ESTIMATING \& COSTING

RATE ANALYSIS

DEFINITION

"The determination of rate per unit of a particular item of work, from the cost of quantities of materials, the cost of labourers and other miscellaneous petty expanses required for its completion know as the analysis of rates."

RATE ANALYSIS DEPENDS ON...

1. Specification, Quality, Rates \& Quantity of works and material
2. Proportion of mortar method of construction and operation
3. Number of different types of labourer and their rates
4. Location of site of work and its distance from the sources of materials and labourers
5. Availability of water
6. Profit, overhead expenses and other miscellaneous expenses of contractor

OVERHEAD COSTS

- It includes general office expense, rents, taxes, supervision and other costs which are indirect expense and not productive expense of job.
- The miscellaneous expense on overheads may be under the following heads;
A. General overheads

1. Establishment (office staff)
2. Stationary, printing, postages etc.
3. Travelling expense
4. Telephone
5. Rent and Taxes

OVERHEAD COSTS

B. Job overheads

1. Supervision (salary of Engg., Overseers, Supervision etc.)
2. Handling of materials
3. Repairs, carriage and depreciation of T\&P
4. Amenities of labour
5. Workmen's compensation and insurance
6. Interest on investment
7. Losses on advances

Overall
 -•••

- The contractor's profit of 6-8\% and miscellaneous overheads expenses of about 5-10\%
- Total 15% of the actual cost may be reasonable amount but it is usually practice to add 10%.
- The analysis of rate is usually worked out for the unit of the particular item of work under two heads

1. Material
2. Labour

- 1.5% of water charges is also added
- If material has to be transported from more than 8 km than transportation charges are separately calculated
- 10% should be extra added to contractors profit if cement and steel has to be arranged by him.

TASK OR TURN-OUT WORK

- The capacity of doing work by an artisan or skilled labour in the form of quantity of work per day.
- It varies to some extent according to the nature, size, height, situation, location etc.
for example,

For a Excavation of foundation of a building, 4 labours worked out for 2 days and total quantity of earthwork was 24 cu.mt.

So total labours worked $=2 \times 4=8$ Nos
Task of one labour $=24 / 8=3 \mathrm{cu} . \mathrm{mt}$.

Bricks \& Mortar calculation in Unit m^{3} of work

1. Brick masonry

- Numbers of brick required = volume of brick work / volume of one brick with mortar joint

$$
=1 / 0.20 \times 0.10 \times 0.10=500 \text { nos. }
$$

- Mortar for 1 cu.mt of brick work = actual volume of bricks in 1 cu.mt of brick masonry

$$
=500 \times(0.19 \times 0.09 \times 0.09)=0.77 \mathrm{cu} . \mathrm{mt}
$$

- So volume of wet mortar in 1 cu.mt of brick masonry $=1-0.77=0.23 \mathrm{cu} . \mathrm{mt}$
- For frog filling, cut bricks for bonding, wastage, etc. increasing this quantity by 15%
- Volume of wet mortar $=0.23+(0.15 \times 0.23)=0.264 \mathrm{cu} . \mathrm{mt}$
- Volume of dry mortar reduces by 25% when water is added
- Volume of dry mortar $=0.264+(0.25 \times 0.264)=0.33$ cu.mt

Materials for 1:6 brick work

Quantity of brick work	$10 \mathrm{~m}^{3}$
Proportion	$1: 6$
Volume of dry mortar	$3.3 \mathrm{~m}^{3}$ (for $1 \mathrm{~m}^{3}$ it is $0.33 \mathrm{~m}^{3}$)
$1: 6=7$	
Cement $=1 / 7 \times 3.3$	$0.4714 / 0.035 \quad 13.47$ bags
Sand $=6 / 7 \times 3.3$	$2.83 \mathrm{~m}^{3}$

Calculations of Quantities

Concrete work

For $1 \mathrm{~m}^{3}$ of wet concrete, dry volume is taken about 52% more
That is $1 \mathrm{~m}^{3}$ of wet concrete $=1.52 \mathrm{~m}^{3}$ of dry concrete
Quantity of materials for 1: 1.5 : 3 cement concrete

Proportion	$1: 1.5: 3$	C : S : A	Total $=5.5$
Cement	$1 / 5.5 \times 1.52$	$0.2763 / 0.035$	7.89 say 8 nos. of bags
Sand	$1.5 / 5.5 \times 1.52$	$0.414 \mathrm{~m}^{3}$	
Aggregate	$3 / 5.5 \times 1.52$	$0.829 \mathrm{~m}^{3}$	

Calculations of Quantities

Plastering work				
For filling up the joints and for uneven surface, $25-30 \%$ To get the dry volume of mortar, wet volume may be further increased by 25%				
Materials for $\mathbf{1 0 0} \mathrm{m}^{2}$ area and $\mathbf{1 2 \mathrm { mm } \text { thick plaster (1:4) }}$				
Volume of wet mortar	Area \times thickness	100×0.012	$1.2 \mathrm{~m}^{3}$	
For filling up joints and uneven surface, $\mathbf{3 0 \%}$ more mortar is required				
Volume of wet mortar	1.2×1.30	$1.56 \mathrm{~m}^{3}$		
To get dry volume of mortar, wet volume may be further increased by $\mathbf{2 5 \%}$				
Volume of dry mortar	1.56×1.25	1.95 say $2.00 \mathrm{~m}^{3}$		
Proportion is $1: 4$, so total is 5.				
Cement $=1 / 5 \times 2=0.4 \mathrm{~m}^{3}$	$(11.50$ bags	Sand $=4 / 5 \times 2$	$1.6 \mathrm{~m}^{3}$	

Calculations of Quantities

Plastering work			
For filling up the joints and for uneven surface. 25-30\% more mortar is required To get the dry volume of mortar, wet volume may be further increased by 25%			
Materials for $100 \mathrm{~m}^{\mathbf{2}}$ area and 20mm thick plaster (1:3)			
Volume of wet mortar	Area x thickness	100×0.020	$2 \mathrm{~m}^{3}$
For filling up joints and uneven surface, 20\% more mortar is required			
Volume of wet mortar	2×1.20	$2.4 \mathrm{~m}^{3}$	
To get dry volume of mortar, wet volume may be further increased by $\mathbf{2 5 \%}$			
Volume of dry mortar	2.4×1.25	$3.00 \mathrm{~m}^{3}$	
Proportion is 1:3, so total is 4.			
Cement $=1 / 4 \times 3=0.75 \mathrm{~m}^{3}$	(21.50 bags)	Sand $=3 / 4 \times 3$	$2.25 \mathrm{~m}^{3}$

Labour required for different works

SL	PARTICULAR	UNIT WORK	REQUIRED MAN POWER
1	Earthwork in excavation 30 mt lead and 1.5 mt lift	28.30 cu m	5 Beldars 4 Mazdoor
	Refilling the excavated earth in plinth	28.30 cu m	3 Beldars 2 Mazdoor $1 / 2$ Bhisti
	Disposal of surplus earthwork	2.83 cu m	1 Mazdoor
2	Laying cement concrete	2.83 cu m	$1 / 4$ Mason 2 Beldars 3 Mazdoor $3 / 4$ Bhisti
3	RCC Works : Laying reinforced concrete	2.83 cu m	1/2 Head Mason 3 Beldars 3 Mazdoor 11⁄3 Bhisti

Labour required for different works

SL	PARTICULAR	UNIT WORK	REQUIRED MAN POWER
3	RCC Work		
	Centering and shuttering for flat surface	9.6 Sq m	4 Beldars 4 Carpenters (II class)
	Reinforcement work for RCC	1.0 Quintal	1 Blacksmith or fitter 1 Beldar
4	Stone work		
	Random Rubble masonry	2.83 cu m	3 Masons 3 Beldars 2 Mazdoor $1 / 4$ Bhisti
5	Brick work		
	First class Brickwork in 1:4 CM	2.83 cu m	$211 / 4$ Masons $41 / 2$ Mazdoor ½ Bhisti

Labour required for different works

SL	PARTICULAR	UNIT WORK	REQUIRED MAN POWER
$\mathbf{6}$	Finishing		
	Plastering with any mortar 12 mm thick	40.0 Sq m	3 Masons
			3 Beldars
			$1 / 4$ Bhisti
	White washing or Colour washing	60.0 Sq m	1 White washer
			1 Mazdoor
	Painting - 2 Coats	3 Painter	
			2 Mazdoor
$\mathbf{7}$	Flooring - 4cm thick CC floor	50.0 Sq m	5 Masons
			3 Mazdoors
			1 Bhisti

Labour rates

SR NO	PARTICULAR	RATE (RS/DAY)
1	Mason (Male/Female)	600
2	Mazdoor (Male/Female)	500
3	Beldar (Male/Female) - Labour	300
4	Bhisti	250
5	Carpenter	600
6	Blacksmith (Fitter)	400
7	Painter	400
8	White washer	400

Materials rates

SR NO	PARTICULAR	Unit	RATE (Rs)
1	Cement - 50.0 Kg bag	Bags	350
2	Course Aggregates	Cu.m.	1200
3	Sand - Fine Aggregates	Cu.m.	800
4	Bricks - 1000 Nos	Nos.	4250
5	Brick Bats	Cu.m.	600
6	Mild Steel	Kg	45
7	HYSD Steel	Kg	45
8	Binding Wires	Kg	42
9	Lime	5 Kg bag	50

Rate analysis of Plain cement concrete (1:4:8) - for sample of $10.0 \mathrm{~m}^{3}$
(A) Material required

Sr	Type of material	Quantity	Rate	Per	Amount
1	Cement: $\mathrm{Q}=1 / 13 \times 1.52 \times 10=33.5$ bags	34.0	350	bag	11900
2	Sand : $\mathrm{Q}=4 / 13 \times 1.52 \times 10=4.68 \mathrm{~m}^{3}$	4.68	800	$\mathrm{~m}^{3}$	3744
3	Aggregate : $\mathrm{Q}=8 / 13 \times 1.52 \times 10=9.36 \mathrm{~m}^{3}$	9.36	1200	$\mathrm{~m}^{3}$	11232
4	Miscellaneous	-	-	Lum sum	500
				Total (A)	27376

Rate analysis of Plain cement concrete (1:4:8) - for sample of $10.0 \mathrm{~m}^{3}$

(B) Labour required					
Sr	Type	Quantity	Rate	Per	Amount
1	Mason (0.25 for 2.83 Cu.m.)	1	600	day	600
2	Beldar (2 for 2.83 Cu.m.)	7	300	day	2100
3	Mazdoor (3 for 2.83 Cu.m.)	10	500	day	5000
4	Bhisti (0.75 for 2.83 Cu.m.)	3	250	day	750
				Total (B)	8450
Total (A + B) = Rs. 35826					
Add 1.5\% of water charges = Rs. 537					
Add 10\% of contractor's profit = Rs. 3583					
Rate for $10.0 \mathrm{~m}^{\mathbf{3}}=$ Rs. 39946					
Rate for 1.0 m ${ }^{\text {3 }}$ = Rs. 3994.60 say 3495.0					

Rate analysis of First class Brick Masonry Work in cement mortar (1:6) in super structure - for sample of $10.0 \mathrm{~m}^{3}$

(A) Material required					
Sr	Type of material	Quantity	Rate	Per	Amount
1	Bricks : Q = 5000 $\left(1 \mathrm{~m}^{3}=500\right)$	5000	4250	1000 No.	21250
2	Cement Volume of mortar $=$ total vol.- vol of bricks $=10-5000(0.19 \times 0.09 \times 0.09)$ $=2.305+(0.40 \times 2.305)=3.28 \mathrm{~m}^{3}$ $\mathrm{Q}=1 / 7 \times 3.28=0.47 / 0.035$	13.42 Say 13.0	350	bags	4550
3	Sand $\mathrm{Q}=6 / 7 \times 3.28=2.81 \mathrm{~m}^{3}$	2.81	800	$\mathrm{~m}^{3}$	
4	Miscellaneous	-	-	Lum sum	

Rate analysis of First class Brick Masonry Work in cement mortar (1:6) in super structure - for sample of $10.0 \mathrm{~m}^{3}$

(B) Labour required					
Sr	Type	Quantity	Rate	Per	Amount
1	Mason (2.25 for 2.83 Cu.m.)	8	600	day	4800
2	Mazdoor (4.25 for 2.83 Cu.m.)	15	500	day	7500
3	Bhsiti (0.50 for 2.83 Cu.m.)	2	250	day	500
				Total (B)	12808
Total (A + B) = Rs. 41356					
Add 1.5\% of water charges = Rs. 620					
Add 10\% of contractor's profit = Rs. 4136					
Rate for $10.0 \mathrm{~m}^{\mathbf{3}}=$ Rs. 46121					
Rate for $1.0 \mathrm{~m}^{\mathbf{3}}=$ Rs. 4612					

Rate analysis of 10 cm thick Brick Masonry partition wall in cement mortar (1:4)for sample of $10.0 \mathrm{~m}^{2}$

(A) Material required						
Sr	Type of material	Quantity	Rate	Per	Amount	
1	Bricks Volume $=\mathrm{A} \times$ thickness $=10 \times 0.1$ Volume $=1.0 \mathrm{~m}^{3}$, so $\mathrm{Q}=500$	500	4250	1000 No.	21250	
2	Cement Volume of mortar $=0.33 \mathrm{~m}^{3}$ $\mathrm{Q}=1 / 5 \times 0.33=0.06 / 0.035$	2.0	350	bags	700	
3	Sand $\mathrm{Q}=4 / 5 \times 0.33=0.24 \mathrm{~m}^{3}$	0.26	800	$\mathrm{~m}^{3}$	208	
4	Miscellaneous	-	-	Lum sum	500	
			Total (A)	22158		

Rate analysis of 10 cm thick Brick Masonry partition wall in cement mortar (1:4) for sample of $10.0 \mathrm{~m}^{2}$

(B) Labour required					
Sr	Type	Quantity	Rate	Per	Amount
1	Mason (2.25 for 2.83 Cu.m.)	1	600	day	600
2	Mazdoor (4.25 for 2.83 Cu.m.)	2	500	day	1000
3	Bhsiti (0.50 for 2.83 Cu.m.)	1	250	day	250
Total (A + B) = Rs. 24008					
Add 1.5\% of water charges $=$ Rs. $\mathbf{3 6 0}$					
Add 10\% of contractor's profit $=$ Rs. $\mathbf{2 4 0 0}$					

Rate Analysis of 12 mm thk cement plaster with (1:4) ratio - for sample of $100.0 \mathrm{~m}^{2}$

(A) Material required					
Sr	Type of material	Quantity	Rate	Per	Amount
1	$\begin{aligned} & \text { Cement } \\ & \text { Volume }=\text { A } \times \mathrm{t}=100 \times 0.012=1.2 \mathrm{~m}^{3} \\ & \text { Add } 25 \% \text { for shrinkage }=0.3 \mathrm{~m}^{3} \\ & \text { Add } 40 \% \text { for wastage }=0.48 \mathrm{~m}^{3} \\ & \text { Total }=1.98 \text { say } 2.00 \mathrm{~m}^{3} \\ & \mathrm{Q}=1 / 5 \times 2=0.4 / 0.035 \end{aligned}$	$\begin{gathered} \hline 11.5 \\ \text { Say } \\ 12.0 \end{gathered}$	350	bags	4200
2	Sand $Q=1 / 5 \times 2=1.6$	1.6	800	m^{3}	1280
3	Lime	5 kg	50	Kg	250
4	Miscellaneous	-	-	Lum sum	500
				Total (A)	6230

Rate Analysis of 12 mm thk cement plaster with (1:4) ratio - for sample of $100.0 \mathrm{~m}^{2}$

(B) Labour required					
Sr	Type	Quantity	Rate	Per	Amount
1	Mason (3 per 40.0 Sq.m.)	8	600	day	4800
2	Beldar (3 per 40.0 Sq.m.)	8	300	day	2400
3	Bhisti (0.25 per 40.0 Sq.m.)	1	250	day	250
				Total (B)	7450
Total ($\mathrm{A}+\mathrm{B}$) = Rs. 13688					
Add 1.5\% of water charges = Rs. 205					
Add 10\% of contractor's profit = Rs. 1368					
Rate for $10.0 \mathrm{~m}^{\mathbf{3}}=$ Rs. 15161					
Rate for $1.0 \mathrm{~m}^{\mathbf{3}}=$ Rs. 1516					

Rate analysis of RCC (1:2:4) for slab (0.200 m thick)- $10 \mathrm{~m}^{3}$

(A) Material required					
Sr	Type of material	Quantity	Rate	Per	Amount
1	Cement $\mathrm{Q}=1 / 7 \times 10 \times 1.52=2.17 / 0.035$	62	350	bags	21700
2	Sand (Fine Agg.) $\mathrm{Q}=2 / 7 \times 10 \times 1.52$	4.34	1200	$\mathrm{~m}^{3}$	5208
3	Course Agg. $\mathrm{Q}=4 / 7 \times 10 \times 1.52$	8.68	1100	$\mathrm{~m}^{3}$	9548
4	Steel (Assuming 1.0%)	785	50	Kg	39250
4	Miscellaneous	-	-	Lum sum	500
				Total (A)	76206

Rate analysis of RCC (1:2:4) for slab (0.200 m thick)- $10 \mathrm{~m}^{3}$

(B) Labour required; Surface area $=10 \times 0.200=50.0$ sq.m.					
Sr	Type	Quantity	Rate	Per	Amount
1	Head Mason (1/2 per 2.83 cu.m.)	2	600	day	1200
2	Beldar (3 per 2.83 cu.m.)	10	300	day	3000
3	Carpenters (4 per 9.60 sq.m.)	21	600	day	12600
4	Fitter (1 per 100 kg)	8	400	day	3200
5	Rent for Equipments	Lump Sump	-	day	2000
				Total (B)	22000
Total ($\mathrm{A}+\mathrm{B}$) = Rs. 98206					
Add 1.5\% of water charges = Rs. 1473					
Add 10\% of contractor's profit = Rs. 9820					
Rate for $10.0 \mathrm{~m}^{3}=$ Rs. 109499					
Rate for $1.0 \mathrm{~m}^{\mathbf{3}}=$ Rs. 10950					

Labour rates

SR NO	PARTICULAR	RATE (RS/DAY)
1	Mason (Male/Female)	600
2	Mazdoor (Male/Female)	500
3	Beldar (Male/Female) - Labour	300
4	Bhisti	250
5	Carpenter	600
6	Blacksmith (Fitter)	400
7	Painter	400
8	White washer	400

