Unit-2

Newton Forward And Backward Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called **extrapolation**. **Forward Differences**: The differences $y_1^2 = y_1^2 = y_1^2 = y_2^2 = y_1^2 = y_$

Forward Differences : The differences $y_1 - y_0$, $y_2 - y_1$, $y_3 - y_2$,, $y_n - y_{n-1}$ when denoted by dy0, dy1, dy2,, dyn-1 are respectively, called the first forward differences. Thus the first forward differences are :

x	У	Ду	$\Delta^2 y$	$\Delta^{\beta}y$	$\Delta^{I}y$	$\Delta^{\delta}y$
<i>x</i> ₀	<i>y</i> ₀					
x_1	<i>y</i> ₁	Δy_0	$\Delta^2 y_0$			
$(=x_0 + h)$		Δy_1	00320	$\Delta^3 y_0$	1004	
(-x + 2h)	y_2	A.v.	$\Delta^2 y_1$	A3.,	$\Delta^4 y_0$	A5.
$(-x_0 + 2n)$ x_3	<i>y</i> ₃	Δy_2	$\Delta^2 y_2$		$\Delta^4 y_1$	Δy_0
$= (x_0 + 3h)$		Δy_3		$\Delta^3 y_2$		
x_4	${\mathcal Y}_4$	A.v.	$\Delta^2 y_3$			
$-\alpha_0 + 4n$	<i>y</i> ₅					
$=(x_0 + 5h)$						

Forward difference table

NEWTON'S GREGORY FORWARD INTERPOLATION FORMULA:

This formula is particularly useful for interpolating the values of f(x) near the beginning of the set of values given. h is called the interval of difference and $\mathbf{u} = (\mathbf{x} - \mathbf{a})/\mathbf{h}$, Here a is first term.

θ°	45°	<i>50</i> °	55°	60°
sin θ	0.7071	0.7660	0.8192	0.8660

	Differences							
x °	$10^{l}y$	<i>101</i> Ду	$10^4 \Delta^2 y$	$I \theta^{I} \Delta^{3} y$				
45°	7071	589						
50°	7660	532	-57	- 7				
55°	8192	468	- 64	L]				
60°	8660							

Backward Differences : The differences $y_1 - y_0$, $y_2 - y_1$,, $y_n - y_{n-1}$ when denoted by dy1, dy2,, dyn, respectively, are called first backward difference. Thus the first backward differences are :

x	У	∇y	$ abla^2 y$	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
<i>x</i> ₀	<i>y</i> ₀	Var				
<i>x</i> ₁	<i>y</i> ₁	•y ₁	$\nabla^2 \boldsymbol{y}_2$			
$(=x_0+h)$ x_2	y 2	∇y_2	$ abla^2 y_3$	$\nabla^3 y_3$	$\nabla^4 y_4$	
$(=x_0 + 2h)$	47	∇y_3	$\nabla^2 u$	$\nabla^3 y_4$	$\nabla^4 v$	$\nabla^5 y_5$
$(=x_0^{x_3}+3h)$	<i>y</i> ₃	∇y_4	v y ₄	$\nabla^3 y_5$	• y ₅	
$(=x_0 + 4h)$	${\mathcal Y}_4$	∇y_{z}	$\nabla^2 y_5$			
x ₅	${\mathcal Y}_5$	2.5				
$(=x_0 + 5h)$	5					

Backward difference table

NEWTON'S GREGORY BACKWARD

INTERPOLATION FORMULA:

This formula is useful when the value of f(x) is required near the end of the table. h is called the interval of difference and $\mathbf{u} = (\mathbf{x} - \mathbf{an}) / \mathbf{h}$, Here an is last term. **Example** :

Input : Population in 1925

81 93	101
2 y ∇^3 y	$\nabla^4 y$
2 y ∇^3 y	$\nabla^{I}y$
5	
3	- 3

Stirling Interploation

Stirling Approximation or Stirling Interpolation Formula is an interpolation technique, which is used to obtain the value of a function at an intermediate point within the range of a discrete set of known data points .

Stirling Formula is obtained by taking the average or mean of the Gauss Forward and Gauss Backward Formula . Both the Gauss Forward and Backward formula are formulas for obtaining the value of the function near the middle of the tabulated set .

How to find

Stirling Approximation involves the use of forward difference table, which can be prepared from the given set of x and f(x) or y as given below –

x y	۵У	ay	a ³ y a ⁴ y a ⁵ y	
х₀ У о				
x ₁ y ₁	∆y ₀	$\Delta^2 v_0$		
Xo Vo	∆У1	2	△ ³ yo	
X3 Y3	∆y ₂	2 y1	23 y1 25y0	
x4 y4	∆y ₃	2V2	$\Delta^3 y_2 \Delta^4 y_1$	
X5 Y5	۵¥4	- ys		

This table is prepared with the help of x and its corresponding f(x) or y. Then, each of the next column values is computed by calculating the difference between its

preceeding and succeeding values in the previous column, like

$$\Delta y0 = y1 - y0, \Delta y1 = y2 - y1,$$

$$\Delta^2 y0 = \Delta y1 - \Delta y0$$
, and so on.

Now, the Gauss Forward Formula for obtaining f(x) or y at **a** is: where,p=a-x0/h ,

a is the point where we have to determine f(x), x is the selected value from the given Δy

x which is closer to **a** (generally, a value from the middle of the table is selected), and h is the difference between any two consecutive x. Now, y becomes the value corresponding to x and values before x have negative subscript and those after have positive subscript, as shown in the table below -

 $\sim^3 v$ a^4 v X ΔY y 2 Y-2 ∆y_2 **Y-1** Δ^{3 y}-2 Δ^{3 y-1}
Δ⁴y-2 Xo VO X1 X_2 Y2 Δy

Stirling's Formula gives a good approximation for n! in terms of elementary functions. Before stating the formula, we introduce the following notation:

if f(n) is a function and g(n) is a function, then we write $f(n) \sim g(n) \leftrightarrow \lim_{n \to \infty} f(n) g(n) = 1$. The statement $f(n) \sim g(n)$ is read f(n) is asymptotic to g(n) as $n \to \infty$.

For example, one verifies that $n \ge (n + 1) \ge n d \sqrt{1 + n} < \sqrt{n}$.

Here is Stirling's Formula: Stirling's Formula n! $\sim nn e -n \sqrt{2\pi n}$. The following graph shows a plot of the function $h(n) = n!/nn e -n \sqrt{2\pi n}$, confirming Stirling's Formula: $h(n) \rightarrow 1$ as $n \rightarrow \infty$. It turns out that h(n) is decreasing so n n e $-n \sqrt{2\pi n}$ always underestimates n! by a small amount.

10 20 30 40 50 60 70 1.03 1.04 1.02 1.01 Figure 1 :

Stirling's Formula The proof of Stirling's Formula is beyond the scope of this course. Instead of proving the formula, we rather give a proof of a weaker statement: we show that for every positive integer n, n n e -n < n! < (n + 1)n+1e - n . (1) This does not prove Stirling's Formula, but it gives motivation for the n n e -n term in the formula. The proof of the $\sqrt{2\pi n}$ part of the formula is more difficult. 1 First Proof — To prove (1), we just have to show (by taking logarithms): n log n $- n < \log(n!) < (n + 1) \log(n + 1) - n$. Since n! = $n \cdot (n - 1) \cdot (n - 2) \cdots 2 \cdot 1$, $\log(n!) = \log 1 + \log 2 + \ldots + \log n$. The sum on the right can be estimated by integrals: let's show that log $1 + \log 2 + \ldots + \log n < Z n+1 \ 1 \log x \ dx$. To see this, note that the integral represents the area under the curve y = log x (the red curve in the left plot below) for $1 \le x \le n+1$, whereas the sum log $1+\log 2+\ldots + \log n$ represents adding up the areas of rectangles with height log k for k = 1, 2, ..., n (see green step function in the left plot below). Now we can work out the integral: Z n+1 1 log x dx = x log x $- x + 1in+1 1 = (n + 1) \log(n + 1) - n$. Therefore $\log(n!) < (n + 1) \log(n + 1) - n$. We're going to do the same thing to prove $\log(n!) > n \log n - n$: we claim that $\log 1 + \log 2 + \ldots + \log n > Z n 0 \log x dx$.

This is shown in the figure on the right, with the red curve representing $\log x$ and the rectangles representing $\log(1) + \log(2) + \ldots + \log(n)$. 2.0 0.5 x 2 6 1.5 1.0 0.0 4 8 2 x 1.5 0.5 2.0 4 6 0.0 1.0 8 Figure 2 : Approximating $\log(n!)$ Therefore $\log(n!) > R n 0 \log x dx = n \log n - n$, which completes the proof of (1).

Bessel's Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called **extrapolation**.

Central differences : The central difference operator d is defined by the relations :

$$y_1 - y_0 = \delta y_{1/2}, y_2 - y_1 = \delta y_{3/2}, \dots, y_n - y_{n-1} = \delta y_{n-\frac{1}{2}}.$$

Similarly, high order central differences are defined as :

$$\delta y_{3/2} - \delta y_{1/2} = \delta^2 y_1, \quad \delta y_{5/2} - \delta y_{3/2} = \delta^2 y_2$$

Note - The central differences on the same horizontal line have	the same suffix
Central difference table	

x	у	δy	δ ² y	$\delta^3 y$	$\delta^4 y$	δ ⁵ y
x_0	<i>y</i> ₀	Sau				
x_1	<i>y</i> ₁	09 1/2 Sau	$\delta^2 y_1$	\$3.,		
x_2	<i>y</i> ₂	δ _{y 3/2}	$\delta^2 y_2$	δ ³ ν	$\delta^4\! y_2$	δ ⁵ ν
x_3	y_3	55 5/2 Sv	$\delta^2 y_3^{}$	δ ³ ν	$\delta^4 y_3$	5 5/2
x_4	y_4	55 7/2 Sau	$\delta^2 y_4$	5 5 7/2		
x_5	y_5	09/9/2	6			

Bessel's Interpolation formula -

$$\begin{split} f(u) &= \left\{ \frac{f\left(0\right) + f\left(1\right)}{2} \right\} + \left(u - \frac{1}{2}\right) \Delta f\left(0\right) \\ &+ \frac{u\left(u - 1\right)}{2!} \left\{ \frac{\Delta^2 f\left(-1\right) + \Delta^2 f\left(0\right)}{2} \right\} \\ &+ \frac{(u - 1)\left(u - \frac{1}{2}\right)u}{3!} \Delta^3 f\left(-1\right) \\ &+ \frac{(u + 1)u\left(u - 1\right)(u - 2)}{4!} \left\{ \frac{\Delta^4 f\left(-2\right) + \Delta^4 f\left(-1\right)}{2} \right\} + \dots \end{split}$$

It is very useful when $\mathbf{u} = 1/2$. It gives a better estimate when $1/4 < \mathbf{u} < 3/4$ Here f(0) is the origin point usually taken to be mid point, since bessel's is used to interpolate near the centre. h is called the interval of difference and $\mathbf{u} = (x - f(0)) / h$, Here f(0) is term at the origin chosen.

Examples -

Input	:		Value	at	27	7.4	?
<i>x:</i>	25	26	27	28	29	30	
f(x):	4.000	3.846	3.704	3.571	3.448	3.333.	

Output

u	$10^{3}f(u)$	$10^3 \Delta f(u)$	$10^3 \Delta^2 f(u)$	$10^3 \Delta^3 f(u)$	$10^3 \Delta^4 f(u)$	$10^3 \Delta^5 f(u)$
- 2	4000					
- 1	3847	- 154	12			
0	3704	- 142	9	- 3	4	
1	3571				- 3	- 7
	-	-123		-2		
2	3448	- 115	8			
3	3333					

Value at 27.4 is 3.64968