
Behavioral
Design
Patterns

Ms. Nehal Adhvaryu

Introduction
concerned with the interaction and
responsibility of objects.

The interaction between the objects
should be in such a way that they can
easily talk to each other and still should
be loosely coupled.

Ms. Nehal Adhvaryu

Introduction
The implementation and the client
should be loosely coupled in order to
avoid hard coding and dependencies

Ms. Nehal Adhvaryu

Chain of Responsibility
Pattern
Sender sends a request to a chain of
objects. The request can be handled by
any object in the chain.

A Chain of Responsibility Pattern says
that just "avoid coupling the sender of a
request to its receiver by giving multiple
objects a chance to handle the request".

Ms. Nehal Adhvaryu

In other words, we can say that normally
each receiver contains reference of another
receiver. If one object cannot handle the
request then it passes the same to the next
receiver and so on.

Advantage:
It reduces the coupling.
It adds flexibility while assigning the
responsibilities to objects.
It allows a set of classes to act as one; events
produced in one class can be sent to other
handler classes with the help of composition.

Ms. Nehal Adhvaryu

It is used:
 When more than one object can handle a
request and the handler is unknown.
 When the group of objects that can handle
the request must be specified in dynamic
way.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Handler : This can be an interface which will
primarily receive the request and dispatches the
request to chain of handlers. It has reference of
only first handler in the chain and does not know
anything about rest of the handlers.

Concrete handlers : These are actual handlers
of the request chained in some sequential order.

Client : Originator of request and this will
access the handler to handle it.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Command Pattern
A Command Pattern says that "encapsulate a
request under an object as a command and pass
it to invoker object”.

Invoker object looks for the appropriate object
which can handle this command and pass the
command to the corresponding object and that
object executes the command".

It is also known as Action or Transaction.

Ms. Nehal Adhvaryu

Command Pattern
Advantage
It separates the object that invokes the
operation from the object that actually
performs the operation.
It makes easy to add new commands,
because existing classes remain
unchanged.

Ms. Nehal Adhvaryu

Command Pattern
It is used:
When you need parameterize objects
according to an action perform.

When you need to create and execute
requests at different times.

When you need to support rollback, logging
or transaction functionality.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Interpreter Pattern
An Interpreter Pattern says that "to define a
representation of grammar of a given language,
along with an interpreter that uses this
representation to interpret sentences in the
language".

Interpreter pattern provides a way to evaluate
language grammar or expression.

Ms. Nehal Adhvaryu

Interpreter Pattern
Basically the Interpreter pattern has limited area
where it can be applied.

This pattern is used in SQL parsing, symbol
processing engine etc.

Ms. Nehal Adhvaryu

Interpreter Pattern
Advantage
It is easier to change and extend the grammar.
Implementing the grammar is straightforward.

Usage
When the grammar of the language is not
complicated.
When the efficiency is not a priority.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

