQ Query Syntax

● There are two basic ways to write a
LINQ query to IEnumerable collection
or IQueryable data sources.

● LINQ can be created with

1. Query Syntax

2. Method Syntax

LINQ Query Syntax:
from <range variable> in <Collection>
<Standard Query Operators> <lambda expression>
<select or groupBy operator> <result formation>

Example:
var teenAgerStudent = from s in studentList
 where s.Age > 12 && s.Age < 20
 select s;
var result = from s in stringList
 where s.Contains(“Indus Uni")
 select s;

LINQ Method

Standard Query Operators
Name Example

Where Query:
from s in studentList where s.Age > 12 && s.Age < 20 select
s.StudentName;

Where Method:
studentList.Where(s => s.Age > 12 && s.Age < 20);

orderby Query:
from s in studentList orderby s.StudentName ascending select s;
from s in studentList orderby s.StudentName descending select s;

ThenBy Methods:
studentList.OrderBy(s => s.StudentName).ThenBy(s => s.Age);
studentList.OrderBy(s => s.StudentName).ThenByDescending(s
=> s.Age);

Orderby Method:
studentList.OrderBy(s => s.StudentName);
studentList.OrderByDescending(s => s.StudentName);

Group Query:
from s in studentList group s by s.Age;
Method:
studentList.GroupBy(s => s.Age);

Contains Method:
studentList.Contains(std);
studentList.Name.Contains(“abc”

Average studentList.Average(s => s.Age);

Count studentList.Count();
studentList.Count(s => s.Age >= 18);

Max studentList.Max(s => s.Age);
Sum studentList.Sum(s => s.Age)

References

Web Site:
https://docs.microsoft.com/en-us/aspnet/mvc/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.guru99.com/mvc-tutorial.html
https://en.wikipedia.org/wiki/ModelViewController
https://www.guru99.com/mvc-tutorial.html
https://www.geeksforgeeks.org/mvc-design-pattern/

Book:
Pro ASP.NET MVC 5.0

https://docs.microsoft.com/en-us/aspnet/mvc/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.guru99.com/mvc-tutorial.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://www.guru99.com/mvc-tutorial.html
https://www.geeksforgeeks.org/mvc-design-pattern/

