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Newton Forward And Backward Interpolation
Interpolation is the technique of estimating the value of a function for any
intermediate value of the independent variable, while the process of computing the
value of the function outside the given range is called extrapolation.
Forward Differences : The differences y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1
when denoted by dy0, dy1, dy2, ……, dyn–1 are respectively, called the first forward
differences. Thus the first forward differences are :

NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA :

This formula is particularly useful for interpolating the values of f(x) near the
beginning of the set of values given. h is called the interval of difference and u = ( x –
a ) / h, Here a is first term.



Backward Differences : The differences y1 – y0, y2 – y1, ……, yn – yn–1 when
denoted by dy1, dy2, ……, dyn, respectively, are called first backward difference.
Thus the first backward differences are :

NEWTON’S GREGORY BACKWARD INTERPOLATION FORMULA :

This formula is useful when the value of f(x) is required near the end of the table. h is
called the interval of difference and u = ( x – an ) / h, Here an is last term.
Example :

Input : Population in 1925



Output :

Value in 1925 is 96.8368

Stirling Interploation

Stirling Approximation or Stirling Interpolation Formula is an interpolation technique,
which is used to obtain the value of a function at an intermediate point within the
range of a discrete set of known data points .

Stirling Formula is obtained by taking the average or mean of the Gauss Forward and
Gauss Backward Formula . Both the Gauss Forward and Backward formula are
formulas for obtaining the value of the function near the middle of the tabulated set .

How to find
Stirling Approximation involves the use of forward difference table, which can be
prepared from the given set of x and f(x) or y as given below –



This table is prepared with the help of x and its corresponding f(x) or y . Then, each of
the next column values is computed by calculating the difference between its

preceeding and succeeding values in the previous column, like

∆y0= y1 – y0, ∆y1 =y2 – y1,

∆2y0 = ∆y1– ∆y0, and so on.
Now, the Gauss Forward Formula for obtaining f(x) or y at a is:
where,p=a-x0/h ,
a is the point where we have to determine f(x), x is the selected value from the given

∆y
x which is closer to a (generally, a value from the middle of the table is selected), and
h is the difference between any two consecutive x. Now, y becomes the value
corresponding to x and values before x have negative subscript and those after have
positive subscript, as shown in the table below –



Stirling’s Formula gives a good approximation for n! in terms of elementary functions.
Before stating the formula, we introduce the following notation:

if f(n) is a function and g(n) is a function, then we write f(n) ∼ g(n) ↔
limn→∞ f(n) g(n) = 1. The statement f(n) ∼ g(n) is read f(n) is asymptotic to g(n) as n
→ ∞.

For example, one verifies that n 2 ∼ (n + 1)2 and √ 1 + n ∼ √ n.
Here is Stirling’s Formula: Stirling’s Formula n! ∼nn e −n √ 2πn. The following graph
shows a plot of the function h(n) = n!/nn e −n √ 2πn, confirming Stirling’s Formula:
h(n) → 1 as n → ∞. It turns out that h(n) is decreasing so n n e −n √ 2πn always
underestimates n! by a small amount.
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Stirling’s Formula The proof of Stirling’s Formula is beyond the scope of this course.
Instead of proving the formula, we rather give a proof of a weaker statement: we show
that for every positive integer n, n n e −n < n! < (n + 1)n+1e −n . (1) This does not
prove Stirling’s Formula, but it gives motivation for the n n e −n term in the formula.
The proof of the √ 2πn part of the formula is more difficult. 1 First Proof — To prove
(1), we just have to show (by taking logarithms): n log n − n <log(n!) < (n + 1) log(n
+ 1) − n. Since n! = n · (n − 1) · (n − 2)· · · 2 · 1, log(n!) = log 1 + log 2 + . . . + log n.
The sum on the right can be estimated by integrals: let’s show that log 1 + log 2 + . . .
+ log n < Z n+1 1 log x dx. To see this, note that the integral represents the area under
the curve y = log x (the red curve in the left plot below) for 1 ≤ x ≤ n+1, whereas the
sum log 1+log 2+. . .+ log n represents adding up the areas of rectangles with height
log k for k = 1, 2, . . . , n (see green step function in the left plot below). Now we can
work out the integral: Z n+1 1 log x dx = x log x − x + 1in+1 1 = (n + 1) log(n + 1) − n.
Therefore log(n!) < (n + 1) log(n + 1) − n. We’re going to do the same thing to prove
log(n!) >n log n − n: we claim that log 1 + log 2 + . . . + log n > Z n 0 log x dx.

This is shown in the figure on the right, with the red curve representing log x
and the rectangles representing log(1) + log(2) + . . . + log(n). 2.0 0.5 x 2 6 1.5 1.0 0.0
4 8 2 x 1.5 0.5 2.0 4 6 0.0 1.0 8 Figure 2 : Approximating log(n!) Therefore log(n!) >
R n 0 log xdx = n log n − n, which completes the proof of (1).



Bessel’s Interpolation
Interpolation is the technique of estimating the value of a function for any
intermediate value of the independent variable, while the process of computing the
value of the function outside the given range is called extrapolation.
Central differences : The central difference operator d is defined by the relations :

Similarly, high order central differences are defined as :

Note – The central differences on the same horizontal line have the same suffix

Bessel’s Interpolation formula –



It is very useful when u = 1/2. It gives a better estimate when 1/4 < u < 3/4 Here f(0)
is the origin point usually taken to be mid point, since bessel’s is used to
interpolate near the centre. h is called the interval of difference and u = ( x – f(0) ) / h,
Here f(0) is term at the origin chosen.

Examples –
Input : Value at 27.4 ?

Output :

Value at 27.4 is 3.64968


