Unit-2

Newton Forward And Backward Interpolation
Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation.
Forward Differences : The differences y1 - y0, y2 - y1, y3 - y2, yn $-\mathrm{yn}-1$
when denoted by dy0, dy1, dy $2, \ldots \ldots$, dyn -1 are respectively, called the first forward differences. Thus the first forward differences are :

Forward difference table

x	y	1y	$1^{2} y$	$د^{\prime \prime} y$	$د^{t} y$	$5^{5} y$
x_{0}	y_{0}					$\Delta^{5} y_{0}$
		Δy_{0}				
x_{1}	y_{1}		$\Delta^{2} y_{0}$			
($=x_{0}+h$)		Δy_{1}		$\Delta^{3} y_{0}$		
x_{2}	y_{2}		$\Delta^{2} y_{1}$		$\Delta^{4} y_{0}$	
$\left(=x_{0}+2 h\right)$		Δy_{2}		$\Delta^{3} y_{1}$		
x_{3}	y_{3}		$\Delta^{2} y_{2}$		$\Delta^{4} y_{1}$	
$=\left(x_{0}+3 h\right)$		Δy_{3}		$\Delta^{3} y_{2}$		
x_{4}	y_{4}		$\Delta^{2} y_{3}$			
$=\left(x_{0}+4 h\right)$		Δy_{4}				
x_{5}	y_{5}					
$=\left(x_{0}+5 h\right)$						

NEWTON'S GREGORY FORWARD INTERPOLATION FORMULA:

This formula is particularly useful for interpolating the values of $f(x)$ near the beginning of the set of values given. h is called the interval of difference and $\mathbf{u}=(\mathbf{x}-$ a) /h, Here a is first term.

θ°	45°	50°	55°	60°
$\sin \theta$	0.7071	0.7660	0.8192	0.8660

x°	Differences			
	$10^{4} y$	$10^{\prime} \Delta y$	$10^{1} J^{2} y$	$10^{1} \Delta^{3} y$
	7071			
50°	7660	589		
55°	8192	532	-57	
60°	8660	468	-64	$\boxed{-7}$

Backward Differences : The differences y1-y0, y2-y1, \qquad yn - yn-1 when denoted by dy1, dy2, \qquad dyn, respectively, are called first backward difference.
Thus the first backward differences are :

Backward difference table

x	y	Vy	$\nabla^{2} y$	$\nabla^{3} y$	$\nabla^{4} y$	$V^{5} y$
x_{0}	y_{0}					$\nabla^{5} y_{5}$
		∇y_{1}				
x_{1}	y_{1}		$\nabla^{2} y_{2}$			
$\left(=x_{0}+h\right)$		∇y_{2}		$\nabla^{3} y_{3}$		
x_{2}	y_{2}		$\nabla^{2} y_{3}$		$\nabla^{4} y_{4}$	
$\left(=x_{0}+2 h\right)$		∇y_{3}		$\nabla^{3} y_{4}$		
x_{3}	y_{3}		$\nabla^{2} y_{4}$		$\nabla^{4} y_{5}$	
$\left(=x_{0}+3 h\right)$		∇y_{4}		$\nabla^{3} y_{5}$		
	y_{4}		$\nabla^{2} y_{5}$			
$\left(=x_{0}+4 h\right)$		∇y_{5}				
x_{5}	y_{5}					
$\left(=x_{0}+5 h\right)$						

NEWTON'S GREGORY BACKWARD
INTERPOLATION FORMULA :

This formula is useful when the value of $f(x)$ is required near the end of the table. h is called the interval of difference and $\mathbf{u}=(\mathbf{x}-\mathbf{a n}) / \mathbf{h}$, Here an is last term.

Example :

Input : Population in 1925

Year (x) :	1891	1901	1911	1921	1931
Population $(y):$ (in thousands)	46	66	81	93	101

Output :

Value in 1925 is $\mathbf{9 6 . 8 3 6 8}$

Stirling Interploation

Stirling Approximation or Stirling Interpolation Formula is an interpolation technique, which is used to obtain the value of a function at an intermediate point within the range of a discrete set of known data points .

Stirling Formula is obtained by taking the average or mean of the Gauss Forward and Gauss Backward Formula . Both the Gauss Forward and Backward formula are formulas for obtaining the value of the function near the middle of the tabulated set .

How to find

Stirling Approximation involves the use of forward difference table, which can be prepared from the given set of x and $f(x)$ or y as given below -

$\mathrm{x}_{0} \mathrm{y}_{0}$
$\mathrm{x}_{1} \quad \mathrm{y}_{1} \quad \Delta \mathrm{y}_{0} \quad \Delta^{2} \mathrm{y}_{0}$

$x_{5} \quad y_{5}$

This table is prepared with the help of x and its corresponding $f(x)$ or y. Then, each of the next column values is computed by calculating the difference between its preceeding and succeeding values in the previous column, like

$$
\begin{aligned}
& \Delta \mathrm{y} 0=\mathrm{y} 1-\mathrm{y} 0, \Delta \mathrm{y} 1=\mathrm{y} 2-\mathrm{y} 1, \\
& \Delta^{2} \mathrm{y} 0=\Delta \mathrm{y} 1-\Delta \mathrm{y} 0, \text { and so on. }
\end{aligned}
$$

Now, the Gauss Forward Formula for obtaining $f(x)$ or y at a is: where, $p=a-x 0 / h$,
\mathbf{a} is the point where we have to determine $\mathrm{f}(\mathrm{x}), \mathrm{x}$ is the selected value from the given Δy
x which is closer to a (generally, a value from the middle of the table is selected), and h is the difference between any two consecutive x. Now, y becomes the value corresponding to x and values before x have negative subscript and those after have positive subscript, as shown in the table below -

Stirling's Formula gives a good approximation for n ! in terms of elementary functions. Before stating the formula, we introduce the following notation:
if $f(n)$ is a function and $g(n)$ is a function, then we write $f(n) \sim g(n) \leftrightarrow$ $\operatorname{limn}_{n \rightarrow \infty} \mathrm{f}(\mathrm{n}) \mathrm{g}(\mathrm{n})=1$. The statement $\mathrm{f}(\mathrm{n}) \sim \mathrm{g}(\mathrm{n})$ is read $\mathrm{f}(\mathrm{n})$ is asymptotic to $\mathrm{g}(\mathrm{n})$ as n $\rightarrow \infty$.

$$
\text { For example, one verifies that } \mathrm{n} 2 \sim(\mathrm{n}+1) 2 \text { and } \sqrt{ } 1+\mathrm{n} \sim \sqrt{ } \mathrm{n} \text {. }
$$

Here is Stirling's Formula: Stirling's Formula $n!\sim n n e-n \sqrt{ } 2 \pi n$. The following graph shows a plot of the function $h(n)=n!/ n n$ e $-n \sqrt{ } 2 \pi n$, confirming Stirling's Formula: $\mathrm{h}(\mathrm{n}) \rightarrow \mathrm{I}$ as $\mathrm{n} \rightarrow \infty$. It turns out that $\mathrm{h}(\mathrm{n})$ is decreasing so n n e $-\mathrm{n} \sqrt{ } 2 \pi n$ always underestimates n ! by a small amount.

10203040506070 1.03 1.04 1.02 1.01 Figure 1 :
Stirling's Formula The proof of Stirling's Formula is beyond the scope of this course. Instead of proving the formula, we rather give a proof of a weaker statement: we show that for every positive integer $\mathrm{n}, \mathrm{n} \mathrm{n}$ e $-\mathrm{n}<\mathrm{n}!<(\mathrm{n}+1) \mathrm{n}+1 \mathrm{e}-\mathrm{n}$. (1) This does not prove Stirling's Formula, but it gives motivation for the $n \mathrm{n} e-\mathrm{n}$ term in the formula. The proof of the $\sqrt{ } 2 \pi n$ part of the formula is more difficult. 1 First Proof - To prove (1), we just have to show (by taking logarithms): $n \log n-n<\log (n!)<(n+1) \log (n$ $+1)-n$. Since $n!=n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1, \log (n!)=\log 1+\log 2+\ldots+\log n$. The sum on the right can be estimated by integrals: let's show that $\log 1+\log 2+\ldots$. $+\log \mathrm{n}<\mathrm{Z} \mathrm{n}+11 \log \mathrm{xdx}$. To see this, note that the integral represents the area under the curve $\mathrm{y}=\log \mathrm{x}$ (the red curve in the left plot below) for $1 \leq \mathrm{x} \leq \mathrm{n}+1$, whereas the sum $\log 1+\log 2+\ldots+\log n$ represents adding up the areas of rectangles with height $\log \mathrm{k}$ for $\mathrm{k}=1,2, \ldots, \mathrm{n}$ (see green step function in the left plot below). Now we can work out the integral: $Z n+11 \log x d x=x \log x-x+1 i n+11=(n+1) \log (n+1)-n$. Therefore $\log (\mathrm{n}!)<(\mathrm{n}+1) \log (\mathrm{n}+1)-\mathrm{n}$. We're going to do the same thing to prove $\log (\mathrm{n}!)>\mathrm{n} \log \mathrm{n}-\mathrm{n}$: we claim that $\log 1+\log 2+\ldots+\log \mathrm{n}>\mathrm{Z} \mathrm{n} 0 \log \mathrm{x} d \mathrm{x}$.

This is shown in the figure on the right, with the red curve representing $\log x$ and the rectangles representing $\log (1)+\log (2)+\ldots+\log (n) .2 .00 .5 \times 261.51 .00 .0$ $482 \times 1.50 .52 .0460 .01 .08$ Figure 2 : Approximating $\log (\mathrm{n}!)$ Therefore $\log (\mathrm{n}!)>$ R $n 0 \log x d x=n \log n-n$, which completes the proof of (1).

Bessel's Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation.
Central differences : The central difference operator d is defined by the relations :

$$
y_{1}-y_{0}=\delta y_{1 / 2}, y_{2}-y_{1}=\delta y_{3 / 2}, \ldots \ldots, y_{n}-y_{n-1}=\delta y_{n-\frac{1}{2}} .
$$

Similarly, high order central differences are defined as :

$$
\delta y_{3 / 2}-\delta y_{1 / 2}=\delta^{2} y_{1}, \quad \delta y_{5 / 2}-\delta y_{3 / 2}=\delta^{2} y_{2}
$$

Note - The central differences on the same horizontal line have the same suffix

Central difference table

x	y	δy	$\delta^{2} y$	$\delta^{3} y$	$\delta^{4} y$	$\delta^{5} y$
x_{0}	y_{0}	$\delta y_{1 / 2}$				
x_{1}	y_{1}	$\delta^{2} y_{1}$				
x_{2}	y_{2}	$\delta y_{3 / 2}$	$\delta^{3} y_{3 / 2}$			
x_{3}	y_{3}	$\delta y_{5 / 2}$	$\delta^{2} y_{2}$	$\delta^{3} y^{4}$	$\delta^{4} y_{2}$	$\delta^{2} y^{5} y_{5 / 2}$
x_{4}	y_{4}	$\delta y_{7 / 2}$	δ^{2}	δ_{3}	$\delta^{3} y_{7 / 2}$	$\delta^{4} y_{3}$
x_{5}	y_{5}	$\delta y_{9 / 2}$				

Bessel's Interpolation formula -

$$
\begin{aligned}
& f(u)=\left\{\frac{f(0)+f(1)}{2}\right\}+\left(u-\frac{1}{2}\right) \Delta f(0) \\
&+\frac{u(u-1)}{2!}\left\{\frac{\Delta^{2} f(-1)+\Delta^{2} f(0)}{2}\right\} \\
&+\frac{(u-1)\left(u-\frac{1}{2}\right) u}{3!} \Delta^{3} f(-1) \\
&+\frac{(u+1) u(u-1)(u-2)}{4!}\left\{\frac{\Delta^{4} f(-2)+\Delta^{4} f(-1)}{2}\right\}+\ldots . .
\end{aligned}
$$

It is very useful when $\mathbf{u}=\mathbf{1} / \mathbf{2}$. It gives a better estimate when $\mathbf{1 / 4}<\mathbf{u}<\mathbf{3} / \mathbf{4}$ Here $f(0)$ is the origin point usually taken to be mid point, since bessel's is used to interpolate near the centre. h is called the interval of difference and $u=(x-f(0)) / h$, Here $f(0)$ is term at the origin chosen.

Examples -

Input		$:$	Value		at	27.4	
$x:$	25	26	27	28	29	30	$?$
$f(x):$	4.000	3.846	3.704	3.571	3.448	3.333.	

Output

Value at 27.4 is 3.64968

