8051 TIMER & |
PROGRAMMINGaIN ASSE

PROGRAMMING 8051 TIMERS

 Basic registers of the timer
- Timer 0 and Timer 1 are 16 bits
wide
- each 16-bit timer is accessed as

two separate registers of low byte
and high byte.

PROGRAMMING 8051 TIMERS

e Timer O registers

- low byte register is called TLO (Timer O low byte)
and the high byte register is referred to as THO
(Timer 0 high byte)

- can be accessed like any other register, such as A,
B, RO, R1, R2, etc.

- "MOV TLO, #4 FH" moves the value 4FH into TLO

- "MOV R5, THO" saves THO (high byte of Timer 0) in
R5

PROGRAMMING 8051 TIMERS

THO

TLO

D15 |D14|D13|D12

DIIIDIOI D9 | D8 “ D7 | D6 I D5 | D4

D3|D2|D1|D0

Timer O Registers

PROGRAMMING 8051 TIMERS

e Timer 1 registers
- also 16 bits

- split into two bytes TL1 (Timer 1
low byte) and TH1 (Timer 1 high
byte)

- accessible in the same way as the
registers of Timer O.

SECTION 9.1: PROGRAMMING 8051
TIMERS

THI

I TLI

D15 IDI4ID13 |D12

DllIDlOI D9 | DS || D7 | D6 I D5 | D4

D3ID2ID1IDO

Timer 1 Registers

PROGRAMMING 8051 TIMERS

e TMOD (timer mode) register

- timers 0 and 1 use TMOD register to set operation
modes (only learn Mode 1 and 2)

- 8-bit register
- lower 4 bits are for Timer O
- upper 4 bits are for Timer 1

- lower 2 bits are used to set the timer mode
 (only learn Mode 1 and 2)

- upper 2 bits to specify the operation
 (only learn timer operation)

PROGRAMMING 8051 TIMERS

(MSB) (LSB)
GATE C/T M1 | MO GATEI C/T N1 | MO

Timer 1 | Timer O

GATE Gating control when set. The timer/counter is enabled only while the INTx pin
is high and the TRx control pin is set. When cleared, the timer is enabled
whenever the TRx control bit is set.

C/T Timer or counter selected cleared for timer operation (input from internal
system clock). Set for counter operation (input from Tx input pin).

M1 Mode bit 1
MO Mode bit O

M1 MO MMode Operating Mode
0 0 0 13-bit timer mode

8-bit timer/counter THx with TLx as 5-bit prescaler
0 1 1 16-bit timer mode

16-bit timer/counters THx and TLx are cascaded: there is
no prescaler

1 0] 2 8-bit auto reload
8-bit auto reload timer/counter; THx holds a value that 1s
to be reloaded into TLx each time it overflows.

1 1 3 Split timer mode

TMOD Register

PROGRAMMING 8051 TIMERS

 Clock source for timer
- timer needs a clock pulse to tick

- If C/T = 0, the crystal frequency attached to the 8051 is
the source of the clock for the timer

- frequency for the timer is always 1/12th the frequency of
the crystal attached to the 8051

- XTAL = 11.0592 MHz allows the 8051 system to
communicate with the PC with no errors

- In our case, the timer frequency is 1MHz since our
crystal frequency is 12MHz

PROGRAMMING 8051 TIMERS

e Mode 1 programming
- 16-bit timer, values of 0000 to FFFFH
- TH and TL are loaded with a 16-bit initial value

- timer started by "SETB TRO" for Timer 0 and "SETB TR1"
for Timer |

- timer count ups until it reaches its limit of FFFFH
- rolls over from FFFFH to 0000H
- sets TF (timer flag)

- when this timer flag is raised, can stop the timer with
"CLR TRO" or "CLR TR1“

- after the timer reaches its limit and rolls over, the
registers TH and TL must be reloaded with the original
value and TF must be resetto 0

PROGRAMMING 8051 TIMERS

I LIl overflow
Timer 11 tlag
externa TH1|TL1 TF1
o TL1[—|TFL
pin 3.5 ‘ ,

P TF1 goes high

C/T=1 TRI whien FEEF—=>0

Timer 1 with External Input (Mode 1)

PROGRAMMING 8051 TIMERS

 Steps to program in mode 1

- Set timer mode 1 or 2

- Set TLO and THO (for mode 1 16 bit
mode)

- Set THO only (for mode 2 8 bit auto
reload mode)

- Run the timer
- Monitor the timer flag bit

In the following program, we are creating a square wave of
50% duty cycle (with equal portions high and low) on the
P1.5 bit.

Timer O is used to generate the time delay

01 MOV TMOD, #01 :Timer 0, mode 1({16-hit mode)
g2 HERE: MOV TLO.#0FZH +TLO: = FZH, the Low Ivte

03 MOV THO,#0FFH :THO = FFH, the High bvte

ge CPL P1.5 sadale F1o5

05 ACALL DELAY

06 =JMP HERE siomdk . TL.oagain

07

o8 DELAY: :delay using Timer 0O

g3 SETH TROD selari -Timsi 0

10 AGAIN: JNB TFO,AGAIN ;monitor Timer 0 flag until 1t rolls over
4 CLE TRO :stop Timer 0O

12 CLE TED :clear Timer 0 flag

i3 RET

14
15 END

PROGRAMMING 8051 TIMERS

* Finding values to be loaded into
the timer
- XTAL = 11.0592 MHz (12MHz)

- divide the desired time delay by
1.085F s (1+ s) togetn

- 65536-n = N
- convert N to hex yyxx
-set TL = xx and TH = yy

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

e T =1/50 Hz = 20 ms

e 1/2 of it for the high and low
portions of the pulse = 10 ms

*10 ms/1.085 us = 9216

e 65536 -9216 = 56320 In decimal
= DCOOH

e TL =00 and TH = DCH

 The calculation for 12MHz crystal
uses the same steps

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

o1 MOy TMOD,#10H sErmer: 1 mode 1 fI6-Li1t]

2 AGAIN: MOV TL1.#00 *TL1 =00, Low byvis

03 MOV THI1,+#0DCH +TH1 = 00CH: High birts

04

05 SETE TR1 +SEatt Timer]

0 BACE: JHWB TF1.BACK :stay until timer rolls over
gz CLR TR1 :stop Timer 1

gg CPL P2.3 seompliment P23 th gat hi. lo
g8 CLE TF1 solear Tiner 1 :fFlag

10 5JMP AGAIN :reload timer since

11 :mode 1 1s not auto reload

12
13 EMND

PROGRAMMING 8051 TIMERS

 Generating a large time delay

- size of the time delay depends
e crystal frequency
e timer's 16-bit register in mode 1

- largest time delay is achieved by
making both TH and TL zero

Examine the following program and find the time
delay in seconds. Exclude the time delay due to the
Instructions in the loop.

0 MOV TMOD, #10H 'Timer 1, mode 1(16-bit)
MOV R3, %200 ccounter for multiple delay

i i

MOV TH1, #01H 'TH1 = 01, High byte

0
0
M AGAIN: MOV TL1,#08H TL1 = 08, Low byte
05
6 SETB TR1 retart Timer 1

o BACK: JNB TF1,BACK stay until timer rolls over
® CLR TRI ;8top Timer 1

© CLR TFl clear Timer 1 flag

10 DINZ R3,AGAIN '1f R3 not zero then

1 reload timer

12 END

Examine the following program and find the time delay in
seconds. Exclude the time delay due to the instructions in the
loop.

o MOV TMCD, #10H CTimer 1, mode 1[16-bir)

2 MOW R3,#200 ;counter for multiple delay
03

4 AGAIN: MOV TL1,#USH TLL1 = @&, Low byte

s MOV TH1, #01H CTHLE = Bl Highe bybs

e SETE TR1 cavart Timer 1

o7 BACK:. JNB TF1,BACK etay until Fimer Tolls aver
;8 CLE TR1 arteE Timer A

1 CLR TF1 ;clear Timer 1 flag

10 DINZ R3, AGAIN : E K3 ngt Zerw then

11 reload timer
iz END

13

"TH-TL=0108H=264 1in decimal

5 65536-264=65272

s 6527 2u] . 08bug=Y0.820ms

17 . 200x70.820me=14.164024=
18

PROGRAMMING 8051 TIMERS (for
iInformation only)

e Mode O
- works like mode 1
- 13-bit timer instead of 16-bit

- 13-bit counter hold values 0000 to
1FFFH

- when the timer reaches its
maximum of 1FFFH, it rolls over to
0000, and TF is set

PROGRAMMING 8051 TIMERS

e Mode 2 programming
- 8-bit timer, allows values of 00 to FFH
- TH is loaded with the 8-bit value
- a copy is given to TL
- timer is started by ,"SETB TRO" or "SETB TR1“
- starts to count up by incrementing the TL register
- counts up until it reaches its limit of FFH
- when it rolls over from FFH to 00, it sets high TF
- TL is reloaded automatically with the value in TH
- To repeat, clear TF
- mode 2 is an auto-reload mode

PROGRAMMING 8051 TIMERS

e Steps to program in mode 2

. load TMOD, select mode 2

. load the TH

. start timer

. monitor the timer flag (TF) with

A WNRK

IIJNB)I
5. get out of the loop when TF=1
6. clear TF
7.go back to Step 4 since mode 2 is

auto-reload

PROGRAMMING 8051 TIMERS

e Assemblers and negative
values

- cah let the assembler calculate
the value for TH and TL which
makes the job easier

- "MOV TH1, # -100", the

assembler will calculate the -100
= 9CH

- "MOV TH1,#high(-10000) "
- "MOV TL1,#low(-10000) "

COUNTER PROGRAMMING

. C/T bit in TMOD register

C/T bit in the TMOD regqister decides the source of the clock for
the timer

- C/T = 0, timer gets pulses from crystal

- C/T =1, the timer used as counter and gets pulses from
outside the 8051

- C/'I;I—151 the counter counts up as pulses are fed from pins 14
an

- pins are called TO (Timer O input) and T1 (Timer 1 input)
- these two pins belong to port 3

- Timer 0, when C/T = 1, pin P3.4 provides the clock pulse and
the counter counts up for each clock pulse coming from that

pin
- Timer 1, when C/T = 1 each clock pulse coming in from pin
P3.5 makes the counter count up

COUNTER PROGRAMMING

Pin Port Pin Function Description
14 P34 T0 Timer/Counter 0 external input
15 P3.5 T1 Timer/Counter 1 external mput
(MSB) (LSB)
GATE | C/T MI_| Mo T GATE | C/T M1 | MO
Timer 1 Timer O

Port 3 Pins Used For Timers 0 and 1

PROGRAMMING 8051 TIMERS

J LI L overflow
Timer 01 flag
externa THO| TLO TFO
— TLO
pin 3.4 ‘

_ TFO goes high
C/T=1 TRO when FFEF =0

Timer O with External Input (Mode 1)

COUNTER PROGRAMMING

[L1 overflow flag

Timer 1
external —{1]
mput |_

pin 3.5

reload

[THI |

C/T =1 TF1 goes high
when FF =0
Timer 1 with External Input (Mode 2)

SECTION 9.2: COUNTER
PROGRAMMING

I LI L overflow flag
Timer |)
external | TL1 |
mput |_
pin 3.5 TR 1 reload

[THI |

C/T=1 TF1 goes high
when FF =0

COUNTER PROGRAMMING

For Timer 0

SETB TRO = SETB TCON .4
CLR TRO = CLR TCONA4
SETB TFO = SETB TCON.5
CLR TFO = CLR TCON.5
For Timer 1
SETB TRl = SETB TCON.6
CLR TRl = CLR TCON.6
SETB TF1 = SETB TCON.7
CLR TF1 = CLR TCON.7

TCON: Timer/Counter Control Register

TF1 | TR1 | TF0 | TRO | IEI IT1 IE0 ITO

Port 3 Pins Used For Timers 0 and 1

COUNTER PROGRAMMING

e TCON register
- TRO and TR1 flags turn on or off the timers

- bits are part of a register called TCON (timer
control)

- upper four bits are used to store the TF and TR
bits of both Timer 0 and Timer 1

- lower four bits are set aside for controlling the
interrupt bits

- "SETB TRI" and "CLR TRI“
- "SETB TCON. 6" and "CLR TCON. 6“

COUNTER PROGRAMMING

For Timer 0

SETB TRO = SETB TCON.4
CLR TRO = CLR TCONA4
SETB TFO = SETB TCON.5
CLR TFO = CLR TCON.5
For Timer 1
SETB TRl = SETB TCON.6
CLR TRl = CLR TCON.6
SETB TF1 = SETB TCON.7
CLR TF1 = CLR TCON.7

TCON: Timer/Counter Control Register

TF1 | TRI | TF0 | TRO | IEI IT1 IE0 ITO

Equivalent Instructions for the Timer Control Register (TCON

COUNTER PROGRAMMING

e The case of GATE =1 in TMOD

- GATE = 0, the timer is started with
instructions "SETB TRO" and "SETB
TR1“

- GATE = 1, the start and stop of the
timers are done externally through
pins P3.2 and P3.3

- allows us to start or stop the timer
externally at any time via a simple
switch

COUNTER PROGRAMMING

osc)lcgliﬁ' .BI._TOH ' +12 —
C/T=0

TOIN
Pin 3.2
TRO hY
L/
I~
Gate | P 3_
INTO Pin
Pin 3.2

Timer/Counter O

COUNTER PROGRAMMING

XTAL >
OSCILLATOR +12 =
CT=0

Timer/Counter 1

Assuming that clock pulses are fed into pin T1, write a
program for counter 1 in mode 2 to count the pulses and
display the state of the TL1 count on P2. (for information
only)

01 MOV TMOD, #01100000B ;counter 1, mode 2,.CrT=1
02 rexternal pulses

03 MOV THI1.,#0 sxlear THT

gi. SETE P3.5 :make T1 input

08 AGAIN: SETH TE1 :start the counter

06 BaCE: MOV A,TL1 sget copv af count TL1
07 MOV P2.A sdisplay 16 oo port 2
0 JWE TF1,BACK :keep doing 1t 1f TF=0
g3 CLR TR1 sStap The Fouhnter 1

i CLR TF 1 ;make TEF=0

11 =SJMP AGATH ;keep doing 1t

12
13 EHND
14

Interrupts vs. Polling

 An interrupt is an external or
internal event that interrupts the
microcontroller

- To Inform It that a device needs its
service

* A single microcontroller can serve
several devices by two ways “

- Interrupts

e Whenever any device needs its servi
the device notifies the microcontrolle
by sending it an interrupt signal

e Upon receiving an interrupt signal, t
mMmicrocontrallar intarriinte whatravvar i

Interrupts vs. Polling (cont.)

- The program which is associated with the interrupt is
called the interrupt service routine (ISR) or interrupt
handler

- Polling

The microcontroller continuously
monitors the status of a given device
eX. JNB TF, target

When the conditions met, it performs the
service

After that, it moves on to monitor the
next device until every one is serviced

Polling can monitor the status of several devic
and serve each of them as certain conditions
met

The polling method is not efficient, sin

I I PR o B PR B [I |

Interrupts vs. Polling (cont.)

 The advantage of interrupts is:

- The microcontroller can serve many
devices (not all at the same time)

e Each device can get the attention
of the microcontroller based on
the assigned priority

e For the polling method, it is not
possible to assign priority since it
checks all devices in a round-rob
fashion

- The microcontroller can also igno
(mask) a device request for servi

a Thimc i~ mnAtr m"Aac~iIl”RlA FArr FlaAa A~AAdL

Interrupt Service Routine

 For every interrupt, there must be
an interrupt service routine (ISR),
or interrupt handler
- When an interrupt is invoked, the

microcontroller runs the interrupt
service routine

- There is a fixed location in memory
that holds the address of its ISR
e The group of memory locations set

aside to hold the addresses of ISRs |
called interrupt vector table

Steps in Executing an

Interrupt
e Upon activation of an interrupt,

the microcontroller goes through:

- |t finishes the instruction it is
executing and saves the address of
the next instruction (PC) on the
stack

- |t also saves the current status of all
the reqgisters internally (not on th
stack)

-1t jumps to a fixed location
memory, called the interrupt ve
table, that holds the address of

1D

i
!

Steps in Executing an
Interrupt (cont.)

-t gets the address of the ISR from the
Interrupt vector table and jumps to ISR

e [t starts to execute the interrupt service
subroutine until it reaches the last instruction
of the subroutine which is RETI (return from
Interrupt)

-Upon executing the RETI instruction,
the microcontroller returns to the plac
where it was interrupted

e |t gets the program counter (PC) address
from the stack by popping the top two byt
of the stack into the PC

e |t starts to execute from that address

Six Interrupts in 8051

e Six Interrupts are allocated as follows
- Reset - power-up reset

- Two interrupts are set aside for the timers:

* One for timer O and one for timer 1

- Two interrupts are set aside for hardware
external interrupts

e P3.2 and P3.3 are for the external hardware
interrupts INTO (or EX1), and INT1 (or EX2)
- Serial communication has a single

interrupt that belongs to both receive and
transfer

Enabling and Disabling an
Interrupt

 Upon reset, all interrupts are disabled
(masked)

- None will be responded to by the
microcontroller if they are activated

e The interrupts must be enabled by software
In order for the microcontroller to respond to
them
- There iIs a reqister called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking)
the interrupts

D7

DO

EA - ET2 ES ETI | EXI ETO | EXO0

EA IE.7 Disables all interrupts. If EA = (), no interrupt is acknowledged.
If EA = I, each interrupt source is individually enabled or disabled
by setting or clearing its enable bit.

- IE.6 Not implemented, reserved for future use *

ET2 IES Enables or disables Timer 2 overflow or capture interrupt (8052 only).

ES IE4 Enables or disables the serial port interrupt.

ET1 IE3 Enables or disables Timer | overflow interrupt.

EX1 [E2 Enables or disables external interrupt 1.

ETO IE.I Enables or disables Timer () overflow interrupt.

EX0 IE0 Enables or disables external interrupt 0.

*¥User software should not write 1s to reserved bits. These bits may be used
in future flash microcontrollers to invoke new features.

Figure 11-2. 1E (Interrupt Enable) Register

Enabling and Disabling an
Interrupt (cont.)

* To enable an interrupt, we take
the following steps:

- Bit D7 of the IE register (EA) must
be set to high to allow the rest of
register to take effect

- The value of EA

e If EA = 1, interrupts are enabled and
will be responded to if their
corresponding bits in IE are high

e If EA = 0, no interrupt will be respon
to, even if the associated bit in the |
register is high

Timer Interrupts

 The timer flag (TF) is raised when the
timer rolls over

- In polling TF, we have to wait until the
TF is raised

 The microcontroller is tied down while
waiting for TF to be raised, and can not do
anything else

- Using interrupts to avoid tying down the
controller

e If the timer interrupt in the IE register is
enabled, whenever the timer rolls over, TF
raised

Timer Interrupts (cont.)

 The microcontroller is interrupted in
whatever it is doing, and jumps to the
interrupt vector table to service the ISR

* In this way, the microcontroller can do other
until it is notified that the timer has rolled
over

TFO Timer 0 Interrupt Vector TF1 Timer 1 Interrupt Vector

e — H
I umps to BoorH .T umps to Bo1

External Hardware

Interrupts
* The 8051 has two external
hardware interrupts
- Pin 12 (P3.2) and pin 13 (P3.3) of
the 8051

e Desighated as INTO and INT1
e Used as external hardware interrupts

- The interrupt vector table locations
0O003H and 0013H are set aside for
INTO and INT1

- There are two activation levels fo
the external hardware interrupts

e Level trigged

Level-Triggered Interrupt

 INTO and INT1 pins are normally
high
- If a low-level signal is applied to
them, it triggers the interrupt
 The microcontroller stops whatever it is

doing and jumps to the interrupt vector
table to service that interrupt

 The low-level signal at the INT pin mus
be removed before the execution of t
last instruction of the ISR, RETI

- Otherwise, another interrupt will be
generated

* This is called a level-triggered or le
activvated interriint and i€ the defariil

Sampling Low Level-
Triggered Interrupt

e P3.2 and P3.3 are used for normal
/O

- Unless the INTO and INT1 bits in the
IE register are enabled

e After the hardware interrupts are
enabled, the controller keeps sampling
the INTn pin for a low-level signal once
each machine cycle

 The pin must be held in a low state u
the start of the execution of ISR

- If the INTn pin is brought back to a logic
high before the start of the execution of
there will be no interrupt

e |lF INTNn nin ic laft at A loAaic low afrar

Sampling Low Level-
Triggered Interrupt (cont.)

 To ensure the activation of the
hardware interrupt at the INTn pin,

- The duration of the low-level signal
Is around 4 machine cycles, but no
more

e This is due to the fact that the level-
triggered interrupt is not latched

* Thus the pin must be held in a low sta
L 1 MC

“ > 4 machine cycles

To INTO orx
1.085us INT1 pins

4 % 1.0851us

note: On reset. ITO (TCON.0) and IT1 (TCON.2) are both
low. making external interrupt level-triggered

Edge-Triggered Interrupt

 To make INTO and INT1 edge-
triggered interrupts, we must
program the bits of the TCON
register

- The TCON register holds the ITO and
IT1 flag bits that determine level- or
edge-triggered mode of the
hardware interrupt

e |ITO and IT1 are bits DO and D2 of TCO

- They are also referred to as TCON.O and
TCON.2 since the TCON register is bit-
addressable

D7 D0

TFI [TRI] TF0 | TRO J 1ET [ITI IE0 | 170

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when timer/counter 1
overflows. Cleared by hardware as the processor vectors to
the interrupt service routine.

TR1 TCON.6 Timer | run control bit. Set/cleared by software to turn
timer/counter | on/off.

TFO TCON.S Timer 0 overflow flag. Set by hardware when timer/counter 0
overflows. Cleared by hardware as the processor vectors to
the service routine,

TRO TCONA4 Timer O run control bit. Set/cleared by software to turn
timer/counter 0 on/off.

IE1 TCON.3 External interrupt 1 edge flag. Set by CPU when the
external interrupt edge (H-to-L transition) 1s detected.
Cleared by CPU when the interrupt is processed.
Note: This flag does not latch low-level
triggered interrupts.

IT1 TCON.2 Interrupt 1 type control bit. Set/cleared by software to
specify falling edge/low-level triggered external mnterrupt.

IE0 TCON.I External interrupt 0 edge flag. Set by CPU when external
interrupt (H-to-L transition) edge is detected. Cleared by CPU
when interrupt is processed. Note: This flag does not
latch low-level triggered interrupts.

IT0 TCON.O Interrupt 0 type control bit, Set/cleared by software to specify
falling edge/low-level triggered external interrupt.

Figure 11-6. TCON (Timer/Counter) Register (Bit-addressable)

Sampling Edge-Triggered
Interrupt

 The external source must be held
high for at least one machine
cycle, and then held low for at
least one machine cycle

- The falling edge of pins INTO and
INT1 are latched by the 8051 and
are held by the TCON.1 and TCON.3
bits of TCON register

e Function as interrupt-in-service flags

e It indiratec that the interriint ic hain
Minimum pulse duration to
1 MC 1 MC

detect edge-triggered P o | .
interrupts XTAL=11.0592MHz 1.085us 1.085us

roacnnndad Ftn 1intil thic carmn/icea 1c finichoe

Sampling Edge-Triggered
Interrupt (cont.)

e When the ISRs are finished,
TCON.1 and TCON.3 are cleared

- The interrupt is finished and the
8051 is ready to respond to another
Interrupt on that pin

e During the time that the interrupt
service routine is being executed, the
INTNn pin is ignored, no matter how
many times it makes a high-to-low
transition

- RETI clears the corresponding bit
TCON register (TCON.1 or TCON.3

e There is no heed for instruction CIL R

Serial Communication Interrupt

e Tl (transfer interrupt) is raised when
the stop bit is transferred
- Indicating that the SBUF register is
ready to transfer the next byte
e R| (received interrupt) is raised when
the stop bit is received
- Indicating that the received byte needs

to be picked up before it is lost (overrun
by new incoming serial data

Rl and Tl Flags and

Interrupts
e In the 8051 there is only one

interrupt set aside for serial
commuhnication
- Used to both send and receive data

- If the interrupt bit in the IE register
(IE.4) is enabled, when Rl or Tl is
raised the 8051 gets interrupted
and jumps to memory location
0023H to execute the ISR

S T P T I ol o Y T B 1 i ~ T —~
'I"u_ __\""-\.__

H i | \ \

ET i___ﬁ./

Serial interrupt is invoked by TI or RI flags

0023H

Use of Serial COM in 8051

 The serial interrupt is used mainly
for receiving data and is never
used for sending data serially

- This is like getting a telephone call
In which we need a ring to be
notified

- If we need to make a phone call
there are other ways to remind
ourselves and there is no need for
ringing

- However in receiving the phone c
we must respond immediately no

Interrupt Flag Bits

 The TCON regqister holds four of
the interrupt flags in the 8051

« The SCON register has the Rl and
Tl flags

Table 11-2: Interrupt Flage Bits for the 8051/52

Interrupt Ilag SFR Register Bit
External 0 [EO TCON.I]

External |] TCONJ

Timer 0 TFO TCONS

Timer | TF1 TCON.7

Serial port Tl SCON.1

Timer 2 TF2 T2CON.7 (AT89C52)

Timer 2 EXF2 T2CON.6 (ATR9CS2)

Interrupt Priority

* When the 8051 is powered up,
the priorities are assignhed

- In reality, the priority scheme is
nothing but an internal polling
seguence in which the 8051 polls
the interrupts in the sequence listed

Table 11-3: 8051/52 Interrupt Priority Upon Reset

Highest to Lowest Priority

External Interrupt 0 (INTO)
Timer Interrupt 0 (TFO)
External Interrupt 1 (INTT)
Timer Interrupt 1 (TF1)
Serial Communication (RI+ TI)

Timer 2 (8052 only) TF2

Interrupt Priority Register (Bit-addressable)

PTZ2 | PS

PS

P11
PX1
PTO
PX0

1P 7
IP.6
1P.5
IP.4
IP.3
IP.2
1P.1
IP.0

Reserved

Reserved

Timer 2 interrupt priority bit (8052 only)
Serial port interrupt priority bit

Timer 1 interrupt priority bit

External interrupt 1 priority bit

Timer O interrupt priority bit

External interrupt O priority bit

Priority bit=1 assigns high priority
Priority bit=0 assigns low priority

Iriggering Interrupt by
Software

e To test an ISR by way of simulation
can be done with simple instructions
to set the interrupts high

- Thereby cause the 8051 to jump to the
interrupt vector table

- eX. If the |IE bit for timer 1 is set, an
instruction such as SETB TF1 will
interrupt the 8051 in whatever it is
doing and will force it to jump to th
interrupt vector table

e We do not need to wait for timer 1 go r
over to have an interrupt

