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Structural Dynamics

 Study of response of structure under dynamic loading is known as structural

dynamics.

 Majority of civil engineering structures are designed with the assumption that all

applied loads are static!!!!

 The effect of dynamic load is not considered because the structure is rarely

subjected to dynamic loads; more so its consideration in analysis makes the

solution more complicated and time consuming.

 This feature of neglecting dynamic loads may sometimes becomes the cause of

disaster.

 Hence, Now a days there is grown interest in the process of designing civil

engineering structures capable to withstand dynamic loads.
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Basic Concepts of Structural Dynamics

Vibration and Oscillation – If motion of structure is oscillating (pendulum) or reciprocating
along with deformation of structure, is termed as VIBRATION.

In case, there is no deformation that implies only rigid body motion then it is termed as
OSCILLATION.

Free Vibration – Vibration of the system which is initiated by a force which is subsequently
withdrawn. Hence this vibration occurs without external force.

Forced Vibration – If the external force is involved during the vibration then it is called as
forced vibration.

Damping – All real life structures when subjected to vibration resist it. Due to this the
amplitude of the vibration, gradually decreases with respect to time. In case of fee
vibration, the motion of the system is damped out eventually. Damping forces depend on
a number of factors and it is very difficult to quantify them.

The commonly used representation is viscous damping. Wherein damping force is
expressed as .

Where, = velocity and c = damping constant.
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Static Load Vs Dynamic Load

Static Load – A static Load is either constant or applied over long period of time.

 Resistance due to internal elastic forces of structure.

 All dead loads are static loads.

Dynamic Load – A dynamic load is a load that is variable and applied over short

period of time.

 Accelerations producing inertia forces (Inertia forces from a significant portion of

load equilibrated by internal elastic forces of structure)

 Wind load, Moving loads, Machine loads, Impact and Blast loads etc.

 Structures in general respond very differently to static and dynamic loading.

 Response due to static loading is displacement only.

 Response due to dynamic loading is displacement, velocity and acceleration.
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Blast

Examples of Dynamic Loading

Impact

Machine Vibration
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Ground motion 

(Earthquake)

Examples of Dynamic Loading

Wind



Classification of Loading
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Mathematical Modelling
 Study of structural dynamics involves developing an insight into the

dynamic behaviour of the structural systems by investigating the

behaviour of their models under the influence of dynamic loads.

 The models used in these investigations can be either small / large scale
laboratory models for experimental studies or can be mathematical

models for analytical studies.

 Real test can not be performed on a structure, so mathematical modelling

becomes inherent part of dynamic analysis.

 The link between real physical system and mathematically feasible

solution is provided by mathematical model.

 It is the symbolic designation for the substituted idealised system including
all assumptions imposed on the physical problem.
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Mathematical Modelling
Mass Element, m – Representing mass and inertial characteristic of structure

Spring Element, k – Representing the elastic restoring force and potential energy

capacity of structure.

Dashpot, c – Representing frictional characteristics and energy losses of structure

Excitation force, F(t) – Represents the external force acting on structure (F(t) indicates

that the force is function of time)
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Such pure elements do not exist in our physical world 

and that mathematical models are only conceptual 

idealization of real structures.



Mathematical Model of a Portal Frame
 Consider a development of mathematical model for lateral

load analysis of a simple portal frame.

 The mass of the columns is very small in comparison to that

of slab, it is reasonable to assume that the entire mass of

portal frame is concentrated at slab level.

 Axial rigidity of the beam and slab is very large in

comparison with the stiffness of columns in lateral load

deformations, so it is a good approximation to assume that

the beam/slab is infinitely rigid and entire lateral

deformation is due to flexural deformations in columns.

 The change in length of columns due to lateral

deformations being small and is not very significant, so it is

assumed that the axial stretch in columns is negligible.

 As the beams are usually cast monolithically with the

columns, joints can be assumed to be rigid as the relative

rotation between beam and column at the joint will be

negligible.
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Mathematical Model of a Portal Frame
 With these simplifying kinematic constraints, the lateral

displacement of the rigid beam/slab is the only possible

mode of deformation in the system.

 Since, the entire mass is concentrated at the slab level, the

inertial effects in the model can be completely determined

from the knowledge of the motion of slab.

 The model resulting from all the above mentioned

simplifying assumptions is known as shear building model.

 The lateral deformation of the portal frame can be

represented as the response of SDOF system shown in

figure.

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

12

F(t)

k

c

x(t)

F(t)m



Mathematical Model of a Portal Frame

Mass Element, m – Total mass of the beam and slab of the frame and serves as the

storage of kinetic energy

Spring Element, k – Represents the combined stiffness of two columns for lateral

deformations and stores the internal strain energy due to

column deformations

Dashpot, c – Represents energy dissipation due to various sources

Excitation force, F(t) – Represents the lateral force applied on portal frame
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Dynamic Degrees of Freedom

 The number of independent displacement components that must be considered

to represent the effects of all significant inertia forces of a structure.

 Depending upon the co-ordinates to describe the motion, we can have following

different types of systems

1. Single degree of freedom system (SDoF/SDOF)

2. Multiple degree of freedom (MDoF/MDOF)

3. Continuous system (Distributed System)
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Single Degree of Freedom System

Vertical translation
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Horizontal translation Rotation



Multiple Degree of Freedom System
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Continuous System

 If the mass of a system may be considered to be distributed over its entire

length as shown in figure, in which the mass is considered to have infinite

degrees of freedom, it is referred to as a continuous system.

 It is also known as distributed system.
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Approaches to Develop Equation of Motion for 
SDOF System

 Differential equation describing the motion is known as equation of motion.

1. Newtown’s second law of motion

2. D’Alembert’s Principle

3. Principle of Virtual work

4. Hamilton’s principle

5. Lagrange’s equation

 1, 2 are based on vector principles of vector mechanics.

 4, 5 are based on variational principles.

 3rd one is extension of equilibrium methods.

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

18



D’Alembert’s Principle

 It States that

“The body will be in dynamic equilibrium under the action of external 

force and inertia force of the body.”

It is also known as equation of dynamic equilibrium.
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Classification of Vibration of Systems
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Vibration 
of Systems

Free 
Vibration

Undamped 
System

Damped 
System

Forced 
Vibration

Undamped 
System

Damped 
System

F(t) = 0 F(t) ≠ 0

C = 0 C = 0 C ≠ 0C ≠ 0



Free Undamped Vibration 

of SDOF System 
21
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Free Undamped Vibration of SDOF System 
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Free Undamped Vibration of SDOF System 

 Equation (A) is higher order homogeneous differential equation.

 Assuming x = est as a general solution,

 D =      = s. est and D2 =     = s2. est
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Applying D'Alembert's principle, 

 +     ( ) --------- (i)

For, free undamped vibrating system
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    0 --------- (A)
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Free Undamped Vibration of SDOF System 

 Substituting above values in equation (A) we get,

 m(s2. est) + k (est) = 0  => est (ms2 + k) = 0 

 for above equation there are two possible solutions,

 est = 0 or (ms2 + k) = 0 

 Out of these two solutions est = 0 cannot be a solution because

x = 0 is always a solution for homogeneous equation (Trivial

solution).

 So, considering (ms2 + k) = 0 as a solution (Non-trivial solution).
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Free Undamped Vibration of SDOF System 

 Above statement shows two complex roots are possible.

 Substituting above values in equation (ii) we get
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Free Undamped Vibration of SDOF System 
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The boundary conditions are, 

At   = 0,  t x x

0

substituting in equation (iii) 

A x 

Differentiating equation (iii)
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Free Undamped Vibration of SDOF System 
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Free Vibration of SDOF

𝑦𝑜 = 1 𝑚

ሶ𝑦0 = 0 m/s

𝑚 = 2 kg

𝑘 = 8 N/m



Free Undamped Vibration of SDOF System 
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EX-1 A mass ‘m’ is attached to the mid point of a simply supported

beam of length L. The mass of the beam is small as compared to

mass ‘m’. Determine the spring constant and the frequency of

the vibration of the beam in vertical direction. The beam has

uniform flexural rigidity EI.

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

30

x

3

3

48
      

48

PL EI
k

EI L
    m

𝑳

𝟐

𝑳

𝟐

1
    

2

k
f

m


3
1.102

EI
f

mL




EX-2 Consider a rigid frame shown in figure, having infinitely

rigid girder which is distributed horizontally (37 kg/m)

by initial condition of
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Find:

(a) Natural period and frequency

(b) Displacement and velocity at any time ‘t’.

(c) Forces in columns AB and CD at t = 2sec.

Take I = 6938 cm4 and E = 20684 kN/cm2. 
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CONTINUED….
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28.78 

0.0347 sec

rad
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

using given intial conditions in equations of motion

of free undamped vibration, we get
3

 = sin180.87 t  and
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3
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CONTINUED….

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

33

x

-3

6

Forces in column

Column AB

A = S D

D = -7.31*10 m

S = 6.37 * 10  N/m

A = -46.56 kN

-3

Column CD

A = S D

D = -7.31*10 m

S = 885308 N/m

A = -6.47 kN



EX-3 For a system shown in figure determine the displacement and

velocity after 1 second, if the initial displacement and velocity

are 2.5 cm and 5 cm/sec respectively for the mass. Also

calculate amplitude of vibration. Take, EI = 3 x 109 Ncm2 and

W = 15000 N. take, k1 = k4 = 150 N/m and k2 = k3 = 100 N/m.
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CONTINUED….
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x

2

n

1

1

Equivalent Stiffness of system, k = 310 N/m

W = 15000 N

m = 1529.05 kg (Assuming, g = 9.81 m/s )

0.4502 / sec

Amplitude = 113.84 mm

Displacement at t = 1 sec, 70.83 mm

velocity at t = 1 sec, 40.

rad

x

x

 



 13 mm/sec



Free Damped Vibration of 

SDOF System 
36
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Free Damped Vibration of SDOF System 
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Free Damped Vibration of SDOF System 
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Applying D'Alembert's principle, 

 +     ( ) --------- (i)

For, free damped vibrating system

( )  0

 +    0 --------- (A)

mx cx kx F t

F t

mx cx kx

 



  

F(t)
mx

k x

cx

Free Body Diagram

= 0

x

 Equation (A) is higher order homogeneous differential equation.

 Assuming x = est as a general solution,

 D =      = s. est and D2 =     = s2. estx x



Free Damped Vibration of SDOF System 

 Substituting above values in equation (A) we get,

 m(s2. est) + c(s. est) + k (est) = 0  => est (ms2 + cs + k) = 0 

 for above equation there are two possible solutions,

 est = 0 or (ms2 + cs + k) = 0 

 Out of these two solutions est = 0 cannot be a solution because x = 0

is always a solution for homogeneous equation (Trivial solution).

 So, considering (ms2 + cs + k) = 0 as a solution (Non-trivial solution).

 Dividing the above equation by m and then using basic relation we

get,
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Free Damped Vibration of SDOF System 

 Assuming (c/2m) = n,

 Above equation is quadratic equation in terms of s.

 Solution of quadratic equation can be given by,
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Free Damped Vibration of SDOF System 
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Free Damped Vibration of SDOF System 

Case – (I): When n > ω (Over Damped System)

 Let s1 and s2 be the two real roots.

Case – (II): When n = ω (Critically Damped System)

 Let s1 = s2 = s be the two roots.
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Free Damped Vibration of SDOF System 

Case – (III): When n < ω (Under Damped System)

 Let S1 and S2 are two complex roots.
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Free Damped Vibration of SDOF System 
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Free Damped Vibration of SDOF System 
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Free Damped Vibration of SDOF System 
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Free Damped Vibration of SDOF System 
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0

2 2

2 2

substituting above values of A and B in equation of 

displacement

cos  + sin

n
Let, =  

Term  represents damped natural circular frequency.

nt x nx
x e x n t n t

n

n

n

 


 





 

   
 

 


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x

2 2 2

0 0
0

1

Where,  is called as damping ratio and is defined by,

 ( critical damping co-efficient in Ns/m)

Equation of displacement can be reduced in form of

cos sin

d

c

c

t

d d

d

n

c
c

c

x x
x e x t t

   






 





   

 

 
 




 


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x

d

d

2

d
2

Time period for damped vibration 

2
T =

But, 1

2
T =

1

d





  



 

 



Amplitude????
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free vibration of undamped, critically damped and overdamped systems 
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Critically Damped Systems

 Damping co-efficient ccr is called

the critical damping

co-efficient. (Smallest value of c

that inhibits oscillation completely)

 It represents the dividing line

between oscillatory and

non-oscillatory motion.

 The automobile shock absorber,

scale measuring deadweight are

an example of a critically damped

devices.

Rear Shock Absorber
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Underdamped Systems

 Most of the structures of interest will fall in category of
Underdamped systems.

 Buildings, bridges, dams, nuclear power plants, offshore
structures, etc. will fall in underdamped systems as typically their
damping ratio is less than 0.10.

Overdamped Systems

 In overdamped case the system does not oscillate and returns to
equilibrium position as in case of critically damped systems but
at a slower rate.

 Common automatic door closer is normally over damped
system.
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Free Damped Vibration of SDOF System 

 The response is governed

by Two terms in equation.

 Bracket portion gives

oscillatory motion while

exponential term is

decaying the response.

 Taking ratio of two

consecutive amplitudes,
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𝑢2

𝑢1
= 

𝑢𝑡2
𝑢𝑡1

=
𝑢(𝑡1+𝑇𝐷)

𝑢𝑡1
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 =
1

𝑛
𝑙𝑛

𝑢1

𝑢2
= 

2ℿ

1−2
 2ℿ



EX-4 A water tank is set to vibrate freely. Amplitude of vibration reduces

from 0.5m to 0.1m in 4 cycles in 8 seconds. Find the damped

natural period and damping ratio of the system.
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EX-5 A vibrating system consists of a mass of 454 kg and spring of

stiffness 3506N/m is viscously damped so that the two

consecutive amplitudes are 1.0 m and 0.85 m. Determine:

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

57

(a) Natural frequency of undamped system 

(b) Logarithmic decrement

(c) Damping ratio

(d) Damping co-efficient

(e) Damped natural frequency and time period



EX-6 In the laboratory, a model of simply supported beam is displaced

at the middle from stable condition and allowed to vibrate. It is

found that it vibrates at a natural time period of 0.1 sec and the

amplitude of motion decreased from 4 mm to 3.5 mm after

5 cycles. The same experiment was repeated by adding 5 kg at

the midspan and it was found to vibrate with time period of

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

58

1.1 sec.

Calculate:

(a) Equivalent mass of the system

(b) Equivalent stiffness of the system

(c) Damping ratio of beam



EX-7 Determine the equation for free vibration response of a SDOF

system as shown in figure, at time t = 0.2 sec for the
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following data: 

Natural circular frequency = 12 rad/sec

Damping factor = 0.15

Initial velocity = 10 cm/sec

Initial displacement = 5 cm

x(t)

m

k

c
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Since,  = 0.15 < 1  The system is under-damped.

Equation of response for free under-damped SDOF 

System is given by, 

 

   2 2 2 20 0
0

2 2

0 0
0

cos  + sin

Which can also be written as,

cos  + sin

nt

t

d d

d

x nx
x e x n t n t

n

x x
x e x t t

 



 







 
   

 

 
  

 
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2

0

1 11.86 rad/sec

At, t = 0,   0.05 m

Substituting above values and condition in equation of response, 

A = 0.05

d

x x

    

 

At t = 0,  = 0.1 m/sec

Similarly Substituting above values and condition in equation of 

motion for free under-damped  SDOF system

B = 0.016

x
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 1.8

(t=0.2sec)

Using these values of A, B in equation of response we can get,

generalised equation of response as follows:

0.05cos11.8642  + 0.016sin11.8642

Putting, t = 0.2 sec

17.31 mm

tx e t t

x



 

(t=0.2sec)

Similarly, Putting t = 0.2 sec in generalised equation of motion

0.352 m/sx  



Forced Undamped Vibration 

of SDOF System 
64

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 



Forced Undamped Vibration of SDOF System 

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

65

k

c

x(t)

F(t)

F(t) =
mx

k x

cx
m

Free Body Diagram

0 =

 Inertia force,  Damping force and 

 Restoring force

mx cx

kx

 



0 sinF t
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0

Applying D'Alembert's principle, 

 +     ( ) --------- (i)

For forced undamped vibrating system,

0

sin  --------- (A)

mx cx kx F t

c

mx kx F t

 



  

F(t) =

mx
k x

0 cx

Free Body Diagram

x

 Equation (A) is higher order non-homogeneous differential equation.

 Solution of such equation consists of two parts namely: Complimentary 

Function and Particular Integral. 

0 sinF t
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( ) ( ) ( )

Where, ( )  Complimentary solution, satisfying 

                         homogeneous differential equation and

            ( )  particular solution, satisfying 

                      

c p

c

p

x t x t x t

x t

x t

 





   non-homogeneous part of equation

x

To determine ( ) :

   0 -------(Equation represnts free

                                -undamped vibration)

Solution of this equation is, ( ) A cos Bsin

c

c

x t

mx kx

x t t t 

 

 
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x

2

To determine ( ) :

Particular solution may be taken as,

( ) Ysin t

Where, Y = peak value of particular solution

( ) Y  cos t and

( ) Y  sin t

p

p

p

p

x t

x t

x t

x t



 

 





 
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x

2

0

2

0

0

2

Substituting these values in equation (A)

( Y  sin t) + k(Ysin t) = F sin t

Y(   k) = F

F
Y

k  

m

m

m

   







 




0

2

F

k 1  
m

k



 
 

 

0

2

2

F

k 1  





 
 

 

0

2

F

k 1





  
  
   

Term = r is known as frequency ratio



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x

0

2

F
 

k 1

Frequency of applied force
Where, r = = 

Natural frequency of vibration

r






  

0

2

0

2

So, exact solution can be given by,

F
( ) A cos Bsin sin t

k 1

F
( ) A sin B cos cos t ( )

k 1

x t t t
r

x t t t
r

  

     

  
  

   
  
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x

0

0

0

0
0 2

0 0

2

Applying boundary condition in equation of displacment,

At  = 0, 

A

Applying boundary condition in equation of velocity,

At  = 0, 

F
B (1)  (cos t) ( )

k 1

r F
B

k 1

t x x

x

t x x

x
r

x

r

  









 
  

 
  
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x

Transient Response Steady State 

Response

0 0 0
0 2 2

r F F
( ) cos sin sin t

k 1 k 1

x
x t x t t

r r
  



 
    

         

In all practical cases, 

damping forces will always 

be present in the system and 

will cause the transient 
response to vanish 

eventually. 
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x

 When forcing frequency is equal to natural frequency (i.e. ) or

r = 1.0, the amplitude of motion becomes infinitely large.

 A system acted upon by an external frequency coinciding with the

natural frequency is said to be at RESONANCE.

 

Response of

undamped system to

sinusoidal force of

frequency ; 
(0) (0) 0u u 
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x

Harmonic force with  (  is not natural frequency of system)  



Forced Undamped Vibration of SDOF System 

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

75

x

Response of undamped system to harmonic force with

0/  =0.2, (0) 0 and (0) /nu u P k   
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k

c

x(t)

F(t)

F(t) =
mx

k x

cx
m

Free Body Diagram

 Inertia force,  Damping force and 

 Restoring force

mx cx

kx

 



0 sinF t
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0

Applying D'Alembert's principle, 

 +     ( ) --------- (i)

For forced undamped vibrating system,

 + sin  --------- (A)

mx cx kx F t

mx cx kx F t

 

  

F(t) =

mx
k x

cx

Free Body Diagram

x

 Equation (A) is higher order non-

homogeneous differential equation.

 Solution of such equation consists of two

parts namely: Complimentary Function

and Particular Integral.

0 sinF t
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( ) ( ) ( )

Where, ( )  Complimentary solution, satisfying 

                         homogeneous differential equation and

            ( )  particular solution, satisfying 

                      

c p

c

p

x t x t x t

x t

x t

 





   non-homogeneous part of equation

x

Forced Damped Vibration of SDOF System 

 

To determine ( ) :

   +  0 -------(Equation represnts free

                                -damped vibration)

Solution of this equation is, ( ) A cos Bsin

c

t

c d d

x t

mx cx kx

x t e t t  

 

 
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x

To determine ( ) :px t

 

0

0

2
20

2

2

 +     sin

Dividing all the terms by m,

 +     sin

k d d
Let, ,  ,   &  D D

m dt dt

D  D  b sin

mx cx kx F t

Fc k
x x x t

m m m

Fc
a b d

m m

a x d t







 

 

     

   
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x

 

   

 
 
 

 

   

2

2 2

2 2

2 2

22 2 22

sin

D  D  b

Putting, D ( )

sin sin

 D  b D

D sin D sinsin
     *  

D D D

d t
PI

a

d t d t
PI

a b a

b a d t b a d td t

b a b a b a





 

 

   

  

 
 

 

 
    

   
 

     
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x

 

   

 

 

 

   

 

   

2

2 22

2

2
2 2 2

2 2

2 2
2 2 2 2 2 2

sin cos

D

sin cos
          

D

sin cos sin cos
          

d t b ad t
PI

b a

d t b a t

b a

d t b a t d t b a t

b a b a

   



   



       

   

 
 

 

  
 

 

      
    

    
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x

 

   

   

   

   

   

 

   

2

2 22 2

2
2 2 2

2 22 2 2 2 2 2

, cos  and sin

sin cos sin cos

sin cos sin cos sin

Let b R a R

b a R

d t R R t
PI

b a

dR t t d t
PI

b a b a

   

 

   

 

     

   

   

    
  

  
 

        
   



Forced Damped Vibration of SDOF System 

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

84

x

 

   
 

0

2 2

2

0

2 22

sin
k

m

sin

F

mPI t
c

m

F
PI t

k m c

 

 

 

 

 

   
    

   

 

 
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x

 

   
 0

2 22

Complete solution is given by

( ) ( ) ( )

      A cos Bsin

                                        sin

c p

t

d d

x t x t x t

e t t

F
t

k m c

  

 

 



 

 

 

 

Transient Response

Steady State 

Response
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x

Response of damped system to harmonic force with

0/  =0.2, =0.05, (0) 0 and (0) /nu u P k    
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x

 Complimentary solution will become negligible with time, as the

term e = 0.

 Steady state response of the system is given by,

8

   
 

   

0

2 22

0 0

2 2 222
2

sin

Amplitude of steady state response will be,

/

1

F
x t

k m c

F F k

m ck m c

k k

 

 

 
 

 

 



    
    

   
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x

0

2 22

2

c n

/
Steady State Amplitude

1

c c c
Using, =  and simplifying we get,

c 2m 2 m

F k

c

k

k











   
    

  

 

The numerator F0/k is static deflection of spring with stiffness k 

under the force F0, and can be denoted by st.

   

0

2 22

/
Steady State Amplitude

1 2

F k

r r



 
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x

   

0

d

0

2 22

0

The ratio of Amplitude of steady state response to

to static deflection under action of force  is known

as Magnification Factor (R ) or M.F.

/

1 2

/d

F

F k

r r
R

F k

 


   
2 22

1
Magnification Factor

1 2r r



 

Magnification Factor or Deformation Response Factor (Rd)

max *d stX R 



EX-8 A rigid frame shown in figure supports a rotating machine which

exerts a force at the girder level of 50000 sin11t N. Assuming 4%

of critical damping what would be the steady state amplitude of

vibration? Take, I for columns = 1500 x10-7 m4 and
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E = 21 x 1010 N/m2.

4
 m

A

B C

D

4
 m

m = 5000 kg



EX-9 Determine the magnification factor for a forced vibration

produced by a oscillator fixed at the middle of the beam at a

speed of 600 rpm. The concentrated load at the middle of the

beam is 5000 N and produces a static deflection of the beam is

0.025 cm. Neglect the weight of beam and assuming the

damping co-efficient equal to 20 Ns/mm.
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TO

O r

The ratio of the transmitted force (F )to the 

applied force (F ) is known as Transmissibility (T ).

Transmissibility (Tr)

 

   

2

2 22

1 2
Transmissibility,  

1 2

Maximum mass displacement
                         or =

Maximum support displacement

r

r
T

r r








 

 
2

0 0 1 2F Y k r 



EX-10 A steel frame shown in figure is subjected to sinusoidal

ground motion, x = 0.2sin15t cm, assuming damping ratio to
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be 0.1, determine:

(a)Transmissibility of motion

(b)Maximum SF in column

(c)Maximum bending stress in column

Take, E = 2 x 105 N/mm2,

Z = 1404.2 cm3 and I = 28083.5 cm4

5
 m

A

B C

D

5
 m

W = 60 kN



EX-11 A two bay single storey RCC plane frame which is

supporting lumped mass of 20 tonne on three columns

namely AB, CD & EF as shown in figure.
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LAB = 0.5LCD = 0.25LEF = 2m.

Calculate:

(a)Natural frequency of damped vibration

(b)Bending Moment and Shear Force at support for the RCC

frame after 5 cycles if the floor is displaced horizontally

by 300 mm and suddenly released.

Assume rigid diaphragm action and damping to be 8%.

Take, M25 grade concrete and size of column to be

600 mm x 600 mm.



Types of Damping

 External Viscous Damping

Body-friction damping

 Internal Viscous Damping

Hysteresis Damping

Radiation Damping

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

95



Damping Ratio for Various Building Materials

EQE-CV0701                                                                                                                      

By: Prof. Ritesh Patel, INDUS University 

96

Material Damping Ratio (ξ)

Concrete 5%

Steel <2%

Wood 12%

Clay 8-12%

Brick 5-7%


