Internet of Things Unit 2

-Madhavi Dave

Introduction

- Machine-to-machine, or M2M, is a broad label that can be used to describe any technology that enables networked devices to exchange information and perform actions without the manual assistance of humans.
- M2M technology was first adopted in manufacturing and industrial settings, and later found applications in healthcare, business, insurance and more. It is also the foundation for the internet of things.
- M2M and IoT both refer to devices communicating with each other.
- M2M refers to isolated instances of device-to-device communication.
- Intropers to a grander scale synergizing vertical software

Difference

M2M Machines Hardware-based Vertical applications Deployed in a closed system Machines communicating with machines Uses non-IP protocol Can use the cloud, but not required to Machines use point-to-point communication, usually embedded in hardware Often one-way communication Main purpose is to monitor and control Operates via triggered responses based on an action Limited integration options. devices must have complementary communication standards Structured data

IoT

Sensors

Software-based

Horizontal applications

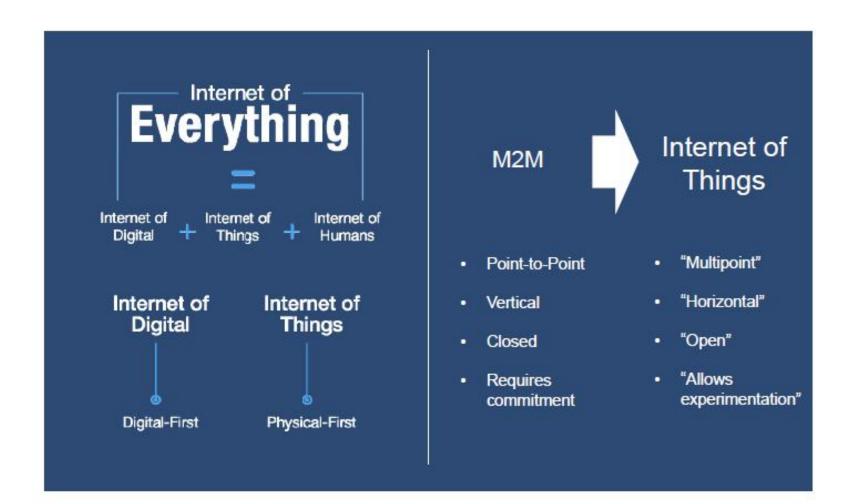
Connects to a larger network

Machines communicating with machines, humans with machines, machines with humans

Uses IP protocols

Uses the cloud

Devices use IP networks to communicate


Back and forth communication

Multiple applications; multilevel communications

Can, but does not have to, operate on triggered responses

Unlimited integration options, but requires software that manages communications/protocols

Structured and unstructured data

How M2M Works?

- The main purpose of machine-to-machine technology is to tap into sensor data and transmit it to a network.
- M2M systems often use public networks and access methods -- for example, cellular or Ethernet -- to make it more cost-effective.
- Energy efficiency and wireless connectivity are the key for M2M / IoT.
- M2M Communication is a subset of IoT.
- IoT comprises M2M and H2M (Human to Machine) communication.
- In practice the IoT will consist of hybrid infrastructure of

- One of the most well-known types of machine-tomachine communication is telemetry, which has been used since the early part of the last century to transmit operational data.
- Pioneers in telemetrics first used telephone lines, and later, radio waves, to transmit performance measurements gathered from monitoring instruments in remote locations.
- The internet and improved standards for wireless technology have expanded the role of telemetry from pure science, engineering and manufacturing to everyday use in products such as heating units, electric

Benefits of M2M

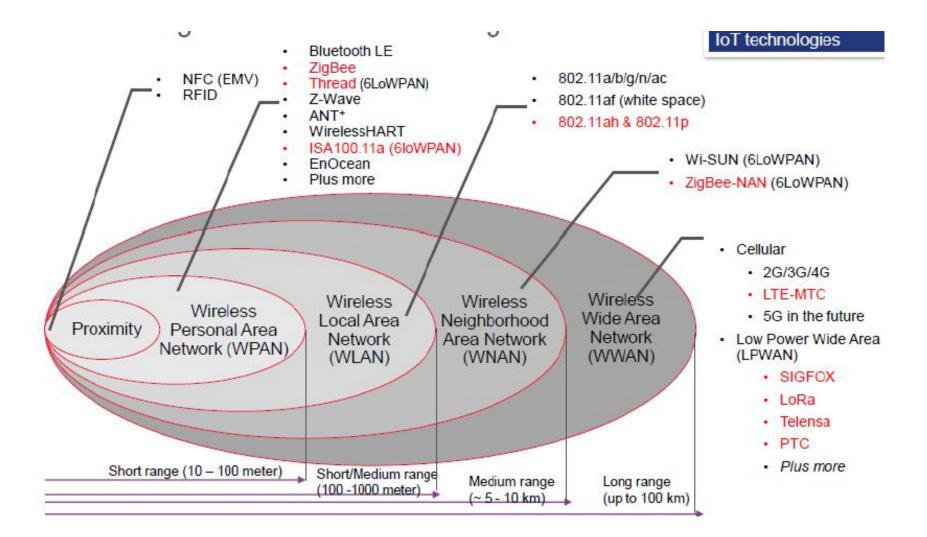
- Reduced costs by minimizing equipment maintenance and downtime.
- Boosted revenue by revealing new business opportunities for servicing products in the field.
- Improved customer service by proactively monitoring and servicing equipment before it fails or only when it is needed.

Network QoS Requirements

- M2M communication is different from the voice communication as size of data in M2M may vary from few bytes (meter reading) to several MBs (surveillance video in).
- M2M services requirement
 - Timely transmission is of utmost important.
 - Communication network is required to be more reliable with low latency

S. No.	Industry / Vertical	M2M applications
1.	Smart City	Intelligent transport System, Waste management, Smart Street Light system, Electric vehicle charging, Water management, Smart Parking, Intelligent buildings, Safety & Surveillance,
2.	113 UK2 58 25 7 75 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Vehicle tracking, e-call, V2V and V2I applications, traffic control, Navigation, Infotainment, Fleet management, asset tracking, manufacturing and logistics
3.	Safety & Surveillance	Commercial and home security monitoring, Surveillance applications, Video analytics and sending alerts, Fire alarm, Police / medical alert
4.	Utilities / Energy	Smart metering, smart grid, Electric line monitoring, gas / oil / water pipeline monitoring.
5.	Health care	Remote monitoring of patient after surgery (e-health), remote diagnostics, medication reminders, Tele-medicine, wearable health devices
6.	Smart Homes	Video monitoring of home, Security & Alarm, Door control, HVAC control, Smart lighting for efficiency, Controlling appliances through Smart phones etc.
7.	Financial /Retail	Point of sale (POS), ATM, Kiosk, Vending machines, digital signage and handheld terminals.
8.	Water	Smart metering. Water leakage management

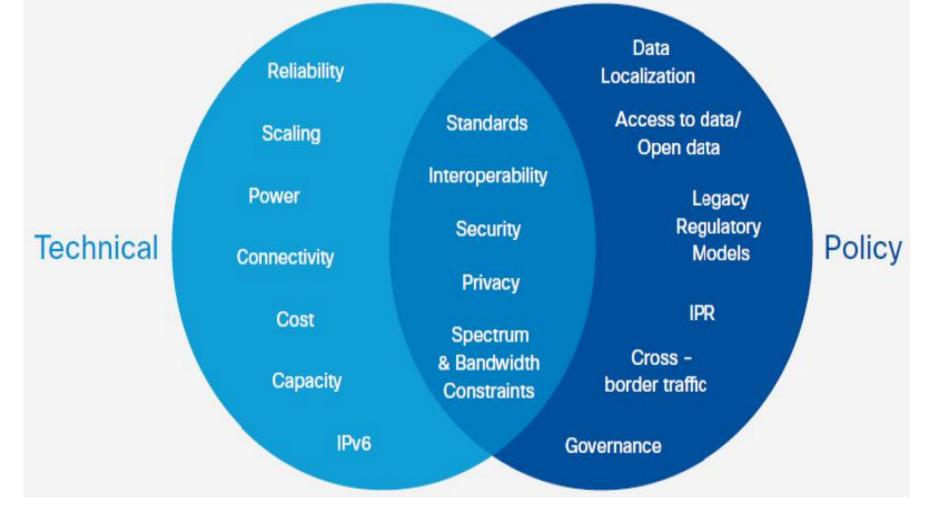
Applications

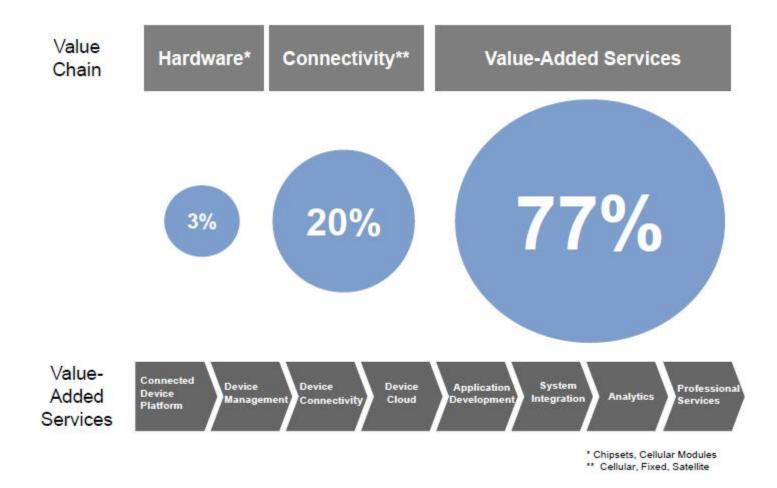

- Machine-to-machine communication is often used for remote monitoring.
- M2M devices can enable the real-time monitoring of patients' vital statistics, dispensing medicine when required, or tracking healthcare assets.
- M2M is also an important aspect of remote control, robotics, traffic control, security, logistics and fleet management, and automotive.

Enabling technologies for M2M

- Sensor networks, Radio frequency Identification (RFID) chips, GPS, *Location-Based Services* (LBS), nanotechnologies, cloud services, data analytics.
- WLAN (IEEE 802.11), Bluetooth Low Energy (BLE), NFC, DSRC for short range communication.
- Low Power RF for LAN / FAN such as 6LowPAN, Zigbee, Zwave, Wi-SUN etc
- Cellular 2G/ 3G/ LTE / Satellite for Long range communication depending upon the applications.
- Wire line BB / Lease line to connect infrastructure
- Power Line Communication Technologies: Narrowband PLC for LAN / FAN and Broadband PLC for WAN
- Low power RF for WAN: LoRa, Sigfox
- Embedded SIM
- Static IP (IPv4 / IPv6)
- Smart Phone
- High speed internet on fixed line and mobile phones.

Backbone network


- Smooth & high speed WiFi coverage, WiFi offloading with the TSPs.
- Control plane at the center whereas data may be in distributed servers.
- Data centers in the cloud for storing large amount of data from the devices.
- Big data analytics to create intelligence.
- Use of intelligence for different activities.
- Open APIs
- ICT Infrastructure
- **RFID** based system.


Challenges and need for standards

- Lack of standards and interoperable technologies
- Technologies for sustainability or low power consumption / long life batteries required for sensors.
- There should be interoperability at device, network and application levels.
- Slow deployment of IPv6
- Low cost devices (affordability)
- Data Security & Privacy
- Health care regulations

Emerging Challenges

M2M Value Chain

Wireless Sensor Network (WSN)

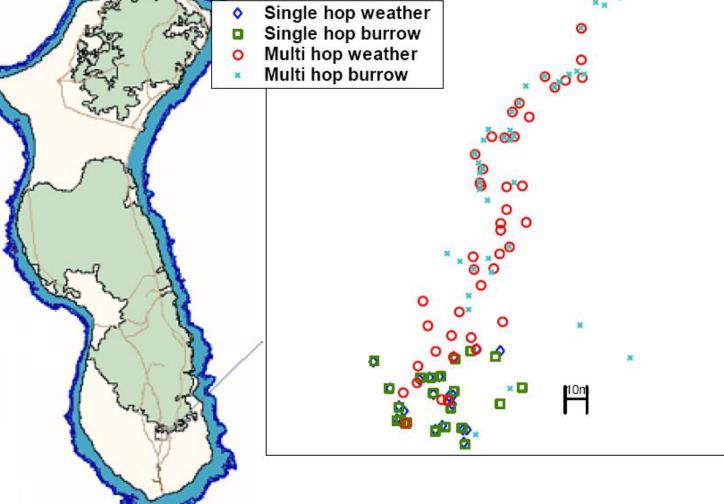
Wireless Sensors

Low-power microscopic sensors with wireless communication capability

- Miniaturization of computer hardware Intelligence
- Micro Electro-Mechanical Structures (MEMS) Sensing
- Low-cost CMOS-based RF Radios Wireless Communications

Wireless Sensor Networks(WSN)

- Even though wireless sensors has limited resources in memory, computation power, bandwidth, and energy.
- With small physical size Can be embedded in the physical environment.
- Support powerful service in aggregated form (interacting/collaborating among nodes)
- Self-organizing multi-hop ad-doc networks
- Pervasive computing/sensoring


WSN Applications

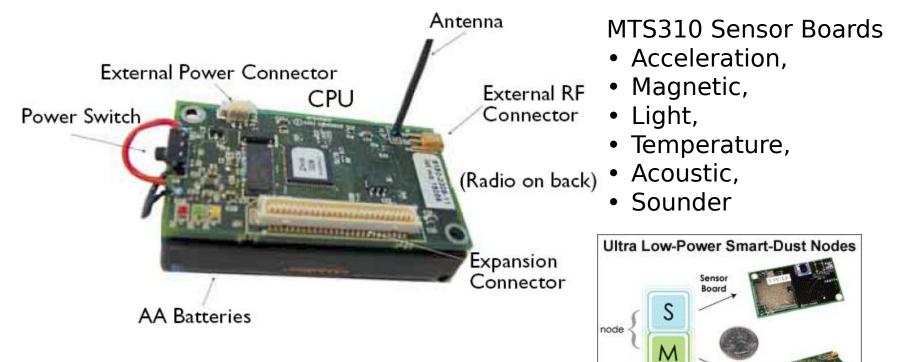
• Wide area monitoring tools supporting Scientific Research

- Wild life Habitat monitoring projects Great Duck Island (UCB), James Reserve (UCLA), ZebraNet (Princeton.
- Building/Infrastructure structure study (Earthquake impact)
- Military Applications
 - <u>Shooter Localization</u>
 - Perimeter Defense (Oil pipeline protection)
 - Insurgent Activity Monitoring (MicroRadar)
- Commercial Applications
 - Light/temperature control
 - Precision agriculture (optimize watering schedule)
 - Asset management (tracking freight movement/storage)

Senor Network/Great Duck Island 2003 Single hop weather

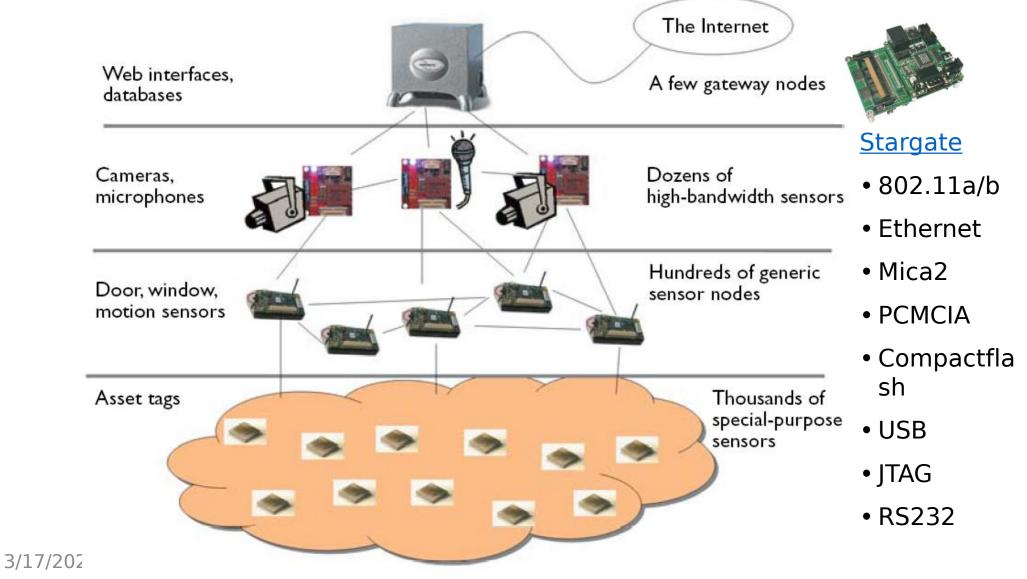
cs526 WSN

What is a mote?


• mote

Imote2 06 with

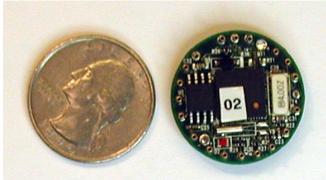
something, especially a bit of dust, that is so


Mica2 Wireless Sensors CACM June 2004 pp. 43.

Sensor & Data Acquisition Board Processor/Radio Boards (Motes)

New MicaZ follows IEEE 802.15.4 Zigbee standard with direct sequence sprad spectrum radio and 256kbps data rate

Wirdlace Sancar Natwark



Motes and TinyOS

- Motes (Mica2, Mica2dot, MicaZ)
 - Worked well with existing curriculum
 - ATMega128L microcontroller
 - 128KB program flash; 512KB measurement гіазп; 4кв ЕЕРROM
 - Standard platform with built-in radio chicon1000 (433MHz, 916MHz, 2.4GHz) 38.4kb; 256kbps for MicaZ <u>IEEE 802.15.4</u>. (1000ft, 500ft; 90/300ft) range
 - AA battery
 - Existing TinyOS code base
 - Convenient form factor for adding sensors

• TinyOS

- Event-based style helped students understand:
 - Time constraints
 - Code structure (need to write short non-blocking routines)
- Existing modular code base saved time
 - Made a more complex project possible
 - Provided a degree of abstraction

Comparison of Energy Sources

		Power (<mark>Energy</mark>) Density	Source of Estimates
Batteries (Zinc	c-Air)	1050 -1560 mWh/cm ³ (1.4 V)	Published data from manufacturers
Batteries(Lithiu	im ion)	300 mWh/cm ³ (3 - 4 V)	Published data from manufacturers
		15 mW/cm ² - direct sun	
Solar (Outdo	ors)	0.15mW/cm ² - cloudy day.	Published data and testing.
		.006 mW/cm ² - my desk	
Solar (Indoo	or)	0.57 mW/cm ² - 12 in. under a 60W bulb	Testing
Vibrations	S	0.001 - 0.1 mW/cm ³	Simulations and Testing
		3E-6 mW/cm ² at 75 Db sound level	
Acoustic No	oise	9.6E-4 mW/cm ² at 100 Db sound level	Direct Calculations from Acoustic Theory
Passive HumanPowered1.8 mW (Shoe inserts >> 1 cm²)		1.8 mW (Shoe inserts >> 1 cm ²)	Published Study.
Thermal Conve	ersion	0.0018 mW - 10 deg. C gradient	Published Study.
Nuclear Read	tion	80 mW/cm ³ 1E6 mWh/cm ³	Published Data.
Fuel Cells	6	300 - 500 mW/cm ³ ~4000 mWh/cm ³	Published Data.

With aggressive energy management, ENS might live off the environment.

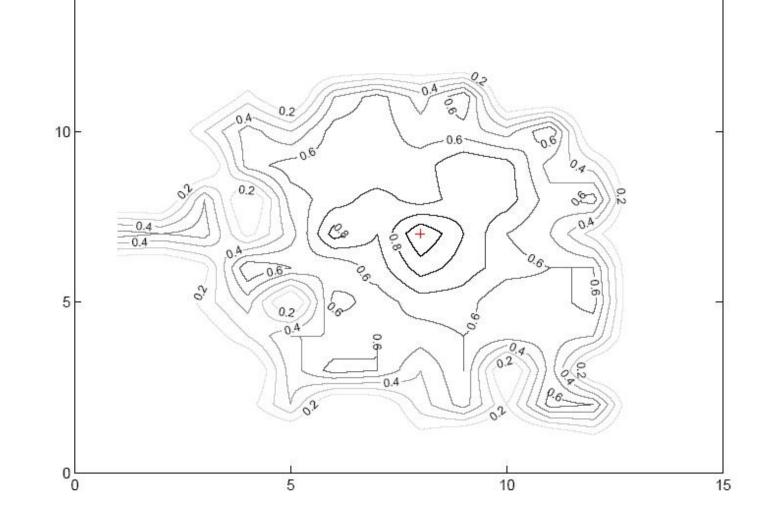
Communication/Computation Technology Projection

	1999 (Bluetooth Technology)	2004
Communication	(150nJ/bit)	(5nJ/bit)
Communication	1.5mW*	50uW
Computation		~ 190 MOPS
Computation		(5pJ/OP)

Assume: 10kbit/sec. Radio, 10 m range.

Large cost of communications relative to computation continues

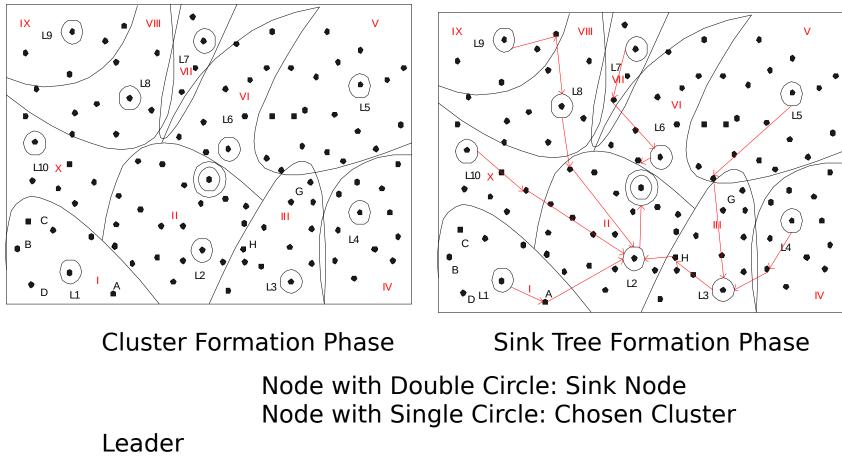
• Actuation energy is the highest


- - Strategy: ultra-low-power "sentinel" nodes
 - Wake-up or command movement of mobile nodes
- Communication energy is the next important issue
 - Strategy: energy-aware data communication
 - Adapt the instantaneous performance to meet the timing and error rate constraints, while minimizing energy/bit
- Processor and sensor energy usually less important

MICA mote Berkeley	Transmit	720 nJ/bit	Processor	4 nJ/op	
	Receive	110 nJ/bit	~ 200	ops/bit	Statement of
WINS node	Transmit	6600 nJ/bit	Processor	1.6 nJ/op	
RSC	Receive	3300 nJ/bit	~ 6000	ops/bit	II-29

Wireless Sensor Network(WSN) vs. Mobile Ad Hoc Network (MANET)

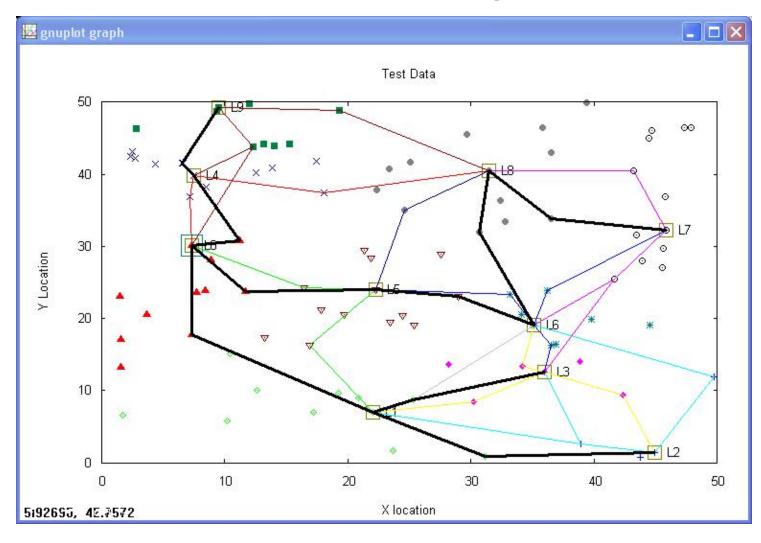
	WSN	MANET
Similarity	Wireless	Multi-hop networking
Security	Symmetric Key Cryptography	Public Key Cryptography
Routing	Support specialized traffic pattern. Cannot afford to have too many node states and packet overhead	Support any node pairs Some source routing and distance vector protocol incur heavy control traffic
Resource	Tighter resources (power, processor speed, bandwidth)	Not as tight.


Unusual WSN Link Characteristics Packet Success Rate Contour Open Tennis Court with 150 motes

Challenges in Self-organizing Multi-hop Ad-doc Networks

- Problems has been studied in packet radio network and mobile computing.
- However in sensor networks, it is unique in:
 - Lossy short-range wireless ratio Need more cross-layer interaction
 - Tight resource constraints
 - Traffic pattern differences
 - In-Network Processing

Cluster /Sink Tree Formation



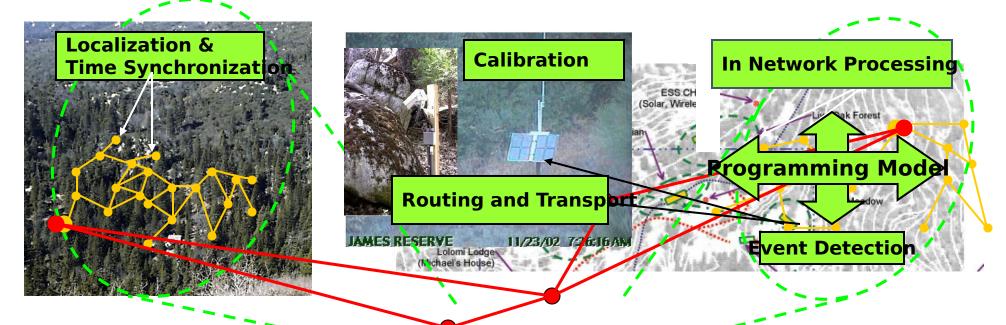
Red Arcs forms the sink

3/17/2020

tree Should there be direct link between leaders? (<u>Wendi</u>

SNATool: Sensor Network Analysis Tool

cs526 WSN


Cluster/Sink Tree Formation Problems

- How to make cluster size more even? All leaders will consume power evenly.
- How to form a sink tree with smallest link distance? shorter link less radio power
- How to avoid frequent cluster/sink tree formation? avoid disrupt normal data collection traffic
- How to perform tracking responsively?
- How to extend the life time of WSN?
- These are conflict requirements. How to resolve it?

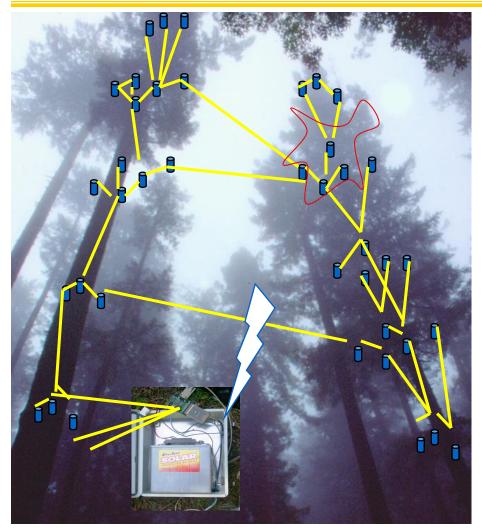
Common system services

3/17/2

Needed: Reusable, Modular, Flexible, Well-characterized Services/Tools

- Routing and Reliable transport
- Time synchronization, Localization, Calibration, Energy Harvesting
- In Network Storage, Processing (compression, triggering), Tasking
- Programming abstractions, tools

UCLA USC UCR CALTECH CSU 35


CENTER FOR EMBEDDED NETWORKED SENSING

WSN Architecture

 David Culler, Scott Shenker, Ion Stoica, UC Berkely.
<u>Creating an Architecture for Wireless Sensor Networks</u> <u>–in a nutshell</u>.

Key Properties

- Networks meaningfully distributed over physical space
- Large numbers of nodes
- Long duration
- Irregular, varying connectivity
- Variations in density
- Loss & interference
- Constrained resources & Energy
- Connected to deeper infrastructure

So how do we go about it?

Wirelss Sensor Network and Pervasive Computing

• D.Raychaudhuri, Rutgers WINLAB. <u>Research Challenges</u> <u>in Sensor Nets and Pervasive Systems</u>. Including a presentation on writing effective grant proposals.

Mobile Sensor Networks

- William J Kaiser, UCLA CENS. On <u>Constrained Actuation for Sensor</u> <u>Networks</u>.
- Challenges
 - Sustainability
- Solutions in Constrained Actuation and Infrastructure
 - Limited dimension, limited range mobility
 - Infrastructure-supported mobility
- New Research Area
 - Adaptive sampling and deployment
 - Coordinated mobile embedded sensors
 - Adaptation of network resources
 - Active Fusion

Networked Infomechanical Systems (NIMS) • Networked mobile nodes

- - Sensing
 - Sampling
 - Energy logistics
 - Communication
- Infrastructure
 - Deterministic and precise motion
 - 3-D volume access
 - Mass transport at low energy
- System Ecology for Sustainability
 - Fixed nodes
 - Mobile nodes
 - Infrastructure

System Ecology : Introduces New Design Rules

Tiers	Sensing Accuracy	Energy Efficiency	Spatial Coverage	Temporal Coverage
Mobile Nodes	Adaptive Topology and Perspectiv e	Low Energy Transport/ Comm	Both Sensing and Sampling in 3-D	Enable Long Term Sustainabil ity
Connected Fixed Nodes	Optimal, Precise Deploymen t	Energy Production and Delivery	Optimized Location in 3-D	Continuous, In Situ Sensing- Sampling
Untethered Fixed Nodes	Localized Sensing and Sampling	Alert and Guide Mobile Assets	Access to Non- Navigable Areas	Continuous Low Energy Vigilance

Security and Privacy in Sensor Networks: Research Challenges

- Radha Poovendran, U. Washington.
- Resource constrains on WSN devices. Energy, computation, memory

WSN Education

• Waylon Brunette, U. Washington. <u>The Flock project</u>.