
Java Script in HTML

Why Study JavaScript?

◼ JavaScript is one of the 3 languages all web
developers must learn:

 1. HTML to define the content of web pages
 . CSS to specify the layout of web pages
 3. JavaScript to program the behavior of web

pages

The <script> Tag

◼ JavaScript code must be inserted between
<script> and </script> tags.

<script>
//java script code

</script>

JavaScript Functions and Events

◼ A JavaScript function is a block of JavaScript
code, that can be executed when "called" for.

◼ For example, a function can be called when
an event occurs, like when the user clicks a
button.

JavaScript in <head> or <body>

◼ You can place any number of scripts
in an HTML document.

◼ Scripts can be placed in the <body>,
or in the <head> section of an HTML
page, or in both.

JavaScript in <head>

◼ In this example, a JavaScript function is
placed in the <head> section of an HTML
page.

◼ Example of Javascript in head

JavaScript in <body>

◼ In this example, a JavaScript function is
placed in the <body> section of an HTML
page.

◼ Example

External JavaScript

◼ Scripts can also be placed in external
files: myScript.js

◼ To use an external script, put the name
of the script file in the src (source)
attribute of a <script> tag:

◼ <script src="myScript.js"></script>

External JavaScript Advantages

◼ It separates HTML and code
◼ It makes HTML and JavaScript

easier to read and maintain
◼ Cached JavaScript files can speed up

page loads

External References

◼ External scripts can be referenced with a full
URL or with a path relative to the current web
page.

◼ This example uses a full URL to link to a
script:

<script src="https://www.w3schools.com/js/my
Script1.js"></script>

JavaScript Display Possibilities

◼ Writing into the HTML output
using document.write().

◼ Writing into an HTML element,
using innerHTML.

◼ Writing into an alert box,
using window.alert().

JavaScript Functions

◼ A JavaScript function is a block of code
designed to perform a particular task.

function myFunction()
 {

 //Statements
}

Declaring (Creating) JavaScript
Variables

◼ Creating a variable in JavaScript is called
"declaring" a variable.

◼ You declare a JavaScript variable with
the var keyword:

var carName;
◼ After the declaration, the variable has no

value. (Technically it has the value
of undefined)

HTML Events

◼ An HTML event can be something the
browser does, or something a user does.

◼ Here are some examples of HTML events:
o An HTML web page has finished loading
o An HTML input field was changed
o An HTML button was clicked

Common HTML Events

◼ onchange
▪ An HTML element has been changed

◼ onclick
▪ The user clicks an HTML element

◼ onmouseover
▪ The user moves the mouse over an HTML element

◼ onmouseout
▪ The user moves the mouse away from an HTML element

◼ onkeydown
▪ The user pushes a keyboard key

◼ onload
▪ The browser has finished loading the page

String Properties in JS

◼ String Properties
◼ length - The length property returns the length of

a string
◼ Methods:
▪ toLowerCase()
▪ toUpperCase()
▪ charAt(x)
▪ indexOf(substr, [start])
▪ lastIndexOf(substr, [start])
▪ substr(start, [length])
▪ concat(v1, v2,…)

String Function in JS

◼ toLowerCase()
▪ Returns the string with all of its characters

converted to lowercase.
◼ toUpperCase()
▪ Returns the string with all of its characters

converted to uppercase.

◼ charAt(x)
▪ Returns the character at the “x” position within the string.

◼ indexOf(substr, [start])
▪ Searches and returns the index number of the searched

character or substring within the string.
▪ If not found, -1 is returned.

◼ lastIndexOf(substr, [start])
▪ Searches and returns the index number of the searched

character or substring within the string from end to
beginning.
▪ f not found, -1 is returned.

◼ substr(start, [length])
▪ Returns the characters in a string beginning at

“start” and through the specified number of
characters, “length”.

◼ concat(v1, v2,…)
▪ Combines one or more strings (arguments v1, v2

etc) into the existing one and returns the
combined string. Original string is not modified.

Operators of JS

◼Arithmetic Operators : +, -, *, /,
%, ++, --

◼ Logical Operators : &&, ||, !
◼Comparison Operators : ==, !=, <,

>, <=, >=

OPERATORS in JavaScript

CONDITIONAL STATEMENTS

oConditional statements are used to perform
different actions based on different
conditions.

oThe conditional statement will either return
TRUE or FALSE.

oJavaScript supports two conditional
statements:
•If…Else Statement
•Switch Statement.

If…Else STATEMENTS
oThe if statement executes a statement if a specified

condition is true.
oIf the condition is false, else part can be executed.
oSyntax

If(condition){
block of code to be executed if the condition is true

}
else{

block of code to be executed if the condition is false
}

oMultiple if…else statements can be nested to create
an else if clause

If(condition1){
statement1

}
else if(condition2) {

statement2
}
else if(condition n) {

statement3
}
else

statement4
}

o Example

Switch Statement

o The value of the variable
given into switch is
compared to the value
following each of the
cases, and one value
matches the value of the
variable that statement is
executed.

o The break is used to break
out of the case
statement.

o Example

Loops in JS

o Looping structure enables to achieve repetitive
tasks.

o A loop continues to operate until either a condition
is true or your explicitly choose to exit the loop.

o Types of Loops
• For Loop
• While Loop
• Do…While Loop
• For…in loop

oFor loop, consisting of an initialization, an evaluation,
and an increment.

oIt is an entry controlled loop.

oSyntax
for(initialization ; test-condition ; increment/decrement)
{

body of the loop
}

For Loop

oThe following three parts-
•Initialization where we initialize counter to a starting
value.
•Test-condition which test for the given condition is
true or false. If condition is true, then the code given
inside the loop will be executed. If condition is false,
then the loop will be terminated.
•Increment/decrement where you can increase or
decrease the counter.

oExample

For… In Loop

o The for…in loops through the elements of an
array or through the properties of an object.

o Syntax
For(variable in object)
{

Statements
}

o The variable argument can be a named variable,
an array element, or a property of an object

o The While loop will continue to execute until
its test condition evaluates to false or the loop
encounters a break statement.

o It is an entry controlled loop.

o Syntax
While(condition)
{

Statement
}

While Loop

o Example

<script>
var a=1;
while(a<5)
{

document.write(a+”
”);
a++;

}
</script>

Do…While Loop

o This loop will execute the block of code once,
and then it will repeat the loop as long as the
specified condition is true.

o Syntax

o Example

<script>
var count=1;
do
{

document.write(count+”
”);
count=count+1;

}while(count<5);
document.write(“Loop Stopped”);
</script>

◼ onclick
◼ onload
◼ onchange
◼ onfocus
◼ onblur
◼ onmouseenter
◼ onmouseout

Dialog Box

o JavaScript provides the ability to pickup user input or
display small amounts of text to the user by using dialog
boxes.

o These dialog boxes appear as separate windows and
their content depends on the information provided by
the user.

o There are three types of dialog boxes provided by
JavaScript:

•Alert Dialog Box
•Prompt Dialog Box
•Confirm Dialog Box

Alert Dialog Box

oAn alert box is often used if you want to make sure
information comes through to the user

oWhen an alert box pops up, the user will have to click
“OK” to proceed.

oSyntax

alert(“message”);

oExample
alert(“Click OK to continue”);

Prompt Dialog Box

o A prompt box is often used if you want the user
to input a value before entering a page.

o When a prompt box pops up the user will have
to click either “OK” or “CANCEL” to proceed
after entering an input value.

o If the user clicks “OK” the box returns the input
value.

o If the user clicks “CANCEL” the box returns
null.

o Syntax
prompt(“message”, ”default value”);

o Example
prompt(“Enter your favorite color:”,”Violet”);

Confirm Dialog Box

o A confirm box is often used if you want the
user to verify or accept something.

o The user will have to click either “OK” or
“CANCEL” to proceed.

o If the user clicks “CANCEL”, the box returns
false.

o If the user clicks “OK”, the box returns true.

o Syntax
confirm(“message”)

o Example
confirm(“Are you sure you want to exit our of the

system”);

Date and Timer
JAVASCRIPT

JavaScript - The Date Object
 The Date object is a datatype built into
the JavaScript language. Date objects
are created with the new Date() as
shown below.

 Once a Date object is created, a
number of methods allow you to
operate on it.

Syntax

 You can use any of the following syntaxes to
create a Date object using Date()
constructor.

 Constructors:

 Date()

 Date(datestring)

 Date(year,month,date[,hour,minute,second,
millisecond])

Date Methods
 getDate() / setDate(date)

 getDay() / setDay(day)

 getMonth() / setMonth(month)

 getYear() / setYear(year)

 getHours() / setHours(hour)

 getSecond() / setSecond(second)

 getMinute() / setMinute(min)

Timer in JS
 setInterval(function, milliseconds)

 Same as setTimeout(), but repeats the execution of the
function continuously.

 setTimeout(function, milliseconds)

 Executes a function, after waiting a specified number of
milliseconds.

 clearTimeout(timeoutVariable)

 The clearTimeout() method stops the execution of the
function specified in setTimeout().

 window.clearTimeout(timeoutVariable)

JavaScript - The Arrays Object

•The Array object lets you store multiple
values in a single variable. It stores a
fixed-size sequential collection of elements
of the same type.
•An array is used to store a collection of data,
but it is often more useful to think of an
array as a collection of variables of the same
type.
•The Array parameter is a list of strings or
integers.
•Syntax:
•var fruits = new Array("apple", "orange",
"mango");

Array Properties

•index
•The property represents the zero-based
index of the match in the string

•length
•Reflects the number of elements in an
array.

Array Methods

•concat()
•Returns a new array comprised of this array

joined with other array(s) and/or value(s).

•indexOf()
•Returns the first (least) index of an element

within the array equal to the specified value, or
-1 if none is found.

•lastIndexOf()
•Returns the last (greatest) index of an element

within the array equal to the specified value, or
-1 if none is found.

•push()
•Append the element to the end of
the array:

•Example:
•var fruits = new Array("Apple",
"Orange“);
•fruits.push("Pear"); //It will add pear
at the end of the array.

•pop()
•Extracts the last element of the array and
returns it:

•Example:
•var fruits = new Array("Apple", "Orange",
"Pear“);

•alert(fruits.pop()); //remove "Pear"

JALPA PORIYA

THE HTML DOM
(DOCUMENT OBJECT MODEL)

• When a web page is loaded, the browser creates
a Document Object Model of the page.

• The HTML DOM model is constructed as a tree
of Objects:

WITH THE OBJECT MODEL, JAVASCRIPT GETS ALL
THE POWER IT NEEDS TO CREATE DYNAMIC HTML:

• JavaScript can change all the HTML elements in the
page

• JavaScript can change all the HTML attributes in the
page

• JavaScript can change all the CSS styles in the page
• JavaScript can remove existing HTML elements and

attributes
• JavaScript can add new HTML elements and attributes
• JavaScript can react to all existing HTML events in the

page
• JavaScript can create new HTML events in the page

HTML DOM forms Collection

◼ Definition and Usage
▪ The forms collection returns a collection of all

<form> elements in the document.
◼ Syntax
▪ document.forms

Properties

◼ Length
▪ Returns the number of <form> elements in the

collection.

Method

◼ [index]
▪ Returns the <form> element from the collection with

the specified index (starts at 0).
Note: Returns null if the index number is out of range

◼ item(index)
▪ Returns the <form> element from the collection with

the specified index (starts at 0).
Note: Returns null if the index number is out of range

◼ namedItem(id)
▪ Returns the <form> element from the collection with

the specified id.
Note: Returns null if the id does not exist

