
Structural Design Pattern

Ms. Nehal Adhvaryu

Introduction
Concerned with how classes and objects
can be composed, to form larger structures.

These patterns focus on, how the classes
inherit from each other and how they are
composed from other classes.

simplifies the structure by identifying the
relationships.

Ms. Nehal Adhvaryu

Introduction
Types
Adapter
Bridge
Composite
Decorator
Façade
Fly Weight
Proxy

Ms. Nehal Adhvaryu

Adapter
Also known as Wrapper.

Match interface of different classes.

Converts the interface of a class into
another interface that a client wants.

To provide the interface according to client
requirement while using the services of a
class with a different interface.

Ms. Nehal Adhvaryu

Adapter
Advantage
It allows two or more previously incompatible
objects to interact.
It allows reusability of existing functionality.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Adapter
Target Interface: This is the desired interface class
which will be used by the clients.
Adaptee class: This is the class which is used by the
Adapter class to reuse the existing functionality and
modify them for desired use.
Adapter class: This class is a wrapper class which
implements the desired target interface and modifies the
specific request available from the Adaptee class.
Client: This class will interact with the Adapter class.

Ms. Nehal Adhvaryu

Bridge
The Bridge Pattern is also known as Handle
or Body.
Decouple the functional abstraction from
the implementation so that the two can
vary independently.
Advantage
It enables the separation of implementation
from the interface.
It improves the extensibility.
It allows the hiding of implementation details
from the client.

Ms. Nehal Adhvaryu

Bridge
Usage
When you don't want a permanent binding
between the functional abstraction and its
implementation.
When both the functional abstraction and its
implementation need to extended using sub-
classes.
It is mostly used in those places where
changes are made in the implementation
does not affect the clients.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Composite
Allows us to treat different object in a
similar fashion.

Every body use composite pattern directly
or indirectly in a project because composite
pattern is nothing but the implementation
of interface.

Ms. Nehal Adhvaryu

Advantage
It defines class hierarchies that contain
primitive and complex objects.
It makes easier to you to add new kinds of
components.
It provides flexibility of structure with
manageable class or interface.

Ms. Nehal Adhvaryu

Composite
Usage:
When you want to represent a full or partial
hierarchy of objects.
When the responsibilities are needed to be
added dynamically to the individual objects
without affecting other objects. Where the
responsibility of object may vary from time to
time.

Ms. Nehal Adhvaryu

Composite
Components / Elements
Component :
The interface that all the components implement.
This can also be a class.
Implements default behavior for the interface
common to all classes as appropriate.
Leaf
Defines behavior for primitive objects in the
composition.
 A leaf has no children.
The unique objects in their own ways that
implement or extend the Component.

Ms. Nehal Adhvaryu

Composite
Components / Elements
Composite

 The single object made up of many components.
Implements child related operations in the
component interface.

Client
Manipulates objects in the composition through the
component interface.

Ms. Nehal Adhvaryu

Composite

Ms. Nehal Adhvaryu

Decorator

Says that just "attach a flexible additional
responsibilities to an object dynamically".

In other words, The Decorator Pattern uses
composition instead of inheritance to
extend the functionality of an object at
runtime.

The Decorator Pattern is also known as
Wrapper.

Ms. Nehal Adhvaryu

Decorator

Advantage
It provides greater flexibility than static
inheritance.
It enhances the extensibility of the object,
because changes are made by coding new
classes.
It simplifies the coding by allowing you to
develop a series of functionality from
targeted classes instead of coding all of the
behavior into the object.

Ms. Nehal Adhvaryu

Usage
When you want to transparently and
dynamically add responsibilities to objects
without affecting other objects.
When you want to add responsibilities to an
object that you may want to change in future.
Extending functionality by sub-classing is no
longer practical.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Facade
A single class that represent an entire
subsystem.

Its purpose is to hide internal complexity of
an system and provide simple interface.

Advantage
Reduce network calls.
Reduce coupling
Help in establishing transaction boundary.

Ms. Nehal Adhvaryu

Usage
When you want to provide simple interface to
a complex sub-system.
When several dependencies exist between
clients and the implementation classes of an
abstraction.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

Flyweight
To reuse already existing similar kind of
objects by storing them and create new
object when no matching object is found.

Advantage:
It reduces the number of objects.
It reduces the amount of memory and
storage devices required if the objects are
persisted

Ms. Nehal Adhvaryu

Flyweight
Usage
When an application uses number of objects
When the storage cost is high because of the
quantity of objects.
When the application does not depend on
object identity.

Ms. Nehal Adhvaryu

Proxy
 Proxy is the object that is being called by the client to
access the real object behind the scene.

It represent functionality of another class.

Provides the control for accessing the original object.

Also known as Surrogate or Placeholder.

Advantage:
It provides the protection to the original object from
the outside world.

Ms. Nehal Adhvaryu

Proxy
Types of Proxy:
Remote
Provides a local representation of the

object which is actually stored in the different
address location.

Virtual
Consider a situation where there is multiple
database call to extract huge size image.
Since this is an expensive operation so here
we can use the proxy pattern

Ms. Nehal Adhvaryu

Proxy
Protection
It acts as an authorization layer to verify that

whether the actual user has access the appropriate
content or not. For example, a proxy server which
provides restriction on internet access in office.

Smart
 A smart proxy provides additional layer of security

by interposing specific actions when the object is
accessed. For example, to check whether the real object
is locked or not before accessing it so that no other
objects can change it.

Ms. Nehal Adhvaryu

Ms. Nehal Adhvaryu

