
.NET MVC
Unit I

-Jalpa Poriya



Understanding the History of ASP.NET 
ASP.NET was a huge shift when it first arrived in 2002. 
Figure 1-1 illustrates Microsoft’s technology stack as it appeared then.



A Quick Introduction To Asp.Net MVC
● ASP.NET MVC is a framework for building web applications 

that applies the general ModelView-Controller pattern to 
the ASP.NET framework.



MVC as Applied to Web Frameworks
● The MVC pattern is used frequently in web programming. With 

ASP.NET MVC, it’s translated roughly as:
● Models: These are the classes that represent the domain you 

are interested in. 
● View: This is a template to dynamically generate HTML.
● Controller: This is a special class that manages the 

relationship between the View and the Model. 



MVC 4 Overview
● The MVC 4 release built on a pretty mature base and is 

able to focus on some more advanced scenarios. Some top 
features include:

1. ASP.NET Web API
2. Enhancements to default project templates Mobile project 

template using jQuery Mobile
3. Display modes
4. Task support for asynchronous controllers
5. Bundling and minification



The Road to MVC 5
● In the five years since ASP.NET MVC 1 was released in 

March 2009, we’ve seen five major releases of ASP.NET MVC 
and several more interim releases. To understand ASP.NET 
MVC 5, it’s important to understand how we got here. 



ASP.NET MVC 5 OVERVIEW
● MVC 5 was released along with Visual Studio 2013 in 

October 2013. The main focus of this release was on a 
“One ASP.NET” initiative and core enhancements across the 
ASP.NET frameworks. Some of the top features include:

1. One ASP.NET
2. New Web Project Experience
3. ASP.NET Identity
4. Bootstrap templates
5. Attribute Routing
6. ASP.NET scaffolding
7. Authentication filters
8. Filter overrides



Traditional ASP.NET Web Forms development was great in 
principle, but reality proved more complicated:

Problem 1 - View State weight

Problem 2 - Page life cycle

Problem 3 - Separation of pages

Problem 4 - Limited control over HTML

Problem 5 - Leaking abstraction

Problem 6 - Low testability

Why MVC?
What Is Wrong with ASP.NET Web Forms?



Problem 1 - View State weight: 

● The actual mechanism for maintaining state across 
requests (known as View State) results in large blocks of 
data being transferred between the client and server. 

● This data can reach hundreds of kilobytes in even modest 
Web applications, and it goes back and forth with every 
request, leading to slower response times and increasing 
the bandwidth demands of the server.

Back↲



Problem 2 - Page life cycle: 

● The mechanism for connecting client-side events with 
server-side event handler code, part of the page life 
cycle, can be extraordinarily complicated and delicate. 

● Few developers have success manipulating the control 
hierarchy at runtime without getting View State errors or 
finding that some event handlers mysteriously fail to 
execute.

Back↲



Problem 3 - False sense of separation of concerns: 

● ASP.NET Web Forms’ code-behind model provides a means to 
take application code out of its HTML markup and into a 
separate code-behind class. 

● This has been widely applauded for separating logic and 
presentation, but, in reality, developers are encouraged 
to mix presentation code (for example, manipulating the 
serverside control tree) with their application logic 
(for example, manipulating database data) in these same 
monstrous code-behind classes. The end result can be weak 
and unclear.

Back↲



Problem 4 - Limited control over HTML: 

● Server controls render themselves as HTML, but not 
necessarily the HTML you want. 

● In early versions of ASP.NET, the HTML output failed to 
meet with Web standards or make good use of Cascading 
Style Sheets (CSS), and server controls generated 
unpredictable and complex ID attribute values that are 
hard to access using JavaScript. These problems are much 
improved in recent Web Forms releases, but it can still 
be tricky to get the HTML you expect.

Back↲



Problem 5 - Leaking of abstraction: 

● Web Forms tries to hide HTML and HTTP wherever possible. 
As you try to implement custom behaviors, you frequently 
fall out of the abstraction, which forces you to 
reverse-engineer the postback event mechanism or perform 
obtuse acts to make it generate the desired HTML. 

● Plus, all this abstraction can act as a frustrating 
barrier for competent Web developers.

Back↲



Problem 6 - Low testability: 

● The designers of Web Forms could not have anticipated 
that automated testing would become an essential 
component of software development. 

● Not surprisingly, the tightly coupled architecture they 
designed is unsuitable for unit testing. Integration 
testing can be a challenge, too.

Back↲



Key Benefits of ASP.NET MVC 
In October 2007, Microsoft announced a new MVC Web 
development platform, built on the core ASP.NET platform, 
clearly designed as a direct response to the evolution of 
technologies such as a reaction to the criticisms of Web 
Forms. 

The following sections describe how this new platform 
overcame the Web Forms limitations and brought ASP.NET back 
to the cutting edge.



1) The MVC Pattern (MVC Architecture)



Model View Controller
● Whenever user made request for MVC page. 
● Request directly go to controller, controller finds 

proper method and execute that method in this case no 
events executes in background.

● Request come through a method to class so we are not 
calling .aspx file we are calling method. So that will 
provide less response time. Class that handles 
communication from the user, overall application flow, 
and application specific logic.

Note : So what “Does Stuff” mean? It can be logic execution, 
authenticating someone, database activities, creating an 
image etc.



● Model is a class. 
● Model is just a packaging and sending data. Model is not 

directly connected with database, it can be just a 
collection, and it could be an array or a string. It is 
something that controller is passing to View through 
Model. 

● View take data sent by Model and turn it in to HTML or 
other file like JSON. 

● View don’t have any logic. It is just a template. It is 
pure HTML which decides how the UI is going to look. 

● View have to rendered by a particular type of View 
engine.

Model View Controller



2) Less Response Time:
● When you are building an application with asp.net MVC there 

will be no illusions of state like page init, page load, 
page unload. There is no such thing as page life cycle.

● No conversion in controls

Server side Text box (ASP): 

<asp:TextBox ID="TextBox1" runat="server" BackgroudColor = 
“Red” Text=”Hello World”>

Converts in HTML:

<input name="TextBox1" type="text" 
style=”background-color:red” Value=”Hello World”>



If you see for every request there is a conversion logic 
which runs and converts the server controls to HTML output.



Control over HTML and HTTP
Drag and drop environment is easy to use but 
some short of time it will become messy MVC 
give structure that separate all the stuff 
right from the beginning. 

ASP.NET MVC produces clean, standards-compliant 
markup. Its built-in HTML helper methods 
produce standards compliant output, but there 
is a more significant philosophical change 
compared with Web Forms.



Testability
Better support for test-driven development (TDD) so unit 
testing is easier with MVC

The style of URLs has evolved as Web application technology 
has improved. URLs like this one:

/App_v2/User/Page.aspx?action=show%20prop&prop_id=82742

are increasingly rare, replaced with a simpler, cleaner 
format like this:

/to-rent/chicago/2303-silver-street

Powerful Routing System



Routing in MVC
Routing is a pattern 
matching process that 
monitors the requests 
and determines what to 
do with each request. 
In other words we can 
say Routing is a 
mechanism for mapping 
requests within our 
MVC application.



Understanding Routes in Detail (Mapping)
When Visual Studio creates the MVC project, it adds 
some default routes to get us started. You can request 
any of the following URLs, and they will be directed 
to the Index action on the HomeController: 

You can see and edit your routing configuration by 
opening the RouteConfig.cs file in the App_Start 
folder.  



Routeconfig.cs file



Configuring Routes with Convention Routing
MapRoute Method

public static Route MapRoute

(string name,  

string url, 

object defaults, 

object constraints, 

string[] namespaces);  



Regular Expression Meta Character



Example
routes.MapRoute(
                 name: "Home",
                 url: "Home/Welcome/{name}/{id}",

defaults: new { controller = "Home", action = "Welcome", 
name = UrlParameter.Optional, id = UrlParameter.Optional,
constraint: new {id = @”/d{2}” });    

routes.MapRoute(  
             name: "Default",  
             url: "{controller}/{action}/{id}",  

defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional } );



Attribute Routing
● Attribute routing is the new type of routing in ASP.NET 

MVC 5. 
● According to the name Attribute Routing, one can suppose 

that this type of methodology will use Attribute to 
define routes.



Why do we need Attribute Routing?
● When our application is large enough to have more than 

two routes, then it will become very complex to make each 
route separately. For each route, you have to write 5 
lines so it will consume your time and disturb your 
development time.

● Attribute Routing is easy to use and help in mapping the 
same action method with two routes.

● You don’t have to take care of the routing flow i.e, from 
most specific to most general. All here is the attribute 
you use the action method.



Enable Attribute Routing
● If you want to use Attribute Routing, you have to enable 

it by calling MapMvcAttributeRoutes on the 
RouteCollection for your app (usually this is done in 
RouteConfig):

public static void RegisterRoutes(RouteCollection routes)
{
    routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
    routes.MapMvcAttributeRoutes();
}



Add Route Attribute in controller
A [Route] attribute is used at the top of the action method.

File Name : HomeController.cs

Syntax:
[Route(url)]
Declaration of action method

       



Example
[Route("stud")]
public ActionResult Index()
{
   return View();
}
[Route("stud/detail")]
public string StudDetail()
{
     return "This is Student Detail Page";
}



Route with Parameters    
Syntax:
[Route(url/{parameter_name})]

Example:
[Route("stud/exam/{sem}/{branch}")]
public string Exam(int sem, string branch)
{ 

return "Semester : "+ sem + "<br> Branch : " + branch; 
}



Optional parameter 
Syntax:
[Route(url/{parameter_name?})]

Example:
[Route("stud/exam/{sem?}/{branch?}")]
public string Exam(int sem, string branch)
{ 

return "Semester : "+ sem + "<br> Branch : " + branch; }



Default value in parameter
Syntax:
[Route(url/{parameter_name=value})]

[Route("stud/exam/{sem=-1}/{branch=no branch}")]
public string Exam(int sem = 1)
{     

return "Semester : "+ sem; 
}



Route Constraints
Route constraints let you restrict how the parameters in the 
route template are matched. The general syntax is 
"{parameter:constraint}". 

For example:
[Route("users/{id:int}")]
public User GetUserById(int id) { ... }



Constraint : alpha
Description : Matches uppercase or lowercase Latin alphabet 
characters (a-z, A-Z)
Example : {x:alpha}

Constraint : length

Description : Matches a string with the specified length or 

within a specified range of lengths.

Example : {x:length(6)} {x:length(1,20)}

Constraint : min, max

Example : {x:min(1):max(10)}



Constraint : regex
Description : Matches a regular expression.
Example : {x:regex(^\d{3}-\d{3}-\d{4}$)}

Example : {x:bool}, {x:datetime}, {x:decimal}, {x:double}, 
{x:float}, {x:int}, {x:long}



Route Prefix
● What is RoutePrefix?

You may see that many routes have the same portion from 
its start, it means their prefixes are the same. For 
example:

● stud/detail
● stud/exam

Both the above URLs have the same prefix which is stud.
So, rather than repeatedly typing the same prefix, again and 
again, we use RoutePrefix attribute. This attribute will be 
set at the controller level. 



Example
[RoutePrefix("stud")]
public class StudentController : Controller
{ 

[Route("detail")]
//Route: stud/detail

      public string StudDetail()
      {     return "This is Student Detail Page"; }

[Route(“fees”)]
//Route: stud/Fees

      public string Fees()
       { return "This is Fees detail action method”  }
}



Action Results
● It is very important to note that it is the controller’s 

job to tell the ASP.NET MVC Framework what it should do 
next, but not how to do it. 

● This communication occurs through the use of 
ActionResults, the return values which every controller 
action is expected to provide.

● Despite the fact that every controller action needs to 
return an ActionResult, you will rarely be creating them 
manually. 



System.Web.Mvc.Controller base class
Helper Methods
1. Content()
● Returns a ContentResult that renders arbitrary text, 

e.g., “Hello, world!”. Content result returns different 
content's format to view. 

● MVC returns different format using content return like 
HTML format, Java Script format and any other format.

● Example:
return Content(

"<script>alert('This is ContentResult Action 
Result');</script>");



System.Web.Mvc.Controller base class
Helper Methods
2. File()
● Returns a FileResult that renders the contents of a file, 

e.g., a PDF, docx, jpg etc.
3. HttpNotFound()
● Returns an HttpNotFoundResult that renders a 404 HTTP 

status code response.
● Example:

return HttpNotFound();



4. PartialView()
● Returns a PartialViewResult that renders only the content 

of a view (i.e., a view without its layout).
5. Redirect()
● Returns a RedirectResult that renders a 302 (temporary) 

status code to redirect the user to a given URL, 
e.g., “302 http://www.ebuy.com/auctions/recent”. 

6. View()
● Returns a ViewResult that renders a view.

If any of the available ActionResult works for you, you are 
free to create your own!

System.Web.Mvc.Controller base class
Helper Methods



● Filter
● Authentication Filters



Understanding ASP.NET MVC Filters and Attributes
● ASP.NET MVC provides a simple way to inject your 

piece of code or logic either before or after an 
action is executed. 

● This is achieved by decorating the controllers or 
actions with ASP.NET MVC attributes or custom 
attributes.

● An attribute or custom attribute implements the 
ASP.NET MVC filters(filter interface) and can 
contain your piece of code or logic.



When to use Filters?
1. Custom Authentication
2. Error handling or logging
3. User Activity Logging
4. Data Caching
5. Data Compression



Types of Filters
1. Action filters
2. Exception filters
3. Authentication filters and 

Authorization filters (New in 
ASP.NET MVC5)

4. Result filters



ASP.NET MVC - Action Filters
Action filter executes before and after an 
action method executes. 

Action filter attributes can be applied to an 
individual action method or to a controller. 

When action filter applied to controller then 
it will be applied to all the action methods 
in that controller. 



Output Catch (Action Filter)
OutputCache is a built-in action filter 
attribute that can be apply to an 
action method for which we want to 
cache the output. 

Syntax: [OutputCatch(int 
DurationValue)]



For example, output of the following action 
method will be cached for 100 seconds.

Example:

[OutputCache(Duration=100)]

public ActionResult Index()

{     return View(); }



Handle Error (Exception Filter)
● As per the C# we can use try catch 
to handle exception.

● MVC framework provide in build 
filter to handle exception this 
filter known as HandleError 

● HandleError is type of 
ExceptionFilter.



Steps to enable HandleError
● Enable custom error in web.config file

<System.Web>
<CustomError mode=“On”></CustomError>

</System.Web>
● Create Error.cshtml file in shared folder
● Use HandelError attribute in 

Controller/Action/Globally.



Example
[HandleError]
Public ActionResult Index()
{

throw new Exception(“Something is worng”);
}



● Validation Attributes
● How viewbag falls short 
● Understanding Viewbag, viewdata, and view 

data dictionary, viewmodels, 
● Samples layouts View state
● Specifying a partial view



Implement Data Validation in MVC
ASP.NET MVC uses DataAnnotations attributes to implement 
validations. DataAnnotations includes built-in validation 
attributes for different validation rules, which can be applied 
to the properties of model class. 

ASP.NET MVC framework will automatically enforce these 
validation rules and display validation messages in the view.

Namespace : 

using System.ComponentModel.DataAnnotations;



DataAnnotations Attributes of Validation
● Required
● Indicates that the property is a required field

○ Example: 

○ (in model)

[Required(ErrorMessage="Please enter First Name")]

public string FirstName { get; set; }

○ (in view)

@Html.TextBoxFor(m => m.FirstName)

@Html.ValidationMessageFor(m => m.FirstName)



● StringLength
● Defines a maximum length for string field.
● Specifies how many number of characters are allowed for 

that particular property. Example:

○ [StringLength(10,MinimumLength = 1,ErrorMessage ="")]

○ public string FirstName { get; set; }
● MaxLength and MinLength

○ Example

○ [MaxLength(3, ErrorMessage = “”)]

○ [MinLength(1 , ErrorMessage = “”)]  

○ publicint Marks { get; set; }



● Range
● Defines a maximum and minimum value for a numeric 

field. Example:

[Range(1,100, ErrorMessage = “”)]

public int Age { get; set; }

● RegularExpression
● Specifies that the field value must match with 

specified Regular Expression. Example:

[RegularExpression(@"\d{10}", ErrorMessage="Please enter valid 
mobile number")]

public string Mobile { get; set; }



● DataType
● This attribute specifies the type of the property like 

emailId OR phoneNumber

● [DataType(DataType.EmailAddress)]
● public string Email { get; set; }

or
● [EMailAddress]
● public string Email { get; set; }



● Compare
● We have to set the compare attribute in the property 

which we want to be compared to any other property. We 
pass the property name to this compare attribute.

● Example:
● [Compare("confirmPassword",ErrorMessage = "Password 

mismatch")
● public string Password {get; set;}

● public string confirmPassword {get; set; }



Attributes of MVC
● Display
● This attribute is used to enhance the 

current property for which the attribute 
needs to be applied.

● Example:
[Display(Name = "First Name", 
Description="First Name of the person")]
public string FirstName { get; set; }



● DisplayFormat
● This attribute is used to specify how 
the fields should be displayed and 
formatted

● [DisplayFormat(DataFormatString = 
"{0:C}")]

● public Decimal ListPrice { get; set; }



Example of Validation Attributes
● Model Properties: 
● Name (should be minimum 5 char or maximum 

50 character)
● Age (should be in between 18 to 60)
● Mobile (should be in 10 digit)
● Email (format checking)
● WebSite (ulr of web site)



Class ValidationDemo
{

[StringLength(50,MinimumLength = 5,ErrorMessage = "Name 
length should be 5 to 50)]

public string Name {get;set;}

[Range(18,60,ErrorMessage = "Age should be in between 18 to 
60")]

public int Age {get; set; }

[RegularExpression(@"/d{10}",ErrorMessage = "Invalid Mobile 
Number")]

public string Mobile { get; set;}



[RegularExpression(@"^([a-zA-Z0-9\-\.]+)@([a-zA-Z0-9\-\.]
+)\.([a- zA-Z]{2,5})$",ErrorMessage = "Invalid e-mail id")]

public string EMail {get; set; }

[DataType(DataType.Url)]
[RegularExpression(@"^((https?|ftp|smtp):\/\/)?(www.)?[a-

z0-9]+\.[a- z]+(\/[a-zA-Z0-9#]+\/?)*$",ErrorMessage = 
"Invalid Web site address")]

public string WebSite { get; set; }
}



ASP.NET MVC - ViewBag
● ViewBag can be useful when you want 
to transfer temporary data (which is 
not included in model) from the 
controller to the view. 





ASP.NET MVC - ViewData
● ViewData is similar to ViewBag. It is 

useful in transferring data from Controller 
to View.

● ViewData is a dictionary which can contain 
key-value pairs where each key must be 
string.

● The following figure illustrates the 
ViewData.





Example
ViewData.Add("Id", 1);

ViewData.Add(new KeyValuePair<string, 
object>("Name", "Bill"));



ASP.NET MVC - TempData
● TempData is useful when you want to 
transfer non-sensitive data from one 
action method to another action method 
of the same or a different controller 
as well as redirects.

● You can add a key-value pair in 
TempData. 



● TempData will be 
cleared out 
after second 
request.

● Call TempData.Ke
ep() to retain 
TempData values 
in a third 
consecutive 
request.



Example
public ActionResult Index() 
{ 

TempData["name"] = "Test data"; 
TempData["age"] = 30; 
return View();

} 
public ActionResult About() 
{

string userName;
userName = TempData["name"].ToString();

}





Layout in MVC (Bootstrap overview)
● An application may contain common parts in the 

UI which remains the same throughout the 
application such as the logo, header, left 
navigation bar, right bar or footer section. 

● ASP.NET MVC introduced a Layout view which 
contains these common UI parts, so that we 
don't have to write the same code in every 
page. 

● The layout view is same as the master page of 
the ASP.NET webform application.





● The razor layout view has same extension as 
other views, .cshtml or .vbhtml. 

● Layout views are shared with multiple 
views, so it must be stored in the Shared 
folder. 

● For example, when we created our first MVC 
application in the previous section, it 
also created _Layout.cshtml in the Shared 
folder.

https://www.tutorialsteacher.com/mvc/create-first-asp.net-mvc-application
https://www.tutorialsteacher.com/mvc/create-first-asp.net-mvc-application


Razor Syntax in _Layout.cshtml 
● @ViewBag.Title - The page title will be inserted 

here.
● @Url.Content(): Content() method is a method of 

UrlHelper class. It converts a virtual (relative) 
path to an application absolute path. 

● @Html.ActionLink(): The easiest way to render an 
HTML link in is to use the HTML.ActionLink() 
helper.

● @RenderBody() - The page content will be rendered 
here.



Partial View
● Partial view is a reusable view, which can 

be used as a child view in multiple other 
views. 

● It eliminates duplicate coding by reusing 
same partial view in multiple places. You 
can use the partial view in the layout 
view, as well as other content views.



Render Partial View
● You can render the partial view in the parent 

view using html helper methods: 
● Html.Partial() and Html.RenderPartial(): helper 

method renders the specified partial view.
Example: Html.Partial(string partialViewName)
Example: Html.RenderPartial(String 

partialViewName)
● RenderAction()

Example: Html.RenderAction("Category","Home")



References
Web Site:
https://docs.microsoft.com/en-us/aspnet/mvc/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introductio
n.htm
https://www.guru99.com/mvc-tutorial.html
https://en.wikipedia.org/wiki/ModelViewController
https://www.guru99.com/mvc-tutorial.html
https://www.geeksforgeeks.org/mvc-design-pattern/

Book:
Pro ASP.NET MVC 5.0

https://docs.microsoft.com/en-us/aspnet/mvc/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.guru99.com/mvc-tutorial.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://www.guru99.com/mvc-tutorial.html
https://www.geeksforgeeks.org/mvc-design-pattern/

