
1

8051 TIMER & Interrupt
PROGRAMMING IN ASSEMBLY AND C

2

PROGRAMMING 8051 TIMERS

• Basic registers of the timer
– Timer 0 and Timer 1 are 16 bits

wide
– each 16-bit timer is accessed as

two separate registers of low byte
and high byte.

3

 PROGRAMMING 8051 TIMERS

• Timer 0 registers
– low byte register is called TL0 (Timer 0 low byte)

and the high byte register is referred to as TH0
(Timer 0 high byte)

– can be accessed like any other register, such as A,
B, R0, R1, R2, etc.

– "MOV TL0, #4 FH" moves the value 4FH into TL0
– "MOV R5, TH0" saves TH0 (high byte of Timer 0) in

R5

4

 PROGRAMMING 8051 TIMERS

 Timer 0 Registers

5

PROGRAMMING 8051 TIMERS

• Timer 1 registers
– also 16 bits
– split into two bytes TL1 (Timer 1

low byte) and TH1 (Timer 1 high
byte)

– accessible in the same way as the
registers of Timer 0.

6

SECTION 9.1: PROGRAMMING 8051
TIMERS

 Timer 1 Registers

7

 PROGRAMMING 8051 TIMERS

• TMOD (timer mode) register
– timers 0 and 1 use TMOD register to set operation

modes (only learn Mode 1 and 2)
– 8-bit register
– lower 4 bits are for Timer 0
– upper 4 bits are for Timer 1
– lower 2 bits are used to set the timer mode

• (only learn Mode 1 and 2)
– upper 2 bits to specify the operation

• (only learn timer operation)

8

 PROGRAMMING 8051 TIMERS

 TMOD Register

9

 PROGRAMMING 8051 TIMERS

• Clock source for timer
– timer needs a clock pulse to tick
– if C/T = 0, the crystal frequency attached to the 8051 is

the source of the clock for the timer
– frequency for the timer is always 1/12th the frequency of

the crystal attached to the 8051
– XTAL = 11.0592 MHz allows the 8051 system to

communicate with the PC with no errors
– In our case, the timer frequency is 1MHz since our

crystal frequency is 12MHz

10

PROGRAMMING 8051 TIMERS
• Mode 1 programming

– 16-bit timer, values of 0000 to FFFFH
– TH and TL are loaded with a 16-bit initial value
– timer started by "SETB TR0" for Timer 0 and "SETB TR1"

for Timer l
– timer count ups until it reaches its limit of FFFFH
– rolls over from FFFFH to 0000H
– sets TF (timer flag)
– when this timer flag is raised, can stop the timer with

"CLR TR0" or "CLR TR1“
– after the timer reaches its limit and rolls over, the

registers TH and TL must be reloaded with the original
value and TF must be reset to 0

11

 PROGRAMMING 8051 TIMERS

 Timer 1 with External Input (Mode 1)

12

 PROGRAMMING 8051 TIMERS

• Steps to program in mode 1
– Set timer mode 1 or 2
– Set TL0 and TH0 (for mode 1 16 bit

mode)
– Set TH0 only (for mode 2 8 bit auto

reload mode)
– Run the timer
– Monitor the timer flag bit

13

In the following program, we are creating a square wave of
50% duty cycle (with equal portions high and low) on the
P1.5 bit.
Timer 0 is used to generate the time delay

14

 PROGRAMMING 8051 TIMERS

• Finding values to be loaded into
the timer
– XTAL = 11.0592 MHz (12MHz)
– divide the desired time delay by

1.085 s (1 s) to get n
– 65536 – n = N
– convert N to hex yyxx
– set TL = xx and TH = yy

15

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

• T = 1/50 Hz = 20 ms
• 1/2 of it for the high and low

portions of the pulse = 10 ms
• 10 ms / 1.085 us = 9216
• 65536 - 9216 = 56320 in decimal

= DC00H
• TL = 00 and TH = DCH
• The calculation for 12MHz crystal

uses the same steps

16

Assuming XTAL = 11.0592 MHz, write a program to generate a
square wave of 50 Hz frequency on pin P2.3.

17

PROGRAMMING 8051 TIMERS

• Generating a large time delay
– size of the time delay depends

•crystal frequency
• timer's 16-bit register in mode 1

– largest time delay is achieved by
making both TH and TL zero

Examine the following program and find the time
delay in seconds. Exclude the time delay due to the
instructions in the loop.

18

19

Examine the following program and find the time delay in
seconds. Exclude the time delay due to the instructions in the
loop.

20

 PROGRAMMING 8051 TIMERS (for
information only)
• Mode 0

– works like mode 1
– 13-bit timer instead of 16­bit
– 13-bit counter hold values 0000 to

1FFFH
– when the timer reaches its

maximum of 1FFFH, it rolls over to
0000, and TF is set

21

PROGRAMMING 8051 TIMERS
• Mode 2 programming

– 8-bit timer, allows values of 00 to FFH
– TH is loaded with the 8-bit value
– a copy is given to TL
– timer is started by ,"SETB TR0" or "SETB TR1“
– starts to count up by incrementing the TL register
– counts up until it reaches its limit of FFH
– when it rolls over from FFH to 00, it sets high TF
– TL is reloaded automatically with the value in TH
– To repeat, clear TF
– mode 2 is an auto-reload mode

22

 PROGRAMMING 8051 TIMERS

• Steps to program in mode 2
1. load TMOD, select mode 2
2. load the TH
3. start timer
4. monitor the timer flag (TF) with

"JNB”
5. get out of the loop when TF=1
6. clear TF
7. go back to Step 4 since mode 2 is

auto-reload

23

 PROGRAMMING 8051 TIMERS

• Assemblers and negative
values
– can let the assembler calculate

the value for TH and TL which
makes the job easier

– "MOV TH1, # -100", the
assembler will calculate the -100
= 9CH

– "MOV TH1,#high(-10000) "
– "MOV TL1,#low(-10000) "

24

 COUNTER PROGRAMMING
• C/T bit in TMOD register

– C/T bit in the TMOD register decides the source of the clock for
the timer

– C/T = 0, timer gets pulses from crystal
– C/T = 1, the timer used as counter and gets pulses from

outside the 8051
– C/T = 1, the counter counts up as pulses are fed from pins 14

and 15
– pins are called T0 (Timer 0 input) and T1 (Timer 1 input)
– these two pins belong to port 3
– Timer 0, when C/T = 1, pin P3.4 provides the clock pulse and

the counter counts up for each clock pulse coming from that
pin

– Timer 1, when C/T = 1 each clock pulse coming in from pin
P3.5 makes the counter count up

25

COUNTER PROGRAMMING

Port 3 Pins Used For Timers 0 and 1

26

 PROGRAMMING 8051 TIMERS

 Timer 0 with External Input (Mode 1)

27

 COUNTER PROGRAMMING

 Timer 1 with External Input (Mode 2)

28

SECTION 9.2: COUNTER
PROGRAMMING

29

COUNTER PROGRAMMING

 Port 3 Pins Used For Timers 0 and 1

30

COUNTER PROGRAMMING

• TCON register
– TR0 and TR1 flags turn on or off the timers
– bits are part of a register called TCON (timer

control)
– upper four bits are used to store the TF and TR

bits of both Timer 0 and Timer 1
– lower four bits are set aside for controlling the

interrupt bits
– "SETB TRl" and "CLR TRl“
– "SETB TCON. 6" and "CLR TCON. 6“

31

 COUNTER PROGRAMMING

 Equivalent Instructions for the Timer Control Register (TCON)

32

 COUNTER PROGRAMMING

• The case of GATE = 1 in TMOD
– GATE = 0, the timer is started with

instructions "SETB TR0" and "SETB
TR1“

– GATE = 1, the start and stop of the
timers are done externally through
pins P3.2 and P3.3

– allows us to start or stop the timer
externally at any time via a simple
switch

33

COUNTER PROGRAMMING

 Timer/Counter 0

34

 COUNTER PROGRAMMING

 Timer/Counter 1

35

Assuming that clock pulses are fed into pin T1, write a
program for counter 1 in mode 2 to count the pulses and
display the state of the TL1 count on P2. (for information
only)

• An interrupt is an external or
internal event that interrupts the
microcontroller
– To inform it that a device needs its

service
• A single microcontroller can serve

several devices by two ways
– Interrupts

• Whenever any device needs its service,
the device notifies the microcontroller
by sending it an interrupt signal

• Upon receiving an interrupt signal, the
microcontroller interrupts whatever it is
doing and serves the device

– The program which is associated with the interrupt is
called the interrupt service routine (ISR) or interrupt
handler

–Polling
• The microcontroller continuously

monitors the status of a given device
– ex. JNB TF, target
• When the conditions met, it performs the

service
• After that, it moves on to monitor the

next device until every one is serviced
– Polling can monitor the status of several devices

and serve each of them as certain conditions are
met

• The polling method is not efficient, since
it wastes much of the microcontroller’s
time by polling devices that do not need
service

• The advantage of interrupts is:
– The microcontroller can serve many

devices (not all at the same time)
•Each device can get the attention

of the microcontroller based on
the assigned priority

•For the polling method, it is not
possible to assign priority since it
checks all devices in a round-robin
fashion

– The microcontroller can also ignore
(mask) a device request for service
•This is not possible for the polling

method

• For every interrupt, there must be
an interrupt service routine (ISR),
or interrupt handler
– When an interrupt is invoked, the

microcontroller runs the interrupt
service routine

– There is a fixed location in memory
that holds the address of its ISR
• The group of memory locations set

aside to hold the addresses of ISRs is
called interrupt vector table

• Upon activation of an interrupt,
the microcontroller goes through:
– I t f in ishes the instruct ion i t i s

executing and saves the address of
the next instruction (PC) on the
stack

– It also saves the current status of all
the registers internally (not on the
stack)

– I t jumps to a f ixed locat ion in
memory, called the interrupt vector
table, that holds the address of the
ISR

–It gets the address of the ISR from the
interrupt vector table and jumps to ISR

•It starts to execute the interrupt service
subroutine until it reaches the last instruction
of the subroutine which is RETI (return from
interrupt)

–Upon executing the RETI instruction,
the microcontroller returns to the place
where it was interrupted

•It gets the program counter (PC) address
from the stack by popping the top two bytes
of the stack into the PC

•It starts to execute from that address

•Six interrupts are allocated as follows
– Reset – power-up reset
– Two interrupts are set aside for the timers:
• One for timer 0 and one for timer 1
– Two interrupts are set aside for hardware

external interrupts
• P3.2 and P3.3 are for the external hardware

interrupts INT0 (or EX1), and INT1 (or EX2)
– Serial communication has a single

interrupt that belongs to both receive and
transfer

• Upon reset, all interrupts are disabled
(masked)
– None will be responded to by the

microcontroller if they are activated
• The interrupts must be enabled by software

in order for the microcontroller to respond to
them

– There is a register called IE (interrupt
enable) that is responsible for enabling
(unmasking) and disabling (masking)
the interrupts

• To enable an interrupt, we take
the following steps:
– Bit D7 of the IE register (EA) must

be set to high to allow the rest of
register to take effect

– The value of EA
• If EA = 1, interrupts are enabled and

will be responded to if their
corresponding bits in IE are high

• If EA = 0, no interrupt will be responded
to, even if the associated bit in the IE
register is high

• The timer flag (TF) is raised when the
timer rolls over
– In polling TF, we have to wait until the

TF is raised
• The microcontroller is tied down while

waiting for TF to be raised, and can not do
anything else

– Using interrupts to avoid tying down the
controller
• If the timer interrupt in the IE register is

enabled, whenever the timer rolls over, TF is
raised

• The microcontroller is interrupted in
whatever it is doing, and jumps to the
interrupt vector table to service the ISR

• In this way, the microcontroller can do other
until it is notified that the timer has rolled
over

• The 8051 has two external
hardware interrupts
– Pin 12 (P3.2) and pin 13 (P3.3) of

the 8051
• Designated as INT0 and INT1
• Used as external hardware interrupts

– The interrupt vector table locations
0003H and 0013H are set aside for
INT0 and INT1

– There are two activation levels for
the external hardware interrupts
• Level trigged
• Edge trigged

• INT0 and INT1 pins are normally
high
– If a low-level signal is applied to

them, it triggers the interrupt
• The microcontroller stops whatever it is

doing and jumps to the interrupt vector
table to service that interrupt

• The low-level signal at the INT pin must
be removed before the execution of the
last instruction of the ISR, RETI

– Otherwise, another interrupt will be
generated

• This is called a level-triggered or level-
activated interrupt and is the default
mode upon reset

• P3.2 and P3.3 are used for normal
I/O
– Unless the INT0 and INT1 bits in the

IE register are enabled
• After the hardware interrupts are

enabled, the controller keeps sampling
the INTn pin for a low-level signal once
each machine cycle

• The pin must be held in a low state until
the start of the execution of ISR

– If the INTn pin is brought back to a logic
high before the start of the execution of ISR,
there will be no interrupt

• If INTn pin is left at a logic low after the
RETI instruction of the ISR, another
interrupt will be activated after one
instruction is executed

• To ensure the activation of the
hardware interrupt at the INTn pin,
– The duration of the low-level signal

is around 4 machine cycles, but no
more
• This is due to the fact that the level-

triggered interrupt is not latched
• Thus the pin must be held in a low state

until the start of the ISR execution

• To make INT0 and INT1 edge-
triggered interrupts, we must
program the bits of the TCON
register
– The TCON register holds the IT0 and

IT1 flag bits that determine level- or
edge-triggered mode of the
hardware interrupt
• IT0 and IT1 are bits D0 and D2 of TCON

– They are also referred to as TCON.0 and
TCON.2 since the TCON register is bit-
addressable

• The external source must be held
high for at least one machine
cycle, and then held low for at
least one machine cycle
– The falling edge of pins INT0 and

INT1 are latched by the 8051 and
are held by the TCON.1 and TCON.3
bits of TCON register
• Function as interrupt-in-service flags
• It indicates that the interrupt is being

serviced now
– On this INTn pin, no new interrupt will be

responded to until this service is finished

• When the ISRs are finished,
TCON.1 and TCON.3 are cleared
– The interrupt is finished and the

8051 is ready to respond to another
interrupt on that pin
• During the time that the interrupt

service routine is being executed, the
INTn pin is ignored, no matter how
many times it makes a high-to-low
transition

– RETI clears the corresponding bit in
TCON register (TCON.1 or TCON.3)
• There is no need for instruction CLR

TCON.1 before RETI in the ISR
associated with INT0

• TI (transfer interrupt) is raised when
the stop bit is transferred
– Indicating that the SBUF register is

ready to transfer the next byte
• RI (received interrupt) is raised when

the stop bit is received
– Indicating that the received byte needs

to be picked up before it is lost (overrun)
by new incoming serial data

• In the 8051 there is only one
interrupt set aside for serial
communication
– Used to both send and receive data
– If the interrupt bit in the IE register

(IE.4) is enabled, when RI or TI is
raised the 8051 gets interrupted
and jumps to memory location
0023H to execute the ISR
• In that ISR we must examine the TI and

RI flags to see which one caused the
interrupt and respond accordingly

• The serial interrupt is used mainly
for receiving data and is never
used for sending data serially
– This is like getting a telephone call

in which we need a ring to be
notified

– If we need to make a phone call
there are other ways to remind
ourselves and there is no need for
ringing

– However in receiving the phone call,
we must respond immediately no
matter what we are doing or we will
miss the call

• The TCON register holds four of
the interrupt flags in the 8051

• The SCON register has the RI and
TI flags

• When the 8051 is powered up,
the priorities are assigned
– In reality, the priority scheme is

nothing but an internal polling
sequence in which the 8051 polls
the interrupts in the sequence listed
and responds accordingly

• To test an ISR by way of simulation
can be done with simple instructions
to set the interrupts high
– Thereby cause the 8051 to jump to the

interrupt vector table
– ex. If the IE bit for timer 1 is set, an

instruct ion such as SETB TF1 wi l l
interrupt the 8051 in whatever it is
doing and will force it to jump to the
interrupt vector table
• We do not need to wait for timer 1 go roll

over to have an interrupt

